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Lattice models in 2D statistical physics
» phase transitions, scaling limits

» interfaces: random interacting curves

» conformal invariance at criticality (?)
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Lattice models in 2D statistical physics

» phase transitions, scaling limits
» interfaces: random interacting curves
» conformal invariance at criticality (?)

Conformal field theory (CFT)

» operator algebra, fusion rules, central charge ¢
» singular vectors and null fields

= BPZ PDEs for correlation functions
Interaction of interfaces
» probabilities of topological events
» interface “partition functions”
» relation to correlation functions in CFT / QFT
Various prototypical models... c:
» critical percolation (trivial? logarithmic?) 0
» critical Ising model (free fermion?)

» Gaussian free field (free boson?)
» uniform spanning trees (sympl. fermion?) -2



2D CRITICAL MODELS: EMERGENT CONFORMAL SYMMETRY
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CONFORMAL INVARIANCE “CONJECTURE’ Porvakov 7os, BPZ ‘Sos, ...

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

B A A i A A A 4

CFT: conformally invariant quantum field theory...

What is this supposed to mean?



CONFORMAL INVARIANCE IN TERMS OF OBSERVABLES

Interfaces: SLE(x) curves Eloy o]
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Scaling limit 6 — 0
at criticality (T =T,)
— conformal invariance?

Probabilities of topological events

Correlations (e.g. between spins)




PROTOTYPICAL EXAMPLES:

PERCOLATION / SPIN MODELS




ISING MODEL: FERROMAGNETIC PHASE TRANSITION

[Lenz & Ising 20s, Peierls 30’s, Kramers & Wannier 40’s, Onsager 40’s —]
» random spins o, = £1 at vertices x of a graph
. . . 1
» nearest neighbor interaction: P'[config.] o< exp (T Dix~y O'XO'y)

» continuous phase transition at critical temperature 7 = T,

look at correlation of a pair of spins at x and y
C(x,y) =El[o,0y] -E[o,] E[oy] when |[x —y| >> 1

T<T,. T=T, T.<T
C(x,y) ~ const. C(x,y) ~ |x =y Clx,y) ~ oL

» scaling limit at critical temperature T.: conformal invariance?



CRITICAL PLANAR MODELS AND CONFORMAL FIELD THEORY
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SCALING LIMITS OF CRITICAL INTERFACES — SLE CURVES

» k > 0 labels universality class (and c(k)) (e.g. q(k) := 4cos’(4n/x))
» convergence weakly for probability measures on curves

Sy, ﬁf

ﬁ W

&

o
o 2

Lo
ol

E_EL;

(critical) interface =9 Schramm-Loewner evolution, SLE(k)
Usual proof strategy:
1. tightness (e.g. control via crossing estimates, RSW etc.)
[Aizenman & Burchard 99, Kemppainen & Smirnov 17, ...]
2. identification of the limit (e.g. via discrete holomorphic observable)

[Kenyon ‘00, Chelkak & Smirnov '01-11, ...]
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Boundary conditions:
“disorder” fields in CFT?

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

» [Cardy 847 Bauer & Bernard '02]: SLE(k) curve started at x should be
generated by CFT primary field ®12(x) (degenerate at level 2).

» Why? Correlation functions give rise to (local) SLE(x)-mgles:

M(x;21,. ... 2,) = I_[g,(z WY g ENY) Z (Wi 2@, 8(z))

has zero drift iff 2 solves 2nd order “BPZ PDE” related to ®j2(x):

kK 0 - 2 0 24 .
{ﬁﬁ * ;(z,-—xa_zj - (Zj_x)z)}f(x,zl,...,zn)—0
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CONFORMAL INVARIANCE “CONJECTURE  IN SLE CONTEXT

Boundary conditions:
“disorder” fields in CFT?

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

» [Cardy 847 Bauer & Bernard '02]: SLE(k) curve started at x should be
generated by CFT primary field ®12(x) (degenerate at level 2).

» Why? Correlation functions give rise to (local) SLE(x)-mgles:

M(x;z21,. ... 2,) = I_[g,(z )Y glE)M) Z (Wi g2, - &)

has zero drift iff 2 solves 2nd order “BPZ PDE” related to @2

» Generally, s — 1 curves at x conjecturally related to @y ((x) (fusion)
= Higher order PDEs [e.g. Duplantier & Saleur '87; Bauer & Saleur '89]



RANDOM SLIT DOMAINS — UNIVERSAL RANDOM PATH IN 2D?

Y1)t Thm. [Schramm 2000]
3! one-parameter family (SLE(k))«>0
of probability measures on chordal curves

with conformal invariance

and domain Markov property
g H\y[0,1] = H

_ 2
0:8:1(2) = 0~ ViB,
go(@) =z

{
N

2:(y(1)) = kB,

Loewner driving process: Brownian motion B of “speed” k >0 ¢



ONE-PARAMETER FAMILY OF RANDOM FRACTAL CURVES

.

3
4

3
\

(a) SLE(})

(c) SLE(2)

(b) SLE(1)

© Kemppainen, SLE book (2017)
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IDEA: FOLLOW TIME-EVOLUTION OF THE CURVE

» curve’s time-evolution encoded into maps g;: H\ y[0,7] — H
» marked points z1, 29, ... represent observable locations

» Ap,Ag, ... are “scaling dimensions”

Our observable: martingale (mgle) = useful PDEs

M(x=0;z1,..) = ([ | &)™ gl@)™) Z Wi gz, )
J 11



CONFORMAL INVARIANCE “CONJECTURE  IN SLE CONTEXT

Boundary conditions:
“disorder” fields in CFT?

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

» [Cardy 847 Bauer & Bernard '02]: SLE(k) curve started at x should be
generated by CFT primary field ®12(x) (degenerate at level 2).

» Why? Correlation functions give rise to (local) SLE(x)-mgles:

M(x;z21,. ... 2,) = I_[g,(z WY g ENY) Z (Wi 2@, 8(z))

has zero drift iff & solves 2nd order “BPZ PDE” related to ®j2(x):

k 0 - 2 0 24 .
{ﬁﬁ * ;(z,-—xa_zj - (Zj_x)z)}f(x,zl,...,zn)—0
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EXAMPLE RESULT

11

FOR ISING MODEL



CROSSING PROBABILITIES AS CFT CORRELATIONS
Q% X8,...,x5,) =9 (Qsxq, ..., Xon) (in close-Carathéodory sense)
Thm. [Cardy 1980s; Bauer, Bernard & Kytolda 2005; Izyurov 2011-; P. & Wu 2018]

For critical Ising model on Q° with alternating boundary cond.,

%111(1) P° [crossing = @] o o Z9(Qixq, ..., xow)

(K 3)(9 X1, ..., Xxoyn) thought of as CFT correlation functions
» Key point: interaction of the random curves




CROSSING PROBABILITIES AS CFT CORRELATIONS
Q% X8,...,x5,) =9 (Qsxq, ..., Xon) (in close-Carathéodory sense)

Thm. [Cardy 1980s; Bauer, Bernard & Kytola 2005; Izyurov 2011-; P. & Wu 2018]
For critical Ising model on Q° with alternating boundary cond.,
lim P° [crossing = a] o o Z9(Qixq, ..., xow)
0—0
(K 3)(9 X1, ..., Xxoyn) thought of as CFT correlation functions
» Key point: interaction of the random curves

» Match with “c =1/2 CFT fields ®@12”

» conf. invariance ~» conf. field theory (CFT)

» BPZ PDEs [Belavin, Polyakov & Zamolodchikov 1984]

12



CROSSING PROBABILITIES AS CFT CORRELATIONS

550 . c
Q% X8,...,x5,) =8 (Qixny. .., Xow) (in close-Carathéodory sense)

Thm. [Cardy 1980s; Bauer, Bernard & Kytola 2005; Izyurov 2011-; P. & Wu 2018]
For critical Ising model on Q° with alternating boundary cond.,

%in(l) P° [crossing = @] o ZU=3(Q: xq, ., Xow)

> Z((YKZS)(Q;xl, ..., xon) thought of as CFT correlation functions

v

Key point: interaction of the random curves

Match with “c =1/2 CFT fields ®y9”

» conf. invariance ~» conf. field theory (CFT)

v

» BPZ PDEs [Belavin, Polyakov & Zamolodchikov 1984]

» fusion rules/asy. ~» “selection rules”
» NB: non-local log-CFT

» Other (critical) models!?! Special cases.
[... ; Liu, P. & Wu 2021; Feng, P. & Wu 2022; ...]

12



MORAL:

CARDY’S B.C.C. OPERATORS

» O;9 = one-leg operator; conformal weight /12 in Kac table
» Op = (s —1)-leg operator; conformal weight A; ¢ in Kac table
-1 +3xA +A -‘A +3x +AX

(This figure illustrates a height model instead of Ising spin model.)
13



ALGEBRAIC CONTENT OF CONFORMAL SYMMETRY

Virasoro algebra Bir: Lie algebra generated by (L,),ez and central C

C
[Lns Lm] = (n - m)L)Hm + En(nz - 1) 6n+m,0$ [Cv Ln] =0

14



ALGEBRAIC CONTENT OF CONFORMAL SYMMETRY

Virasoro algebra Bir: Lie algebra generated by (L,),ez and central C
[Lns Lm] = (l’l - m)L)Hm + %n(nz - 1) 6n+m,0$ [Cv Ln] =0
» primary field ® should generate Bir-module Mg = Bir.vg

(slightly more precisely, vg := lin}) ®(z)|0) via “state-field correspondence”)
—

Love = hvg, L,vy =0 forn>1, Cvg = Ccvg,

where ¢ € C central charge and h = h(®) € C weight of @
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ALGEBRAIC CONTENT OF CONFORMAL SYMMETRY

Virasoro algebra Bir: Lie algebra generated by (L,),ez and central C

C
[Lns Lm] = (n - m)L)Hm + En(nz - 1) 6n+m,0$ [Cv Ln] =0

» primary field ® should generate Bir-module Mg = Bir.vg

(slightly more precisely, vg := lin}) ®(z)|0) via “state-field correspondence”)
—

Love = hvg, L,vy =0 forn>1, Cvg = Ccvg,

where ¢ € C central charge and h = h(®) € C weight of @

» Mg = V| /N isomorphic to quotient of some Verma module V;,

» any submodule N of Vj generated by some singular vector w s.t.

weV, suchthat Low=hw, Lyve =0 forn>1
Thm. [Feigin & Fuchs '84] V¢ contains singular vector iff

2_1 2 4 (- 4
(CoDx oD d=rs) - ge=13-6(5+ 4
4 47 4 « 2 4"«

for some r, s € Z-o and k € C\ {0}.

h = hy () =

14



SINGULAR VECTORS —> BPZ PDEs

Thm. [Feigin & Fuchs '84] Vi contains singular vector iff

_ _(P-Dk (*-D4  (A-rs) B [k 4
h=h () := ya A i e c=c(k) =13 6(4_1+;)

for some r, s € Z.y and « € C \ {0}

» each primary field © generates Bir-module Mg = V; /N
» N non-trivial? Generated by singular vector

w=P(L_,: meN).yvg € N = [w] =[0] € V},/N

where P polynomial in Bir-generators L_,

15



SINGULAR VECTORS —> BPZ PDEs

Thm. [Feigin & Fuchs '84] Vi contains singular vector iff

_ _(P-Dk (*-D4  (A-rs) B [k 4
h=h () := ya A i e c=c(k) =13 6(4_1+;)

for some r, s € Z.y and k € C\ {0}

» each primary field © generates Bir-module Mg = V; /N
» N non-trivial? Generated by singular vector

w=P(L_,: meN).yvg € N = [w] =[0] € V},/N

where P polynomial in Bir-generators L_,
Upshot. PDEs for correlation functions of @:

DO (D(2) Dy(z1) - - Pa(za)) = O

with DO = P, m e W) and L5, = = 51, (£ + 200

j=1 (Z/_Z)m—l ,9_2/ (Zj-2"

) and h; = h(®))



ExaMpLE: “SLE(k) FIELD @19 OF WEIGHT hy2(k) = 62—;"

“insert” @2 at points x; < xg < -+ < X9, [Cardy '84; Bauer-Bernard '02]

&t

X1 Wt
dW, = Vk dB; + k0 log Z' (W, 81(x2), 81(x3), ..., 8(x2,)) dt

» parameter k > 0, central charge ¢ = %((BK -8)(6-x) =13-6(F+ %)

» singular vector (L_g — L%l) vi2 for Virasoro module

3
2(2h12(k)+1)
> (together with translation invariance) gives rise to BPZ PDE system V j

2 9x2
ax} i#j

K 62 2 0 2h1,2(K)
+2, (Xi —x;0x;  (xi— xj)2) (P120x) -~ Pr2(xz0)) = 0

Z(X1,X2,....X21)

16



FusioNn oF “SLE(k) FIELDS @;5” OF WEIGHT hj9 = '

2%
$-1 Curves
/ 'FuS\ov\ I~
W Y
...;
2

Generally, s — 1 curves at x conjecturally related to @1 ,(x) (fusion)
Higher order BPZ PDEs? [e.g. Duplantier & Saleur '87; Bauer & Saleur '89]

9« (xl &y —&0x;) 0¢

8(8 K) 2h2(x) 1 o
Z ((x,mf)s ROz 5)} (D13(8) Dya(x3) -+~ Dy o(x3)) = 0

{03 16 & ( hy2(K) 1 9 ) F)

ZE(E,X30X9p)
k € (0,8)\ Q: [Dubédat ‘15, P. 20]
» Kk =4: [Liu & Wu 21; Lafay, P. & Roussillon 24]

v

» K = 2: [Karrila, Kytola, P. '17; Karrila, Lafay, P. & Roussillon 24]
» k € (8/3,8), special case of 3rd order PDEs: [Feng, Liu, P. & Wu '24]

17
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THESE ARE NOT MINIMAL

MODELS! ~» LOG-CFT ?71?
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CROSSING PROBABILITIES FOR UST oN Q° c 672

0—0
Q% x¢15<>, e ngv) — (Q;x1,...,X9n) (assuming C'-Jordan domain)

Thm. [Liu & P. & Wu 25]
Connectivities of UST Peano curves on (Q‘m;x‘l%, ... ,ngv)
with b.c. 8 converge: for each possible @ € LPy,

29y xq, .
]_-éK:S)(Q; Xlyowo

lim P% [ connectivity = a =
i 5 1 y = a]

> {Zékzs): a € LPy} “pure partition functions”

g {’FL(?K:&: B € LPy} partition functions for b.c.

also [Dubédat '07]
20



CROSSING PROBABILITIES FOR UST oN Q° c 672

0—0
Q% x¢15<>, e ngv) — (Q;x1,...,X9n) (assuming C'-Jordan domain)

Thm. [Liu & P. & Wu 25]
Connectivities of UST Peano curves on (Q‘S”;x‘l%, ... ,ngv)
with b.c. 8 converge: for each possible @ € LPy,

Z9 Qs x, .
]_-éK:S)(Q; Xlyowos

lim P% [ connectivity = a =
i 5 1 y = a]

> {Zékzs): a € LPy} “pure partition functions”

g {}—IEK:&: B € LPy} partition functions for b.c.

Both are explicit. Interesting properties:

e Mobius cov. of Z, & Fg: conformal invariance of Pgla]
e BPZ PDEs (martingales / @;2-field in CFT)

e explicit logarithmic asymptotics (fusion in ¢ = —2 log-CFT) also [Dubédat ‘07]

e simultaneous positivity 20



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @
Thm. [Han & Liu & Wu 20; Liu & P. & Wu 21]
Explicit fusion rules from SLE(8) pure partition functions Z((IK:&:

» “zero-leg channel”
Zy(X1, - -, Xon)

xjer = x;[V4 Jog |xjer — )]

Z{y\(/’._/ﬂ)(xla e X1 Xja2, e e ey Xon) if {j,j +l}ea ﬂ%—

Xj,Xjel — &
—

21



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @
Thm. [Han & Liu & Wu 20; Liu & P. & Wu 21]
Explicit fusion rules from SLE(8) pure partition functions Z((IK:&:

» “zero-leg channel”
Zy(X1, - -, Xon)

xjer = x;[V4 Jog |xjer — )]

Z{y\(/’._/ﬂ)(xla e X1 Xja2, e e ey Xon) if {j,j +l}ea ﬂ%—

Xj,Xjel — &
—

» “two-leg channel” (NB: limit is independent of &)

Zo(X1, ..., Xon)

|X,/+1 - X_/|l/4

Xj,Xjp — &
-

e Zw((,)\‘_,’/m(xl, ey Xjfl, Xj+2 ey xZN) if {],] + 1} Q a M

21



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @

Consequence.

For any CFT boundary fields describing SLE(8) curves,
(whatever that’d mean...)

OPE product has explicit form

D12(2) Draw) ~ (2—w) ™ (m D11(2) — log(z — w) D15(2)).

22



LoGARITHMIC FUSION FOR SLE(8) BOUNDARY FIELD @

Consequence.

For any CFT boundary fields describing SLE(8) curves,
(whatever that’d mean...)

OPE product has explicit form

D15(2) D1a(w) ~ (= w)™ /4 (1 D11(2) — log(z — w) By 5(2))-

Compare with fusion of two simple Virasoro modules with ¢ = —2:

» for simple module S; (corresponding to ®;2 with x = 8):
0 — Sy — S12® Sz — Si3 — 0

where Sio B Sq2 is so-called staggered module (not semisimple)
» S;; corresponding to @y
» Si3 corresponding to its “log-partner” @3

[Gurarie '93; Gaberdiel & Kausch '96; Rohsiepe '96; Kytola & Ridout '09] 99



BEYOND REGULAR

SINGULARITIES?

© P.P. Boalch (2021)
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BEYOND REGULAR SINGULARITIES?

e , i

( ¢
9 ‘ ! '
PR \we
o _— e
R 0% \/ o}

M(x=0:z1...) = ([ [ 81@)™ gl@)™) ZWei gtz )
J

24



PARTITION FUNCTION WITH IRREGULAR SINGULARITIES. K = 4

Thm. [Desiraju, Korzhenkova & P. 2025+]
We find a matrix-valued (local) martingale for the SLE(4) curve:

n 2
M= ( [ [ exp (%’ﬂ(g,)(z» +5i vAid<g,><z[>)) L (Wi, (2); 8(5))
i=1

» W;=2B, € R: Loewner driving function of the SLE(4) curve,
» g/(z;) time-evol. of punctures z = (z1,...,2,) € C"
» g,(s;) time-evol. of Birkhoff spectral invariants s = (sy,...,s,) € C"
(here, eigenvalues of matrices A;; in non-Fuchsian system)
» /(g):=g"/g is the pre-Schwarzian
» L(g):=("/g) - %(g”/g’)2 is the Schwarzian
» Z (W, 81(2); 81(5)) = 1(81(2); 81(5)) Y(W;, 81(2); &4(5)),
where Y(x,z;8) ~ (x — z)~ % exp ( - xi_lz,)

25



PARTITION FUNCTION WITH IRREGULAR SINGULARITIES. K = 4

Thm. [Desiraju, Korzhenkova & P. 2025+]
The quantity

n 2
M; = ( l:[ 2z exp (%’Y(g,)(z,-) +Si \/Kiﬂf(g,)(zi))) Z (Wi, g1(2); g:(s)),

is a martingale iff 2 solves the confluent BPZ PDEs

#? (2 0 2s; 0
9~ _ - —_
[ Ox2 ; (x -z 0z " (x —z)? Os;

2A; 4s; VA; 257
(x—z)? (x-z) (x—z)*

)]Q"(x, z;8)=0

26



UNDERLYING (NON-FUCHSIAN) SYSTEM
If someone is familiar... here it is:

0
—Y(x;2,8) = A(x,2) Y(x;2; 8)
Ox

S A; A;

» 2=(21,...,2) and § = (s1,...,8,)
» Y(x,z;s) is the local solution in coordinate x

» 7(z;5): tau-function of the related integrable system, defined via
(0e log(z,5)) de := H,, o ={s;,2;},

where the Hamiltonians are det (A(y, z) — o(y,z,5)1) = 0 and

1 ,Z, 8
H, = - res Tr(A(y, z))de, H, = —2res AL L)
2 y=z y=zi (y—2i)

27



PARTITION FUNCTION WITH IRREGULAR SINGULARITIES. K = 4

Puzzle. What is the interpretation of the observable

n sz
( | Jaiies? @G s VB 606 2(g,(2); g,(5)) Y(Wi, 84(2); 8i(s)) 227
i=1
» dependence of curve tip x is in Y(x,z;s) ~ (x — z;)~%A exp( - xi_lz,)
» A;: monodromy when SLE curve winds around puncture z;
» ... but the irregular nature of the singularities also introduces

Stokes phenomenon...

© P.P. Boalch (2021)
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BEYOND CURVES?
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TRIPLE DIMERS (¢ = 2) AND W3-CONFORMAL BLOCKS?

© Douglas, Kenyon & Shi

30



BEYOND CURVES?

3 3 3 3 3 3
1 11 11 11 11 11 1
2 3 2 3 2 3 2 3 2 3 2 3

© Kenyon & Shi

Thm. [Lafay, Le & Roussillon 2025]

0—0 Za(-xl, ey -xd)
[mple dimer web=a] — Kyg—m—
@f Up(xt, ..., Xq)

» where U is the conformal block function (fused Specht polynomial)
Uﬁ(xl, ey Xd) = 1_[()6] - )C,*)_X'.Sj/3 P,;r(xl, ey Xd)

i<j

> 2, = ZBIC L{ﬁ and K, g, IC combmatonal numbers

Upshot: Triple-dimer connection probabilities are given by
specific CFT correlation functions with W3 algebra symmetry!

31
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