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1. Lattice models in 2D statistical physics
▶ phase transitions, scaling limits
▶ interfaces: random interacting curves
▶ conformal invariance at criticality (?)

2. Conformal field theory (CFT)
▶ operator algebra, fusion rules, central charge c
▶ singular vectors and null fields
⇒ BPZ PDEs for correlation functions

3. Interaction of interfaces
▶ probabilities of topological events
▶ interface “partition functions”
▶ relation to correlation functions in CFT / QFT

4. Various prototypical models... c :
▶ critical percolation (trivial? logarithmic?) 0
▶ critical Ising model (free fermion?) 1

2
▶ Gaussian free field (free boson?) 1
▶ uniform spanning trees (sympl. fermion?) −2
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2D critical models: emergent conformal symmetry
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Conformal invariance “conjecture” Polyakov ’70s, BPZ ’80s, ...

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

!

CFT: conformally invariant quantum field theory...

What is this supposed to mean?

3



Conformal invariance in terms of observables

Interfaces: SLE(κ) curves
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Scaling limit δ! 0
at criticality (T = Tc )

=⇒ conformal invariance?
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Prototypical examples:
Percolation / spin models
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Ising model: ferromagnetic phase transition

[Lenz & Ising ’20s, Peierls 30’s, Kramers & Wannier 40’s, Onsager 40’s !]

▶ random spins σx = ±1 at vertices x of a graph
▶ nearest neighbor interaction: P [config.] ∝ exp

(
1
T

∑
x∼y σxσy

)
▶ continuous phase transition at critical temperature T = Tc

look at correlation of a pair of spins at x and y
C(x, y) = E [σxσy] − E [σx] E [σy] when |x − y| >> 1:

T < Tc

C(x, y) ∼ const.

T = Tc

C(x, y) ∼ |x − y|−β
Tc < T

C(x, y) ∼ e−
1
ξ |x−y|

▶ scaling limit at critical temperature Tc: conformal invariance?
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Critical planar models and Conformal Field Theory
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Scaling limits of critical interfaces — SLE curves

▶ κ > 0 labels universality class (and c(κ)) (e.g. q(κ) := 4 cos2(4π/κ))

▶ convergence weakly for probability measures on curves

(critical) interface δ!0
−! Schramm-Loewner evolution, SLE(κ)

Usual proof strategy:

1. tightness (e.g. control via crossing estimates, RSW etc.)

[Aizenman & Burchard ’99, Kemppainen & Smirnov ’17, ...]

2. identification of the limit (e.g. via discrete holomorphic observable)

[Kenyon ’00, Chelkak & Smirnov ’01–’11, ...] □
7



Conformal invariance “conjecture” in SLE context

Boundary conditions:
“disorder” fields in CFT?

!

Any (reasonable) critical lattice model converges in
the scaling limit to a conformal field theory (CFT).

▶ [Cardy 84’; Bauer & Bernard ’02]: SLE(κ) curve started at x should be
generated by CFT primary field Φ1,2(x) (degenerate at level 2).

▶ Why? Correlation functions give rise to (local) SLE(κ)-mgles:

Mt(x; z1, . . . , zn) =
( n∏

j= 1

g′t (z j)∆ j g′t (z̄ j)∆̄ j
)
Z (Wt; gt(z1), . . . , gt(zn))

has zero drift iff Z solves 2nd order “BPZ PDE” related to Φ1,2(x): κ2 ∂2∂x2 +
n∑

j= 1

(
2

z j − x
∂

∂z j
−

2∆ j

(z j − x)2

)Z (x; z1, . . . , zn) = 0

8
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Random slit domains — Universal random path in 2d?

γ(t)

gt : H \ γ[0, t] ! H

∂tgt(z) = 2
gt(z)−

√
κBt

g0(z) = z

0

gt(γ(t)) =
√
κBt

Thm. [Schramm 2000]
∃ ! one-parameter family (SLE(κ))κ≥0
of probability measures on chordal curves
with conformal invariance

and domain Markov property

Loewner driving process: Brownian motion B of “speed” κ ≥ 0 9



One-parameter family of random fractal curves

� Kemppainen, SLE book (2017) 10



Idea: follow time-evolution of the curve

▶ curve’s time-evolution encoded into maps gt : H \ γ[0, t] ! H
▶ marked points z1, z2, . . . represent observable locations
▶ ∆1,∆2, . . . are “scaling dimensions”

Our observable: martingale (mgle) =⇒ useful PDEs

Mt(x = 0; z1, . . .) =
(∏

j

g′t(z j)∆ j g′t(z̄ j)∆̄ j
)
Z (Wt; gt(z1), . . .)
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Example result

!

for Ising model
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Crossing probabilities as CFT correlations
(Ωδ; xδ1 , . . . , x

δ
2N) δ!0

−! (Ω; x1, . . . , x2N) (in close-Carathéodory sense)

Thm. [Cardy 1980s; Bauer, Bernard & Kytölä 2005; Izyurov 2011–; P. & Wu 2018]

For critical Ising model on Ωδ with alternating boundary cond.,

lim
δ!0
Pδ [crossing = α] ∝ Z (κ=3)

α (Ω; x1, . . . , x2N)

▶ Z (κ=3)
α (Ω; x1, . . . , x2N) thought of as CFT correlation functions

▶ Key point: interaction of the random curves

▶ Match with “c = 1/2 CFT fields Φ1,2”

▶ conf. invariance ⇝ conf. field theory (CFT)
▶ BPZ PDEs [Belavin, Polyakov & Zamolodchikov 1984]

▶ fusion rules/asy. ⇝ “selection rules”

▶ NB: non-local log-CFT

▶ Other (critical) models!?! Special cases.
[... ; Liu, P. & Wu 2021; Feng, P. & Wu 2022; ...]
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Moral:
Cardy’s b.c.c. operators

▶ Φ1,2 = one-leg operator; conformal weight h1,2 in Kac table

▶ Φ1,s = (s − 1)-leg operator; conformal weight h1,s in Kac table

(This figure illustrates a height model instead of Ising spin model.)
13



Algebraic content of conformal symmetry

Virasoro algebra Vir: Lie algebra generated by (Ln)n∈Z and central C

[Ln, Lm] = (n − m)Ln+m +
C
12

n(n2 − 1) δn+m,0, [C, Ln] = 0

▶ primary field Φ should generate Vir-module MΦ � Vir.vΦ
(slightly more precisely, vΦ := lim

z!0
Φ(z) | 0⟩ via “state-field correspondence”)

L0vΦ = hvΦ, LnvΦ = 0 for n ≥ 1, C.vΦ = c vΦ,

where c ∈ C central charge and h = h(Φ) ∈ C weight of Φ

▶ MΦ � Vc
h/N isomorphic to quotient of some Verma module Vc

h
▶ any submodule N of Vc

h generated by some singular vector w s.t.
w ∈ Vc

h such that L0w = h′w, LnvΦ = 0 for n ≥ 1

Thm. [Feı̆gin & Fuchs ’84] Vc
h contains singular vector iff

h = hr,s(κ) :=
(r2 − 1)

4
κ

4
+

(s2 − 1)
4

4
κ
+

(1 − rs)
2
, c = c(κ) := 13 − 6

(
κ

4
+

4
κ

)
for some r, s ∈ Z>0 and κ ∈ C \ {0}.
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Singular vectors =⇒ BPZ PDEs
Thm. [Feı̆gin & Fuchs ’84] Vc

h contains singular vector iff

h = hr,s(κ) :=
(r2 − 1)

4
κ

4
+

(s2 − 1)
4

4
κ
+

(1 − rs)
2
, c = c(κ) := 13 − 6

(
κ

4
+

4
κ

)
for some r, s ∈ Z>0 and κ ∈ C \ {0}

▶ each primary field Φ generates Vir-module MΦ � Vc
h/N

▶ N non-trivial? Generated by singular vector
w = P(L−m : m ∈ N).vΦ ∈ N =⇒ [w] = [0] ∈ Vc

h/N

where P polynomial in Vir-generators L−m

Upshot. PDEs for correlation functions of Φ:

D(z) ⟨Φ(z)Φ1(z1) · · ·Φd(zd)⟩ = 0

with D(z) = P(L(z)
−m : m ∈ N) and L(z)

−m = −
∑n

j=1

(
1

(z j−z)m−1
∂
∂z j
+

(1−m) h j
(z j−z)m

)
and h j = h(Φ j)
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Example: “SLE(κ) field Φ1,2” of weight h1,2(κ) = 6−κ
2κ

“insert” Φ1,2 at points x1 < x2 < · · · < x2n [Cardy ’84; Bauer-Bernard ’02]

x1 Wt

gt

dWt =
√
κ dBt + κ ∂1 log Z (Wt, gt(x2), gt(x3), . . . , gt(x2n)) dt

▶ parameter κ > 0, central charge c = 1
2κ (3κ − 8)(6 − κ) = 13 − 6

( κ
4 +

4
κ

)
▶ singular vector (L−2 − 3

2(2h1,2(κ)+1) L2
−1) v1,2 for Virasoro module

▶ (together with translation invariance) gives rise to BPZ PDE system ∀ j κ2 ∂2∂x2j +
∑
i, j

(
2

xi − x j

∂

∂xi
−

2h1,2(κ)
(xi − x j)2

) 〈
Φ1,2(x1) · · ·Φ1,2(x2n)

〉︸                      ︷︷                      ︸
Z (x1,x2,...,x2n)

= 0

16



Fusion of “SLE(κ) fields Φ1,2” of weight h1,2 =
6−κ
2κ

Generally, s − 1 curves at x conjecturally related to Φ1,s(x) (fusion)
Higher order BPZ PDEs? [e.g. Duplantier & Saleur ’87; Bauer & Saleur ’89] ∂3∂ξ3 − 16

κ

2n∑
i=3

(
h1,2(κ)

(xi − ξ)2
−

1
xi − ξ

∂

∂xi

)
∂

∂ξ

+
8(8 − κ)
κ2

2n∑
i=3

(
2h1,2(κ)
(xi − ξ)3

−
1

(xi − ξ)2
∂

∂xi

) 〈
Φ1,3(ξ)Φ1,2(x3) · · ·Φ1,2(x2n)

〉︸                                ︷︷                                ︸
Z (ξ,x3 ,...,x2n)

= 0

▶ κ ∈ (0, 8) \ Q: [Dubédat ’15, P. ’20]

▶ κ = 4: [Liu & Wu ’21; Lafay, P. & Roussillon ’24]

▶ κ = 2: [Karrila, Kytölä, P. ’17; Karrila, Lafay, P. & Roussillon ’24]

▶ κ ∈ (8/3, 8), special case of 3rd order PDEs: [Feng, Liu, P. & Wu ’24] 17



Critical planar models and Conformal Field Theory
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These are not minimal
models! ⇝ log-CFT ?!?

x1

x2

x3

x4

x5
x6

wired free wired

⑧ ⑧

free

⑨

&

· ·

free wired

19



Crossing probabilities for UST on Ωδ ⊂ δZ2

(Ωδ,⋄; xδ⋄1 , . . . , x
δ⋄
2N) δ!0

−! (Ω; x1, . . . , x2N) (assuming C1-Jordan domain)

Thm. [Liu & P. & Wu ’25]
Connectivities of UST Peano curves on (Ωδ,⋄; xδ⋄1 , . . . , x

δ⋄
2N)

with b.c. β converge: for each possible α ∈ LPN ,

lim
δ!0
Pδβ [ connectivity = α] =

Z (κ=8)
α (Ω; x1, . . . , x2N)

F (κ=8)
β (Ω; x1, . . . , x2N)

.

▶ {Z (κ=8)
α : α ∈ LPN} “pure partition functions”

▶ {F (κ=8)
β : β ∈ LPN} partition functions for b.c.

Both are explicit. Interesting properties:
• Möbius cov. of Zα & Fβ: conformal invariance of Pβ[α]

• BPZ PDEs (martingales / Φ1,2-field in CFT)
• explicit logarithmic asymptotics (fusion in c = −2 log-CFT)
• simultaneous positivity

x1

x2

x3

x4

x5
x6

also [Dubédat ’07]
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Logarithmic fusion for SLE(8) boundary field Φ1,2

Thm. [Han & Liu & Wu ’20; Liu & P. & Wu ’21]
Explicit fusion rules from SLE(8) pure partition functions Z (κ=8)

α :

▶ “zero-leg channel”
Zα(x1, . . . , x2N)

|x j+1 − x j|
1/4 log |x j+1 − x j|

x j , x j+1 ! ξ
−! Zα\{ j, j+1}(x1, . . . , x j−1, x j+2, . . . , x2N) if { j, j + 1} ∈ α

▶ “two-leg channel” (NB: limit is independent of ξ)

Zα(x1, . . . , x2N)
|x j+1 − x j|

1/4

x j , x j+1 ! ξ
−! π Z℘(α)\{ j, j+1}(x1, . . . , x j−1, x j+2 . . . , x2N) if { j, j + 1} < α
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Logarithmic fusion for SLE(8) boundary field Φ1,2

Consequence.

For any CFT boundary fields describing SLE(8) curves,
(whatever that’d mean...)

OPE product has explicit form

Φ1,2(z) Φ1,2(w) ∼ (z − w)−1/4
(
πΦ1,1(z) − log(z − w) Φ̃1,3(z)

)
.

Compare with fusion of two simple Virasoro modules with c = −2:
▶ for simple module S1,2 (corresponding to Φ1,2 with κ = 8):

0 −! S1,1
ι

−! S1,2 ⊠ S1,2
π

−! S1,3 −! 0

where S1,2 ⊠ S1,2 is so-called staggered module (not semisimple)

▶ S1,1 corresponding to Φ1,1

▶ S1,3 corresponding to its “log-partner” Φ̃1,3

[Gurarie ’93; Gaberdiel & Kausch ’96; Rohsiepe ’96; Kytölä & Ridout ’09]
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Beyond regular
singularities?

� P.P. Boalch (2021)
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Beyond regular singularities?

Mt(x = 0; z1, . . .) =
(∏

j

g′t(z j)∆ j g′t(z̄ j)∆̄ j
)
Z (Wt; gt(z1), . . .)
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Partition function with irregular singularities: κ = 4

Thm. [Desiraju, Korzhenkova & P. 2025+]
We find a matrix-valued (local) martingale for the SLE(4) curve:

Mt =

( n∏
i=1

g′t(zi)∆i exp
( s2i
6

S (gt)(zi)+ si
√
∆iA (gt)(zi)

))
Z (Wt, gt(z); gt(s))

▶ Wt = 2Bt ∈ R: Loewner driving function of the SLE(4) curve,
▶ gt(zi) time-evol. of punctures z = (z1, . . . , zn) ∈ Cn

▶ gt(si) time-evol. of Birkhoff spectral invariants s = (s1, . . . , sn) ∈ Cn

(here, eigenvalues of matrices Ai,1 in non-Fuchsian system)
▶ A (g) := g′′/g′ is the pre-Schwarzian
▶ S (g) := (g′′/g′)′ − 1

2 (g′′/g′)2 is the Schwarzian
▶ Z (Wt, gt(z); gt(s)) = τ(gt(z); gt(s)) Y(Wt, gt(z); gt(s)),

where Y(x, z; s) ∼ (x − zi)−2∆i exp
(
−

si
x−zi

)
25



Partition function with irregular singularities: κ = 4

Thm. [Desiraju, Korzhenkova & P. 2025+]
The quantity

Mt =

( n∏
i=1

g′t(zi)∆i exp
( s2i
6

S (gt)(zi)+ si
√
∆iA (gt)(zi)

))
Z (Wt, gt(z); gt(s)),

is a martingale iff Z solves the confluent BPZ PDEs[
2
∂2

∂x2
−

n∑
i=1

(
2

x − zi

∂

∂zi
+

2si

(x − zi)2
∂

∂si

+
2∆i

(x − zi)2
+

4si
√
∆i

(x − zi)3
+

2s2i
(x − zi)4

)]
Z (x, z; s) = 0
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Underlying (non-Fuchsian) system

If someone is familiar... here it is:
∂

∂x
Y(x; z, s) = A(x, z) Y(x; z; s)

A(x, z) :=
n∑

i=1

Ai,0(z)
x − zi

+
Ai,1(z)

(x − zi)2
, Ai, j(z) ∈ sl2(C)

▶ z = (z1, . . . , zn) and s = (s1, . . . , sn)
▶ Y(x, z; s) is the local solution in coordinate x
▶ τ(z; s): tau-function of the related integrable system, defined via

(∂• log τ(z, s)) d• := H•, • = {si, zi},

where the Hamiltonians are det
(
A(y, z) − σ(y, z, s)1

)
= 0 and

Hzi :=
1
2
res
y=zi

Tr
(
A(y, z)

)2dz, Hsi := −2 res
y=zi

σ(y, z, s)
(y − zi)

dz
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Partition function with irregular singularities: κ = 4
Puzzle. What is the interpretation of the observable( n∏

i=1
g′t(zi)∆ie

s2i
6 S (gt)(zi)+ si

√
∆iA (gt)(zi) τ(gt(z); gt(s)) Y(Wt, gt(z); gt(s)) ???

▶ dependence of curve tip x is in Y(x, z; s) ∼ (x − zi)−2∆i exp
(
−

si
x−zi

)
▶ ∆i: monodromy when SLE curve winds around puncture zi

▶ ... but the irregular nature of the singularities also introduces
Stokes phenomenon...

� P.P. Boalch (2021)
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Beyond curves?
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Triple dimers (c = 2) and W3-Conformal blocks?

� Douglas, Kenyon & Shi
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Beyond curves?

� Kenyon & Shi

Thm. [Lafay, Le & Roussillon 2025]

Pδβ[triple dimer web = α] δ!0
−! Kα,β

Zα(x1, . . . , xd)
Uβ(x1, . . . , xd)

▶ where Uβ is the conformal block function (fused Specht polynomial)
Uβ(x1, . . . , xd) =

∏
i< j

(x j − xi)−si s j/3 Pβt (x1, . . . , xd)

▶ Zα :=
∑
βK−1α,β Uβ and Kα,β, K−1α,β combinatorial numbers

Upshot: Triple-dimer connection probabilities are given by
specific CFT correlation functions with W3 algebra symmetry!
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Happy New Year !


