Randomness in the choice of neighbours promotes cohesion in mobile animal groups

Vivek Jadhav ${ }^{1}$, Vishwesha Guttal ${ }^{1}$ and Danny Raj M ${ }^{2}$
${ }^{1}$ Center for Ecological Sciences, Indian Institute of Science
${ }^{2}$ Department of Chemical Engineering, Indian Institute of Science

Jadhav V, Guttal V, Masila DR. 2022 R. Soc. Open Sci, In Press

Collective motion

Background

- Classic models of collective motion assume that an agent moves along the average direction of its near neighbours.
- Recent empirical studies have shown that organisms interact through rules simpler than averaging information of several individuals.
- Fish interact with a single randomly chosen neighbour or with the nearest neighbour.
- In echolocating bats, the returning echoes are faint and masked by their neighbours' loud calls. So, bats detect only one neighbour at a time.
- While group polarisation is well studied, the mechanisms that keep the group cohesive particularly the role of stochastic decision making-are not explored.

Model

- We developed an agent-based spatially explicit model to study the dynamics of collective motion.
- While the model broadly follows the principles (alignment, attraction and spontaneous turning) of classic self-propelled particle models of collective motion, we make two key distinctions. Interactions are probabilistic and asynchronous.

Choice of neighbours and interaction types

Choice of neighbours and interaction types

ATTRACTION
alignment

Topological neighbours: $K=1$ Pairwise interactions: $k=1$

Topological neighbours: $K=3$
Pairwise interactions: $k=1$

Topological neighbours: $K=3$
Pairwise interactions: $k=3$

Choice of neighbours and interaction types

ALIGNMENT

Topological neighbours: $K=1$ Pairwise interactions: $k=1$

Group Cohesion and Quantification

Cohesion parameter $(C)=\frac{\text { Size of the largest cluster }}{\text { Group Size }}$

Group cohesion when agents interact randomly with the nearest neighbour.

$$
\begin{aligned}
& \mathrm{N}=30 \text { (Size of the group) } \\
& \mathrm{K}=\mathbb{1} \text { (Number of visible neighbours) } \\
& \mathrm{k}=1 \text { (Number of neighbours interacted with) }
\end{aligned}
$$

Agents break into clusters of sizes 2-3 and drift apart from each other.

Group cohesion when agents interact randomly with 1 of 5 nearest neighbours

$$
\begin{aligned}
& \mathrm{N}=30 \text { (Size of the group) } \\
& \mathrm{K}=5 \text { (Number of visible neighbours) } \\
& \mathrm{k}=1 \text { (Number of neighbours interacted with) }
\end{aligned}
$$

The group stays more or less cohesive with occasional breakups.

Group cohesion when agents interact randomly with 1 of 9 nearest neighbours

$$
\begin{aligned}
& \mathrm{N}=30 \text { (Size of the group) } \\
& \mathrm{K}=9 \text { (Number of visible neighbours) } \\
& \mathrm{k}=1 \text { (Number of neighbours interacted with) }
\end{aligned}
$$

The group stays cohesive most of the time

Group cohesion is achieved when organisms interact with just one neighbour

$=3 \quad 5$
7
10
15
30
50

Attraction interaction network reveals why cohesion emerges

Attraction interaction network reveals why cohesion emerges

Attraction interaction network reveals why cohesion emerges

Cohesion due to averaging interactions

ATTRACTION

 ALIGNMENT

Topological neighbours: $K=1$ Pairwise interactions: $k=1$

Topological neighbours: $K=3$ Pairwise interactions: $k=1$

Cohesion due to averaging interactions

Conclusion

We show that group-level cohesion can emerge when organisms move towards randomly chosen nearby organism.

Cohesion emerges as choosing a neighbour randomly creates a wellconnected long-ranged interaction network.

Funding

- The Ministry of Education
- DST INSPIRE
- DBT-IISc partnership program
- Infrastructure support from DST-FIST

