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The setting: high-d dynamics in rugged landscapes 1/17

Classical stochastic dynamics:

dS(tt) = — VE&[s()] + /2T 5@ (O (t)) = 6,,6(t — 1) S = (51, Sy) € Gy

: . : : configuration space j
High dimension N > 1, weak noise T <« 1



The setting: high-d dynamics in rugged landscapes

Classical stochastic dynamics:

ds(t)

= — VE[s(r)] + /2T n(z) (n(On)) = 6;6(t — 1) S = (s, 5y) € Ey

: : : : configuration space j
High dimension N > 1, weak noise T <« 1

dynamics

&[s]- landscape

m Rugged energy landscape &[s(f)] with A ~ V>
local minima (— metastable states), maxima,
saddles such that V&[s] =0

2= “landscape complexity”

m &[s(?)] random landscape on Gy,
Gaussian statistics.

configuration space G
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In this work [arXiv:2410.18010] 2/17

&[s]- landscape

We compute the (conditional) entropy of triplets of
metastable states (local minima), more generally of

stationary points V&[s] =0, as a function of; €1 -

(i) their energy density € = &/N
(i) their distances in configuration space d_,

configuration space G
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stationary points V&[s] =0, as a function of; €1 -
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m Given the random variable

N s s,(€2: dip, d1) = number of stationary points s, at energy &[s,] = Ne, and conditioned to fixed
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&[s]- landscape

We compute the (conditional) entropy of triplets of
metastable states (local minima), more generally of

stationary points V&[s] =0, as a function of; €1 -

(i) their energy density € = &/N
(i) their distances in configuration space d_,

configuration space G

m Given the random variable

N s s,(€2: dip, d1) = number of stationary points s, at energy &[s,] = Ne, and conditioned to fixed

distances d,,, dy, from two other stationary points sy, s, of energies Ne|, N¢y and distance d,

we compute

, 1
=Oe,, dyy, dyy | €5 €1, dpy) = lim <N log[ W5 s (€2, dpy, dlz)]> “three-point complexity”

=0 0.1

m Replicated Kac-Rice formalism”: replica theory + random matrix theory  Review: VR, Fyodorov 2023



In this talk: from dynamics to landscape, and back

Part |

A good mean-field model of glasses
The known and the unknown

The unknown: activated dynamics

Part 1l

From dynamics to landscape’s geometry
The local landscape’s geometry

Hints on activated dynamics
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A good mean-field model for glasses
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Parisi, Urbani,

THEORY OF Zamponi 2020

SIMPLE GLASSES

Exact Solutions in Infinite Dimensions

Giorgio Parisi, Pierfrancesco Urbani

and Francesco Zamponi

B Mean-field theory of interacting particles
developed in last ~ 10 years. Non trivial
theoretical construct.

B Quantitative predictions (down to 3d):
dynamical transition, dynamical exponents,
aiging, rugged landscape, gardner transition,

jamming critical exponents, avalanche statistics,
yielding and RFIM criticality...
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B Mean-field theory of interacting particles
developed in last ~ 10 years. Non trivial
theoretical construct.

B Quantitative predictions (down to 3d):

dynamical transition, dynamical exponents,

aiging, rugged landscape, gardner transition,
jamming critical exponents, avalanche statistics,
yielding and RFIM criticality...

B Phenomenology captured by extremely stylized

model such as spherical p-spin

B A solvable and non-trivial (!) mean-field dynamics

N — o0, capturing structure of mean-field theory of
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The known: relaxational dynamics (1/2) 6/17

“A solvable mean-field dynamics..."

m Can derive exact equations (DMFT) for dynamical quantities when N - o

N . S(0) -s(t) & (s(1)) Sompolinsky, Zippelius 1981
{Si(t)}izl - C@t,1r) = N ’ e(t) = N Crisanti, Horner, Sommers 1993

oC(t, ) , / , / ,
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m Can find ansatz solving the equations asymptotically, when ¢, — co Cugliandolo, Kurchan 1993
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“A solvable mean-field dynamics..."

m Can derive exact equations (DMFT) for dynamical quantities when N - o

s(t) - s(t)
N

&(s(1)) Sompolinsky, Zippelius 1981
(t) _ N ’ Crisanti, Horner, Sommers 1993

{si(t)}iil -  Ct,t) =

dC(t,t") ) g ) t ,
= — C duD R duX: C 2
/ t 2
(9R((9tt, t) = —u(t)R(t,t")+o(t—1t) + / duX(t,u)R(u,t") D(t,t) =2T6(t —t') + %[C(t, t)]?
tl

m Can find ansatz solving the equations asymptotically, when ¢, — co Cugliandolo, Kurchan 1993

“A non-trivial mean-field dynamics..."

m Ansatz informative on relaxational, out-of-equilibrium dynamics: separation of timescales, weak
ergodicity breaking scenario, aging, effective temperatures, violation of fluctuation-dissipation, “quasi
equilibrium” dynamics ~ Review: Bouchaud, Cugliandolo, Kurchan, Mezard 1998



The known: relaxational dynamics (2/2) 7/17

“... capturing structure of mean-field theory of particles”

p-spin DMFT equations are equivalent to mode coupling equations for supercooled liquids:
(i) perturbative, diagrammatic expansion of Langevin, (ii) keep only line (vs vertex) corrections

Kirkpatrick, Thirumalai, Wolynes 1989

Incidentally....

Similar diagrams retained in BAA scheme for
MBL, or integrals of motion contruction within

forward approximation Mode-coupling approximations, glass theory and

disordered systems

Jean-Philippe Bouchaud *', Leticia Cugliandolo®?, Jorge Kurchan®-,
:'..—IE:(P‘); = |—<—I +21' @ Marc Mézardb'4

-
......

Let us face it: there are not so many techniques to deal with the score of strongly
non-linear problems that Nature perversely offers, to the theoretical physicist’s dismay.

Basko, Aleiner, Altshuler 2005



The known: dynamical transition and metastability 8/17

A (€)= number of stationary points V&(s) =0, &(s) = Ne

YD(e) = lim Nlog N(€) "(one-state) complexity” Cavagna, Giardina, Parisi 1997, 1998

N—oo

t—0 A “threshold” energy ¢, = ¢ (7)):

| Saddles
(more & more

flat)

W ¢ > €y saddles with less and less downhill

directions decreasing € \, €4, \nt trapping!

hreshold m e < € : isolated local minima, separated

A

by energy barriers A& ~ N
minima

Trapping metagtable states!



The known: dynamical transition and metastability

A (€)= number of stationary points V&(s) =0, &(s) = Ne

YD(e) = lim Nlog N(€) "(one-state) complexity” Cavagna, Giardina, Parisi 1997, 1998

N—oo

t—0 A “threshold” energy ¢, = ¢ (7)):

| Saddles

(more & more

W ¢ > €y saddles with less and less downhill

directions decreasing € \, €4, \nt trapping!

mc < €y : isolated local minima, separated

’ by energy barriers A& ~ N
minima

Trapping metagtable states!

Dynamics is relaxing until it reaches ¢,;,, where metastable states start to appear.

Slowing down & aging because of landscape’s geometry: the more descends, the more
finding downhill directions gets harder.

8/17



The unknown: activated dynamics /17

N > 1 but finite: the dynamical transition at 7},

becomes a crossover due to activated processes

m Mean-field N - oo: local minima (metastable states)

separated by barriers A& ~ N — oo: truly trapping.

m N > 1 but finite: escape processes are possible, at

times 7 ~ /2% ~ eV,

Rare activated processes drive dynamical
exploration of bottom of landscape.

How to capture this physics?

Activated dynamics not captured by dynamical mean-field theory (that takes t — oo after N — o0),
nor by perturbation in N... Instantons of the dynamical theory.
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From dynamics to landscape’s geometry




A random jump process among minima 10/17

Coarse grained dynamics: sequence of jumps between metastable states.

Transition rate: g = (s, |'s,) 12)(s, | s1,8,)

configuration space
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Coarse grained dynamics: sequence of jumps between metastable states.

Transition rate: 7 = (s, |s)) (s, |s;,50)"

Assumptions:
Sa ¢ Sb
N

m rates depend only on energies €, €}, €5, -+ and overlaps g, =

(isotropy): V(s 1sg) = 1V(ey, qgp | €9), -+

m for fixed energy: assume jumps always to closest minima at

that energy. Why? Energy barriers decreasing with g

configuration space

do1 — ‘Iéllgx(ﬁ | €o) (s, |sg) = 1M (e, qr(nlgx | €o)

2 7 2 1
dip — C]ggx(ez | €1, €) t )(52 |81,80) = A )(62, QI(nzleel’ €0s qr(nzzx)



A random jump process among minima 10/17

Coarse grained dynamics: sequence of jumps between metastable states.

Transition rate: 7 = (s, |s)) (s, |s;,50)"

Assumptions:

. Sa ¢ Sb
m rates depend only on energies €, €}, €5, -+ and overlaps g, = v
(isotropy): V(s 1sg) = 1V(ey, qgp | €9), -+
m for fixed energy: assume jumps always to closest minima at
that energy. Why? Energy barriers decreasing with g

configuration space
do1 = (€11 €) tD(s;[89) = 1V(eq, gloa | €0)
2 2 2 1

d12 = Gix(€x €1 €)) t2(s|81,80) = 12ea, gl | €1 €0> G

Our question:  How much correlations propagate along path?



Memoryless or avalanche-like? 11/17

Two scenarios. “Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements

Observed in finite-d models like elastic manifolds

t(z)(€2|€1,€o)> 1(1)(€2|€1) Ferrero, Foini, Giamarchi, Kolton, Rosso 2021

“Memoryless” dynamics: subsequent jumps uncorrelated to first

tPey | €1, €) = 1V (ey | €)) Dyre 1987, Bouchaud 1992, Gayrard 2019
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Two scenarios. “Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements

Observed in finite-d models like elastic manifolds

f(z)(€2|€1,€0)> t(l)(€2|€1) Ferrero, Foini, Giamarchi, Kolton, Rosso 2021

“Memoryless” dynamics: subsequent jumps uncorrelated to first

tPey | €1, €) = 1V (ey | €)) Dyre 1987, Bouchaud 1992, Gayrard 2019

Memoryless dynamics assumed in “trap models": effective, solvable models of activated dynamics in

very non-convex landscapes. Assumes “uniform” energy barriers.

t(n)(en | en_l...eo) — l‘(en_l) X eﬂen—l “\ \‘:

'

€n

Correct description for Random Energy Model (no correlations in energy landscape)  Gayrard 2019

For p-spin models, unclear Stariolo, Cugliandolo 2019, 2020



Mapping into landscape geometry 12/17

Two scenarios, “Avalanche-like” dynamics: big activated jumps facilitate subsequent rearrangements
rephrased. Observed in finite-d models like elastic manifolds

t(2)(€2 | €1, €p) > t(l)(€2 |€)) q qr(rax(% | €1, 60) > qr(nlgx(ez | 61)
“Memoryless” dynamics: subsequent jumps uncorrelated to first

f(z)(€2 ler, €0) = t(l)(ez le) # qﬁﬁx(% | €1, €o) - qr(rgx(ez | €1)

H S2
Qmax(el | 60) Sl Qr(nzzzx(62 | €15 60)

(1)

configuration space



Part li

Landscape’s geometry & hints on activation




Local geometry: two-point complexity 13/17

m Select minimum s, with energy ¢, - flat measure

So* S
m Count number /(€] €y, q) of minima s, at energy €, and g = ON !
- - exity =(e | )= 1 1 log (e, ) flat average
o-point comple .g)= lim { — 1o , ve
m [wo-point complexity €11€p, 9 Ay g N (el €y q 0 over minima s,

VR, Biroli, Cammarota 2019

". qr(r}zzx(el | €0)

no minima

configuration space G




Local geometry: three-point complexity 14/17

m Select minimum s, with energy ¢, - flat measure

flat average
SO y Sl

m Select minimum s; with energy €, and g = - flat measure over minima s

m Count number 4 (€5, g9, q; | €1, €9, g) of minima s, at energy €, and given overlaps and s,

N—o0o

1
o Three_pOint CompleXity 2(3)(62, 40> 91 | €1, €0» q) = lim <N log ‘/V(€29 90> 91 | €1, €p> Q)>
0,1
Pacco, Rosso, VR 2024

2‘(3)(627 qu ql | 61’ €07 q)
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Local geometry: three-point complexity 14/17

m Select minimum s, with energy ¢, - flat measure

flat average
SO y Sl

m Select minimum s; with energy €, and g = - flat measure over minima s

m Count number 4 (€5, g9, q; | €1, €9, g) of minima s, at energy €, and given overlaps and s,

N—o0o

1
o Three_pOint CompleXity 2(3)(62, 40> 91 | €1, €0» q) = lim <N log ‘/V(€29 90> 91 | €1, €p> Q)>
0,1
Pacco, Rosso, VR 2024

Z(3)(627 qu q1 | 61’ €(), Q)

\ 5
1)
\‘ %(na);é._(el | €0)

.
.

C]r%x(ez | €1, €0)

€ =—1.167
€, =¢6=-—1.155

configuration space G




Depletion

Accumulation
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Non-monotonicity

Clustering
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Hints on activated dynamics

We identify a “critical”’ energy curve ¢*(¢):

m Minima at €; > €*(¢y) and e, < €*(¢) are

such that qrfil(ez €1, €9) > qﬁiil(ez [€)

== “avalanche-like” scenario

0 m In all other cases, ¢® (e, | €, €) = gV (6, | €))
» 4 \€21€1,€0) = (. (€3] €

- : S2
1
Tmax(€1 ] €0) S1 giaerler, &) y . i
_> memoryless’’ scenario

€th
Jumps to equal-energy or lower-energy
~1.158 f minima are memoryless: no traces of thermal
| o avalanches, unlike finite-dimensional systems.
~1.161 |
— -1.156
© _1.164 |

For details:
A. Pacco, A. Rosso, VR, arXiv:2410.18010

-1.170 -1.159




Summary.



Spherical p-spin is a good mean-field model for glasses.
Out of-equilibrium, relaxational dynamics is understood via DMFT.

Out-of-equilibrium, activated dynamics is open theory problem.

&(s)- landscape dynamics
Geometry

entropy of triplets of metastable
states at arbitrary energy and
distance in configuration space

Topology

entropy of metastable states at
arbitrary energy; minima-saddles
transition at threshold

configuration space

| Dynamics .

Relaxational: ¥ Activated:
dynamics stuck where first jumps to minima at equal /lower
metastable states appear; aging energy are ‘memoryless”; correlations

due to flatness of landscape when jumping at higher energy



