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Bayes Theorem

 Bayes Theorem states that

 P (A | B ) = P (B | A) * [P (A) / P(B)]

P (A | B) is the Probability of A given B

P (B | A) is the Probability of B given A

P (A) is the single probability of A

P (B) is the single probability of B 

Example:

Suppose ‘one’ ball is chosen from one of the boxes, and that happens to be a ‘black’ 
ball, then what is the probability that it is drawn from Box-1?

Box-1 (10 balls) Box-2 (7 balls)

Let A = Black Ball; E = Event of drawing

 

 P (E1) = P (E2) = ½

 P (A | E1) = 6/10 = 3/5

 P (A | E2) = 3/7

 P (E1 | A) = P (A | E1) *[P (E1) / P (A) ]

 P (A) = ½ * (6/10 + 3/7) 

 P (E1 | A) = 7/12 = 0.58 = 58%



Defining the perimeters

[c] is the observations of an atmospheric variable

[x] is a parameter (or a source) causing the [c]

[m] is a theoretical relation exist between the [x] and [c]



Theoretical relation between [x] and [c]

Here the above theoretical relation can be interpreted as a 

mathematical model, or a numerical model.

(What is ‘A’ and ‘U’ in the above model ?)



Application of Bayes theorem in our 

perimeter

P (x | c) is the probability of a source [x] given [c] is the 

observations caused by that [x]

Pm (c | x) is the probability of [c] given [x] derived via the 

theoretical relation (i.e. the model)

The Bayes theorem states that

 

  P (x | c) = Pm (c | x) * P ( x) / P (c) 

Or it can be sufficiently replaced as;



Application of Bayes theorem in our 

perimeter

This we can model, if 

we know some 

distribution of [x]

This is some known 

distribution of [x]

This is generally 

known as ‘Prior’

This is the ‘Optimal’ 

estimate of [x] 

This is generally 

known as ‘Posterior’.

This is known as the 

observations

P (c) represent the entirety of the problem such as P (c) = ∫ P (c | xprior) P (xprior) dx  , why ? 



Constructing a ‘G’ from our model

G stands for ‘Greens’ function.

Green’s function is a ‘response function’ which generates a change in one 

variable due to an ‘impulse’ occurring elsewhere.

(Can you tell an example of a Green’s function scenario in real life ?)



Weighted Least-Square Estimates

 The weighted least square estimate is defined as the vector that minimizes 

the objective function 

 J(x) = (c – Gx)T X-1 (c – Gx)

 where X-1 is the covariance matrix of p(c|m).

 The estimate (minima of J(x)) is xWLS = [GTX-1G]−1[GTX-1c]

Bayesian Least-Square Estimates

 The Bayesian least square estimate is defined as the vector that minimizes 

the objective function 

 J(x) = (c – Gx)T X-1 (c – Gx) + (x – x0)
T W-1 (x – x0)

 where X-1 is the covariance matrix of p(c|m).

 The estimate (minima of J(x)) is xBLS = [GTX-1G + W-1]−1[GTX-1c + W-1x0]



Bayesian Least-Square Estimates

 In the previous Estimate, do you think the Estimate is the absolute and having 

no errors?

 Answer is No. All Estimators comes with  residual error.

 In the previous Estimate, do you think the Model is the absolute reality and 

having no errors?

 Answer is No. All models are in-complete and so does the predictions of relation 

between [x] and [c].

 So what are the chances of the total error in your Estimate in a least-square 

fashion?

 J(x) = (c – m) 2 + (xprior – xposterior)
2

 Why we need to square the errors (?)



J(x) = (c – m) 2 + (xprior – xposterior)
2

 The above function consists of [c], [m], [xprior] and [xposterior] which all 

are vectors.

 In a vector space, [x]2 = [x]T[x] 

 Example:  

 The above function J(x) is called the ‘Penalty Function’ or ‘Cost 

Function’ of this system of [c], [m], and [x]. 



Attaching Uncertainties to the Cost 

function

 Is the [c] is perfect observation? Is [m] a perfect model?

 Answer is No. 

 Therefore, we need to attach few ‘Uncertainties’ in your ‘Penalty function’ so 
that the entirety of the ‘Penalty’ is not accountable to just our estimates alone.

 J(x) = (c – m)T R-1 (c – m) + (xprior – xposterior)
 T B-1(xprior – xposterior)

 Or in other words, we can express this as

 J(x) = (c – Gx) T R-1 (c – Gx) + (x – x0)
 T B-1(x – x0)

(where x = xposterior and x0 = xprior for convenience)

(where R is the model and data error variance-covariance matrix, and B is the error 
variance-covariance in the assumed X)



Error variance-covariance matrices

 R represent the covariances of P (c | m).

 If the simulated outcome ‘[m]’ of observation ‘[c]’ are equal, the 

probability of ‘c’ given ‘m’ is one. 

 In the above case R = [I] ; and the identity matrix

 In reality, however, model has errors, and observations have errors; 

therefore, R represents the model-data error variance-covariance errors. 

σ1  Cov  Cov  Cov

Cov  σ2  Cov  Cov

Cov  Cov  σ3  Cov

Cov  Cov  Cov  σ4

R =



The Cost Function

 J(x) = (c – Gx) T R-1 (c – Gx) + (x – x0)
 T B-1(x – x0)

 It refers to the total errors in our estimate

 It contain two parts (not generic, but in this specific case)

 The first part represent for the model inabilities to simulate an 

observation [c]

 The second part contains the remaining errors in the estimate of [x]

 In the totality the J(x) is the total error in the system

 If J(x) is the total error, how can we find ‘minima’ of the error?

 Lets find ∂J(x)/∂x and put that equal to zero



The minimization



The minimization



The minimization



The minimization

  Therefore, the minima of the cost function is obtained at a condition



 The Uncertainty Reduction 

 (i.e. Trace (B) – Trace (posterior_uncertainty))/Trace(B)

has no dependency on the observations [c]

This becomes the basis of the Observation System Simulation 

Experiment (OSSE) 

The minimization



G-Matrix for S-regions and T-towers

    S1  S2  S3  S4  S5  ..  SN

  T1  

 

  T2

  T3

G = 

  T4

  ..

  TM
M x N



R-Matrix for T-towers

    T1  T2  T3  T4  T5  ..  TM

  T1  

 

  T2

  T3

R = 

  T4

  T5

  ..

  TM M x M



B-Matrix for the Background

    S1  S2  S3  S4  S5  ..  SN

  S1  

 

  S2

  S3

B = 

  S4

  S5

  ..

  SN N x N



Inversion of Posterior Uncertainty



Observation System Simulation 

Experiment

 Questions: Suppose you want to study a system, or want to do a Data 

Assimilation of a system, where are all the observations you need to take?



 One way of finding it is, by looking at, what is the contribution of an 
observation [c] to in reducing the posterior uncertainty in the data 
assimilation system.

 To find this, you need [G], [B], and [R]. 

 How to construct these in the real world problems.

Observation System Simulation 

Experiment







Incremental Optimization





Incremental Optimization for OSSE

 For each observation location, calculate posterior-uncertainty (A) with

 G = (1 x N) ,  R = (1 x 1) , B = (N x N) and find out which potential location of 

observation has maximum Uncertainty Reduction 

 (UR = Trace (B) – Trace (A))/Trace (B) and find out the Best Observation Location 

 Repeat the processes with a combination of any other location with 

the above location in step 1 and find the following

 G = (2 x N)  , R = (2 x 2)  , B = (N x N) and find out which combination of potential 

location of observation, together with the observation location from the first 

iteration, gives maximum UR and mark it as the best two observation locations.

 Repeat this processes until a combination of observation locations 

which results in a maximum UR.
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Summary

 Topics covered

 Bayesian Theory, 

 Cost Function, 

 Minimization, 

 Incremental Optimization, 

 Observation System Simulation Experiment

 Further Reading:

 Andrew Bennet, Inverse Problems on Ocean Modelling, Cambridge University Press

 I .G. Enting, Inverse Problems in Atmospheric Constituent Transport, Cambridge University 
Press

 Valsala et al., (2021), Observational System Simulation Experiment for Indian Ocean pCO2 
measurements, Progress in Oceanography
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