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The setting: high-d dynamics in rugged landscapes

s = (s1, ⋯, sN) ∈ 𝒞N

Classical stochastic dynamics: 
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ds(t)
dt

= − ∇ℰ[s(t)] + 2T η(t)

High dimension , weak noise N ≫ 1 T ≪ 1

⟨ηi(t)ηj(t′ )⟩ = δijδ(t − t′ )

configuration space
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Classical stochastic dynamics: 
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ds(t)
dt

= − ∇ℰ[s(t)] + 2T η(t)

High dimension , weak noise N ≫ 1 T ≪ 1

  Rugged energy landscape   with  
local minima (  metastable states), maxima, 
saddles such that 

◼ ℰ[s(t)] 𝒩 ∼ eNΣ

→
∇ℰ[s] = 0

⟨ηi(t)ηj(t′ )⟩ = δijδ(t − t′ )

- landscapeℰ[s]

s

configuration space 𝒞N

dynamics

 “landscape complexity”Σ=

   random landscape on , 
Gaussian statistics.
◼ ℰ[s(t)] 𝒞N

configuration space



In this work  [arXiv:2410.18010]

We compute the (conditional) entropy of triplets of 
metastable states (local minima), more generally of 
stationary points , as a function of;∇ℰ[s] = 0
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  Given the random variable◼

Σ(3)(ϵ2, d02, d01 |ϵ0, ϵ1, d01) = lim
N→∞ ⟨ 1

N
log[𝒩s0,s1

(ϵ2, d02, d12)]⟩
0,1

we compute 

configuration space 𝒞N

s0
d01 s1

s2
d02

d12

ϵ0

ϵ1

ϵ2

- landscapeℰ[s]

(i) their energy density  
(ii) their distances in configuration space 

ϵ = ℰ/N
dab

number of stationary points  at energy  and conditioned to fixed 
distances  from two other stationary points  of energies  and distance 
𝒩s0,s1

(ϵ2, d02, d12) = s2 ℰ[s2] = Nϵ2
d12, d02 s0, s1 Nϵ1, Nϵ0 d01

“three-point complexity”
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  Given the random variable◼

Σ(3)(ϵ2, d02, d01 |ϵ0, ϵ1, d01) = lim
N→∞ ⟨ 1

N
log[𝒩s0,s1

(ϵ2, d02, d12)]⟩
0,1

we compute 

configuration space 𝒞N

s0
d01 s1

s2
d02

d12

ϵ0

ϵ1

ϵ2

- landscapeℰ[s]

(i) their energy density  
(ii) their distances in configuration space 

ϵ = ℰ/N
dab

number of stationary points  at energy  and conditioned to fixed 
distances  from two other stationary points  of energies  and distance 
𝒩s0,s1

(ϵ2, d02, d12) = s2 ℰ[s2] = Nϵ2
d12, d02 s0, s1 Nϵ1, Nϵ0 d01

  “Replicated Kac-Rice formalism”: replica theory + random matrix theory ◼ Review: VR, Fyodorov 2023

“three-point complexity”



In this talk: from dynamics to landscape, and back 3/17

Part I

Part II

A good mean-field model of glasses 

The known and the unknown

The unknown: activated dynamics

From dynamics to landscape’s geometry

The local landscape’s geometry

Hints on activated dynamics



Part I 
A good mean-field model for glasses



The spherical p-spin model: the “baby glass” 4/17

“Pure spherical -spin model”, aka isotropic 
Gaussian landscapes on high-dimensional hypersphere

p

   ℰ(s) = p!
2Np−1 ∑
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“overlap”

p ≥ 3
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s1
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The spherical p-spin model: the “baby glass”
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∑
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i = N

Gaussian iidJi1⋯ip ∼
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Configuration space 𝒞N

s1
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Quantum ergodicity (ETH) breaking
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The spherical p-spin model: the “baby glass”

N

∑
i=1

s2
i = N

Gaussian iidJi1⋯ip ∼

s0

Configuration space 𝒞N

s1
“overlap”

Holography
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The spherical p-spin model: the “baby glass”

N

∑
i=1

s2
i = N

Gaussian iidJi1⋯ip ∼

s0

Configuration space 𝒞N

s1
“overlap”

Theory of learning
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p ≥ 3 q(s0, s1) = s0 ⋅ s1
N

“Pure spherical -spin model”, aka isotropic 
Gaussian landscapes on high-dimensional hypersphere

p

   ℰ(s) = p!
2Np−1 ∑

i1,⋯,ip

Ji1,⋯,ip si1⋯sip



A good mean-field model of glasses 5/17

  Mean-field theory of interacting particles 
developed in last  years. Non trivial 
theoretical construct. 

 Quantitative predictions (down to 3d): 
dynamical transition, dynamical exponents, 
aiging, rugged landscape, gardner transition,  
jamming critical exponents, avalanche statistics, 
yielding and RFIM criticality…

◼
∼ 10

◼

Parisi, Urbani,  
Zamponi 2020
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  Phenomenology captured by extremely stylized 
model such as spherical -spin
◼

p

  A solvable and non-trivial (!) mean-field dynamics 
, capturing structure of mean-field theory of 

particles

◼
N → ∞

Td

Teq

Glass

Quench  T = ∞ → Tfin

Paramagnet

Thermodynamics

thermal equilibration

T = ∞

T = 0

ℰt → ℰ∞ = ℰeq(Tfin)

no thermal equilibration!
ℰt → ℰ∞ ≠ ℰeq(Tfin)
no thermal equilibration!

aging dynamics

Dynamics
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model such as spherical -spin
◼

p

  A solvable and non-trivial (!) mean-field dynamics 
, capturing structure of mean-field theory of 

particles

◼
N → ∞

  dynamical slowdown supercooled liquids Td →

Angell 1995

  Mean-field theory of interacting particles 
developed in last  years. Non trivial 
theoretical construct. 

 Quantitative predictions (down to 3d): 
dynamical transition, dynamical exponents, 
aiging, rugged landscape, gardner transition,  
jamming critical exponents, avalanche statistics, 
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Part I 
The known & the unknown



The known: relaxational dynamics (1/2) 6/17

 Can find ansatz solving the equations asymptotically, when  ◼ t, t′ → ∞

 Can derive exact equations (DMFT) for dynamical quantities when ◼ N → ∞

{si(t)}N
i=1 → C(t, t′ ) = s(t) ⋅ s(t′ )

N
, ϵ(t) = ℰ(s(t))

N
, ⋯ Sompolinsky, Zippelius 1981 

Crisanti, Horner, Sommers 1993

Cugliandolo, Kurchan 1993

“A solvable mean-field dynamics…” 



The known: relaxational dynamics (1/2) 6/17

 Can find ansatz solving the equations asymptotically, when  ◼ t, t′ → ∞

 Can derive exact equations (DMFT) for dynamical quantities when ◼ N → ∞

{si(t)}N
i=1 → C(t, t′ ) = s(t) ⋅ s(t′ )

N
, ϵ(t) = ℰ(s(t))

N
, ⋯ Sompolinsky, Zippelius 1981 

Crisanti, Horner, Sommers 1993

Cugliandolo, Kurchan 1993

 Ansatz informative on relaxational, out-of-equilibrium dynamics: separation of timescales, weak 
ergodicity breaking scenario, aging, effective temperatures, violation of fluctuation-dissipation, “quasi 
equilibrium” dynamics

◼

“A solvable mean-field dynamics…” 

Review: Bouchaud, Cugliandolo, Kurchan, Mezard 1998

“A non-trivial mean-field dynamics…” 
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“… capturing structure of mean-field theory of particles” 

p-spin DMFT equations are equivalent to mode coupling equations for supercooled liquids:  
(i) perturbative, diagrammatic expansion of Langevin, (ii) keep only line (vs vertex) corrections 

Kirkpatrick, Thirumalai, Wolynes 1989

The known: relaxational dynamics (2/2)

Incidentally….

Similar diagrams retained in BAA scheme for 
MBL, or integrals of motion contruction within 
“forward approximation”

Basko, Aleiner, Altshuler 2005



The known: dynamical transition and metastability 8/17

= number of stationary points  𝒩(ϵ) ∇ℰ(s) = 0, ℰ(s) = Nϵ

Cavagna, Giardina, Parisi 1997, 1998  ”(one-state) complexity”     Σ(1)(ϵ) = lim
N→∞

1
N

log 𝒩(ϵ)

 : saddles with less and less downhill 
directions decreasing   
◼ ϵ > ϵth

ϵ ↘ ϵth

   isolated local minima, separated 
by energy barriers 
◼ ϵ < ϵth :

Δℰ ∼ N

Trapping metastable states!

Not trapping!

minima

Saddles 
(more & more  
flat)

threshold

t=0 A “threshold” energy :  ϵth = ϵeq(Td)



The known: dynamical transition and metastability 8/17

= number of stationary points  𝒩(ϵ) ∇ℰ(s) = 0, ℰ(s) = Nϵ

Cavagna, Giardina, Parisi 1997, 1998

Dynamics is relaxing until it reaches , where metastable states start to appear. 
Slowing down & aging because of landscape’s geometry: the more descends, the more 

finding downhill directions gets harder.

ϵth

 : saddles with less and less downhill 
directions decreasing   
◼ ϵ > ϵth

ϵ ↘ ϵth

   isolated local minima, separated 
by energy barriers 
◼ ϵ < ϵth :

Δℰ ∼ N

Trapping metastable states!

Not trapping!

minima

Saddles 
(more & more  
flat)

threshold

t=0 A “threshold” energy :  ϵth = ϵeq(Td)

  ”(one-state) complexity”     Σ(1)(ϵ) = lim
N→∞

1
N

log 𝒩(ϵ)
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The unknown: activated dynamics

  but finite: the dynamical transition at  
becomes a crossover due to activated processes
N ≫ 1 Td

 Mean-field : local minima (metastable states) 
separated by barriers : truly trapping.
◼ N → ∞

Δℰ ∼ N → ∞

  but finite: escape processes are possible, at 
times . 
◼ N ≫ 1

τ ∼ eβΔℰ ∼ eN

Activated dynamics not captured by dynamical mean-field theory (that takes   after ), 
nor by perturbation in … Instantons of the dynamical theory.

t → ∞ N → ∞
N

Rare activated processes drive dynamical 
exploration of bottom of landscape. 
How to capture this physics?

9/17



Part II 
From dynamics to landscape’s geometry



A random jump process among minima

Transition rate: 𝒯 = t(1)(s1 |s0) t(2)(s2 |s1, s0)⋯

10/17

configuration space 

s0

s1
s2

q01 q12

Coarse grained dynamics: sequence of jumps between metastable states. 
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A random jump process among minima

Transition rate: 𝒯 = t(1)(s1 |s0) t(2)(s2 |s1, s0)⋯

10/17

 rates depend only on energies  and overlaps  
(isotropy):
◼ ϵ0, ϵ1, ϵ2, ⋯ qab = sa ⋅ sb

N

 for fixed energy: assume jumps always to closest minima at 
that energy. Why? Energy barriers decreasing with 
◼

q
configuration space 

s0

s1
s2

q01 q12

q01 → q(1)
max(ϵ1 |ϵ0)

q12 → q(2)
max(ϵ2 |ϵ1, ϵ0)

t(1)(s1 |s0) → t(1)(ϵ1, q(1)
max |ϵ0)

t(2)(s2 |s1, s0) → t(2)(ϵ2, q(2)
max |ϵ1, ϵ0, q(1)

max)

Coarse grained dynamics: sequence of jumps between metastable states. 

Assumptions:

t(1)(s1 |s0) → t(1)(ϵ1, q01 |ϵ0), ⋯
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A random jump process among minima

Transition rate: 𝒯 = t(1)(s1 |s0) t(2)(s2 |s1, s0)⋯

10/17

 rates depend only on energies  and overlaps  
(isotropy):
◼ ϵ0, ϵ1, ϵ2, ⋯ qab = sa ⋅ sb

N

 for fixed energy: assume jumps always to closest minima at 
that energy. Why? Energy barriers decreasing with 
◼

q
configuration space 

s0

s1
s2

q01 q12

q01 → q(1)
max(ϵ1 |ϵ0)

q12 → q(2)
max(ϵ2 |ϵ1, ϵ0)

t(1)(s1 |s0) → t(1)(ϵ1, q(1)
max |ϵ0)

t(2)(s2 |s1, s0) → t(2)(ϵ2, q(2)
max |ϵ1, ϵ0, q(1)

max)

Coarse grained dynamics: sequence of jumps between metastable states. 

Assumptions:

Our question:  How much correlations propagate along path?

t(1)(s1 |s0) → t(1)(ϵ1, q01 |ϵ0), ⋯



Memoryless or avalanche-like? 11/17

“Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements 

“Memoryless” dynamics: subsequent jumps uncorrelated to first 

t(2)(ϵ2 |ϵ1, ϵ0) > t(1)(ϵ2 |ϵ1)

Observed in finite-d models like elastic manifolds 
Two scenarios.  

Dyre 1987, Bouchaud 1992, Gayrard 2019

Ferrero, Foini, Giamarchi, Kolton, Rosso 2021

t(2)(ϵ2 |ϵ1, ϵ0) = t(1)(ϵ2 |ϵ1)
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“Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements 

“Memoryless” dynamics: subsequent jumps uncorrelated to first 

t(2)(ϵ2 |ϵ1, ϵ0) > t(1)(ϵ2 |ϵ1)

Observed in finite-d models like elastic manifolds 
Two scenarios.  

Dyre 1987, Bouchaud 1992, Gayrard 2019

Ferrero, Foini, Giamarchi, Kolton, Rosso 2021

t(n)(ϵn |ϵn−1⋯ϵ0) = t(ϵn−1) ∝ eβϵn−1

Memoryless dynamics assumed in “trap models”: effective, solvable models of activated dynamics in 
very non-convex landscapes. Assumes “uniform” energy barriers.

Correct description for Random Energy Model (no correlations in energy landscape)
For p-spin models, unclear 

Gayrard 2019

Stariolo, Cugliandolo 2019, 2020

ϵn−1

ϵn

ϵ = 0

t(2)(ϵ2 |ϵ1, ϵ0) = t(1)(ϵ2 |ϵ1)
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“Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements 

“Memoryless” dynamics: subsequent jumps uncorrelated to first 

t(2)(ϵ2 |ϵ1, ϵ0) > t(1)(ϵ2 |ϵ1)

Observed in finite-d models like elastic manifolds 

q(2)
max(ϵ2 |ϵ1, ϵ0) > q(1)

max(ϵ2 |ϵ1)

q(2)
max(ϵ2 |ϵ1, ϵ0) = q(1)

max(ϵ2 |ϵ1)

Mapping into landscape geometry

Two scenarios, 
rephrased.  

configuration space 

s0

s1
s2q(1)

max(ϵ1 |ϵ0) q(2)
max(ϵ2 |ϵ1, ϵ0)

ϵ0

ϵ1

ϵ2

t(2)(ϵ2 |ϵ1, ϵ0) = t(1)(ϵ2 |ϵ1)



Part II 
Landscape’s geometry & hints on activation



13/17Local geometry: two-point complexity

 Select minimum  with energy  - flat measure◼ s0 ϵ0

 Count number  of minima  at energy  and ◼ 𝒩(ϵ1 |ϵ0, q) s1 ϵ1 q = s0 ⋅ s1
N

 Two-point complexity  ◼ Σ(2)(ϵ1 |ϵ0, q) = lim
N→∞ ⟨ 1

N
log 𝒩(ϵ1 |ϵ0, q)⟩

0

flat average 
over minima s0

VR, Biroli, Cammarota 2019

configuration space 𝒞N

s0
q

s1

ϵ0

ϵ1

no minima  
here 

q(1)
max(ϵ1 |ϵ0)



14/17Local geometry: three-point complexity

 Count number  of minima  at energy  and given overlaps ◼ 𝒩(ϵ2, q0, q1 |ϵ1, ϵ0, q) s2 ϵ2

 Three-point complexity  ◼ Σ(3)(ϵ2, q0, q1 |ϵ1, ϵ0, q) = lim
N→∞ ⟨ 1

N
log 𝒩(ϵ2, q0, q1 |ϵ1, ϵ0, q)⟩

0,1
Pacco, Rosso, VR 2024

 Select minimum  with energy  - flat measure◼ s0 ϵ0

 Select minimum  with energy  and - flat measure◼ s1 ϵ1 q = s0 ⋅ s1
N

configuration space 𝒞N

s0
q

s1

s2
q0

q1

ϵ0

ϵ1

ϵ2

flat average 
over minima  

and 
s0

s1

q1

Σ(3)(ϵ2, q0, q1 |ϵ1, ϵ0, q)

q 0

q(2)
max(ϵ2 |ϵ1, ϵ0) = q(1)

max(ϵ2 |ϵ1)
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 Count number  of minima  at energy  and given overlaps ◼ 𝒩(ϵ2, q0, q1 |ϵ1, ϵ0, q) s2 ϵ2
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 Select minimum  with energy  - flat measure◼ s0 ϵ0

 Select minimum  with energy  and - flat measure◼ s1 ϵ1 q = s0 ⋅ s1
N

configuration space 𝒞N
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q

s1

s2
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q1

ϵ0

ϵ1
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flat average 
over minima  

and 
s0

s1

q(1)
max(ϵ1 |ϵ0)

q(2)
max(ϵ2 |ϵ1, ϵ0)

Σ(3)(ϵ2, q0, q1 |ϵ1, ϵ0, q)

q 0
q1



15/17Landscape’s transitions

Depletion Non-monotonicity

Accumulation Clustering



Hints on activated dynamics

For details: 

Jumps to equal-energy or lower-energy 
minima are memoryless: no traces of thermal 
avalanches, unlike finite-dimensional systems. 

 Minima at  and  are 
such that 
◼ ϵ1 > ϵ*(ϵ0) ϵ2 < ϵ*(ϵ1)

q(2)
min(ϵ2 |ϵ1, ϵ0) > q(1)

min(ϵ2 |ϵ1)

16/17

We identify a “critical” energy curve :ϵ*(ϵ)

“avalanche-like” scenario

 In all other cases, ◼ q(2)
min(ϵ2 |ϵ1, ϵ0) = q(1)

min(ϵ2 |ϵ1)

“memoryless” scenario

A. Pacco, A. Rosso, VR, arXiv:2410.18010

s0

s1
s2q(1)

max(ϵ1 |ϵ0) q(2)
max(ϵ2 |ϵ1, ϵ0)

ϵ0

ϵ1

ϵ2



Summary.



Spherical p-spin is a good mean-field model for glasses. 
 Out of-equilibrium, relaxational dynamics is understood via DMFT. 
Out-of-equilibrium, activated dynamics is open theory problem. 

Topology Geometry

Dynamics

- landscapeℰ(s)

s

configuration space

dynamics

Relaxational:  
dynamics stuck where first 
metastable states appear; aging 
due to flatness of landscape

Activated:  
jumps to minima at equal/lower 

energy are “memoryless”; correlations 
when jumping at higher energy

entropy of metastable states at 
arbitrary energy; minima-saddles 

transition at threshold

entropy of triplets of metastable 
states at arbitrary energy and 
distance in configuration space


