Controlled mechanical response in glasses via designed spatial inhomogeneity

VINAY VAIBHAV

The Institute of Mathematical Sciences, Chennai University of Milan, Italy

Statphys Meeting ICTS February 1-3, 2023

Pinaki Chaudhuri, IMSc Chennai Jürgen Horbach, HHU Düsseldorf

Deformed amorphous solids: inhomogeneous patterns

Deformed amorphous solids: inhomogeneous patterns

Controlling the shear band nucleation and growth

Control of shear band formation in metallic glasses through introducing nanoscale pores

X.Q. Lu^a, L. Li^b, Y.H. Zhang^a, Z.J. Li^a, S.D. Feng^{a,*}, L.M. Wang^{a,*}, R.P. Liu^a

^a State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
 ^b Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA

Deformation of Porous glass

Control over: yield strength, elastic modulus, direction band propagation

Early nucleation; near voids

The effect of void defects on the shear band nucleation of metallic glasses

Yun Luo^{a,b}, Guannan Yang^{a,b,*}, Yang Shao^{a,b}, Kefu Yao^{a,b,**}

^a School of Material Science and Engineering, Tsinghua University, Beijing, 100084, PR China
^b Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, PR China

Synthetic soft region in well-annealed glass

Shear band nucleation in soft regions

Ozawa, Berthier, Biroli, and Tarjus, PRR, 4, 23227602 (2022)

MD simulation of model binary LJ glass-former: $T_{MCT} \sim 0.435$, $T_g \sim 0.3$ Apply a temperature gradient pulse

Inhomogeneous structures are stable over a longer period of time

V.Vaibhav, J. Horbach and P. Chaudhuri; Phys. Rev. E 101, 022605 (2020)

MD simulation of model binary LJ glass-former: $T_{MCT} \sim 0.435$, $T_g \sim 0.3$

Inhomogeneous structures are stable over a longer period of time

V.Vaibhav, J. Horbach and P. Chaudhuri; Phys. Rev. E 101, 022605 (2020)

 $T_{MCT} \sim 0.435, T_g \sim 0.3$

 $T_{MCT} \sim 0.435, T_g \sim 0.3$

Shear response of thermally processed states

Deforming the heterogeneous samples at fixed shear-rates

XZ-plane is sheared along X-direction

#T = 0.2 maintained using DPD thermostat

Shear response of thermally processed states

Deforming the heterogeneous samples at fixed shear-rates at fixed temperature (T = 0.2)

Modified yielding response

#Timescale for emergence of non-equilibrium steady-state depends on history

Shear bands in heterogenous samples: position of nucleation

Deforming the heterogeneous samples at fixed shear-rates 10-4

- # Shear band: region of high mobility
- # Mobility: squared displacement of particle
- # Control over the formation of shear-bands?

Local mobility (strain = 0.1) vs fluctuation in local potential energy (strain = 0)

Shear bands in heterogenous samples

Unprocessed sample T = 0.2

Shear bands in heterogenous samples: stochastic or deterministic?

Mobility: 0.0

I0 samples with same initial
 configuration but different noise of thermostat

Deforming the heterogeneous samples at fixed shear-rate 10⁻⁴

Temperature control using DPD thermostat

Checking stochasticity:
— same initial undeformed sample
— change the DPD seed

Shear band nucleation is not stochastic if there is sufficient inhomogeneity

Protocol 2: spatially inhomogeneous annealing

- Hybrid swap Monte-Carlo and MD
- swap MC is applied only in central region of width w

Inhomogeneity is dominated by potential energy

- # Inhomogeneous structures are stable for a long time
- # Shear band nucleates in the high energy regions; lifetime is longer

For hybrid swap MC-MD: V. Vaibhav, J. Horbach and P. Chaudhuri; JCP 156, 244501 (2022)

Mobility

Summary

Controlled pathway to failure

Response of glassy Highids to thermal gradients V.Vaibhav, J. Horbach and P. Chaodhari; Phys. Rev. E 101, 022605 (2020)

Controlled mechanical failure in glasses via designed spatial inhomogeneity V.Vaibhav, J. Horbach and P. Chaudhuri; submitted (2023)

Summary

Response of glassy liquids to thermal gradients V.Vaibhav, J. Horbach and P. Chavenbri; Phys. Rev. E 101, 022605 (2020)

Controlled mechanical failure in glasses via designed spatial inhomogeneity V.Vaibhav, J. Horbach and P. Chaudhuri; submitted (2023)