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1. MOTIVATION
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What this talk is about: Correlations

X

Y

No correlations
X

Y

Correlations
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Classical Quantum

� Trajectories

� Deterministic
� Correlations (as before)

� Uncertainty principle

� Probabilistic
� Additional correlations
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A type of correlation in quantum systems
with no classical counterpart
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I would not call [entanglement] one but
rather the characteristic trait of quan-
tum mechanics, the one that enforces its
entire departure from classical lines of
thought.∗

E. Schrödinger

∗ Schrödinger (1935) 7



Why Does Entanglement Matter?

Quantum Technologies Fundamental Physics
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Why Does Entanglement Matter?

Quantum Technologies Fundamental Physics

Quantum
computation

Quantum key
distribution

Quantum teleportation

Black hole
information loss

Quantum signals from the early
universe 8



A Surprising Property of QFT

Consider a quantum field in the vacuum

Choose two spacelike-separated points of the quantum field.

No signal can travel between these points.
The vacuum two-point function is nonzero.
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A Surprising Property of QFT

Consider a quantum field in the vacuum

Choose two spacelike-separated points of the quantum field.
No signal can travel between these points.
The vacuum two-point function is nonzero.

The vacuum is correlated at spacelike separations

9



Entanglement is built into the very structure of
the vacuum in QFT
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The Reeh-Schlieder Theorem implies that the vacuum is so entan-
gled that local operations on it can approximate any global state in
the theory.∗

A

B

Σ

∗ Reeh, Schlieder (1961); See Witten (2018) for the interpretation. 11



How much entanglement is there and how is it distributed?

The Reeh-Schlieder Theorem implies that the vacuum is so entan-
gled that local operations on it can approximate any global state in
the theory.∗

A

B

Σ

∗ Reeh, Schlieder (1961); See Witten (2018) for the interpretation. 11



GOAL I:

Present a complementary approach
for analyzing entanglement in QFT *

* Bianchi and Satz (2019); Martin and Vennin (2021); Hackl and Bianchi
(2021); Agullo, Bonga, and Ribes-Metidieri (2021) 12



Physical Motivation
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Framework Overview

Features:

Truncation of
degrees of freedom +

Gaussian formalism
(Gaussian states + free evolution)
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Framework Overview

Features:

Truncation of
degrees of freedom +

Gaussian formalism
(Gaussian states + free evolution)

(1) We avoid UV divergencies (Type I algebras).

(2) We can compute reduced states.

(3) We can use results from quantum information.

(4) We retain features of the full QFT.
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Framework Overview
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many of them!)
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Framework Overview

Features:

Truncation of
degrees of freedom +

Gaussian formalism
(Gaussian states + free evolution)

Limitations:

� Limited to free theories and Gaussian states

� We focus on a finite subset of degrees of freedom (infinitely
many of them!)

Focus on universal properties!

14



GOAL II:

Discuss two interesting applications *

*Agullo, Bonga, Ribes-Metidieri (2024); Ribes-Metidieri, Agullo, Bonga
(2025); Agullo, Martín-Martínez, Nadal-Gisbert, Ribes-Metidieri, Yamaguchi
(2025); Agullo, Delhom, Parra, Ribes-Metidieri (In preparation). 15



2. FRAMEWORK
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Physical Setup

(M, g)

Σ

~ = G = c = 1

Free quantum scalar field (φ̂(~x), π̂(~x)) prop-
agating on a globally hyperbolic spacetime
(M, g):
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Physical Setup

(M, g)

Σ

~ = G = c = 1

Free quantum scalar field (φ̂(~x), π̂(~x)) prop-
agating on a globally hyperbolic spacetime
(M, g):

� The Klein-Gordon equation is well-posed.

� Phase space Γ ≡ vector space.

� Symplectic form on phase space:

ω(γ1, γ2) =

∫
Σ

dΣ (f1(~x)g2(~x)− f2(~x)g1(~x)) ,

where γ1 = (g1, f1) ∈ Γ and γ2 = (g2, f2) ∈ Γ.
17



Physical Setup

(M, g)

Σ

~ = G = c = 1

Free quantum scalar field (φ̂(~x), π̂(~x)) prop-
agating on a globally hyperbolic spacetime
(M, g):

� The Klein-Gordon equation is well-posed.

� Phase space Γ ≡ vector space.

� Klein-Gordon product:

〈γ1, γ2〉 = −i ω(γ∗
1 , γ2), where γ1, γ2 ∈ ΓC.
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Notation

Convenient way of organizing linear operators

γ ∈ ΓC → Ôγ = i 〈γ, R̂〉 ,

where R̂ = (φ̂(~x), π̂(~x)).

γ = (g , f )
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Notation

Convenient way of organizing linear operators

γ ∈ ΓC → Ôγ = i 〈γ, R̂〉 ,

where R̂ = (φ̂(~x), π̂(~x)).

γ = (g , f )

Local single mode: Algebra generated by
(Ôγ, Ôγ′), with [Ôγ, Ôγ′] = −iω(γ?, γ′?) 1̂ 6= 0 .
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Subsystems

Classical subsystem

Subsystems

Quantum subsystem

Subsystems

Symplectic subspaces Subalgebra of observables
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Classical subsystem

Subsystems

Quantum subsystem
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Symplectic subspaces Subalgebra of observables
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Subsystems

Classical subsystem

Subsystems

Quantum subsystem

Subsystems

Symplectic subspaces Subalgebra of observables

γ ∈ A ⊂ ΓC → Ôγ = i 〈γ, R̂〉

Focus on finite-dimensional
subsystems

19



Gaussian States

Gaussian states are fully characterized by:

� µ(γ) := 〈Ô†
γ〉 , γ ∈ ΓC , defines a co-vector in ΓC.
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Gaussian States

Gaussian states are fully characterized by:

� µ(γ) := 〈Ô†
γ〉 , γ ∈ ΓC , defines a co-vector in ΓC.

� 〈Ôγ, Ô†
γ′〉 = 1

2 (σ(γ
∗, γ′) + 〈γ, γ′〉)

covariance matrix (two-covariant tensor in ΓC)

� Higher correlations follow from Wick’s theorem

20



Gaussian states and Kähler Structures

For pure Gaussian states, define

J := ω−1σ : ΓC → ΓC

J defines a complex structure, i.e., J2 = −I, making (σ, ω, J) a Kähler
space.∗

* See, e.g. Bianchi and Hackl (2024) for a recent review. 21
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Gaussian states and Kähler Structures

For pure Gaussian states, define

J := ω−1σ : ΓC → ΓC

J defines a complex structure, i.e., J2 = −I, making (σ, ω, J) a Kähler
space.∗

For mixed Gaussian states, define J defines a restricted complex struc-
ture, i.e.,

J2 ≤ −I.

The spectrum of J encodes all information
about correlations and entanglement.

* See, e.g. Bianchi and Hackl (2024) for a recent review. 21



How is entanglement distributed?

� Subsystem A � Subsystem B
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How is entanglement distributed?

� Subsystem A � Subsystem BThe partner of A in the state J is
the subsystem Ap that encodes all
correlations and entanglement
with A.∗

*Wald (1975); Botero and Reznik (2003); Hotta, Schützhold, and Unruh (2015);
Trevison, Yamaguchi, and Hotta (2019); Agullo, Martin-Martinez, Nadal-
Gisbert, Ribes-Metidieri, and Yamaguchi (2025) 22
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How is entanglement distributed?

� Subsystem A � Subsystem BThe partner of A in the state J is
the subsystem Ap that encodes all
correlations and entanglement
with A.∗

� For pure Gaussian states, the partner
exists and is unique (Determined from J)

� For mixed Gaussian states, we have

Entanglement partners Correlations partners

*Wald (1975); Botero and Reznik (2003); Hotta, Schützhold, and Unruh (2015);
Trevison, Yamaguchi, and Hotta (2019); Agullo, Martin-Martinez, Nadal-
Gisbert, Ribes-Metidieri, and Yamaguchi (2025) 22



3. APPLICATIONS
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Summary

Entanglement generation
during inflation

A proposal to probe QFT
vacuum entanglement

Inflation

Density profile of a 2-dimensional
Bose-Einstein condensate.∗

∗ Adapted from Viermann et al. (2022).24



3.1. Entanglement generation during inflation
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Ob
ser

vat
ion

s

Th
eor

yAll we need is
classical physics...

Cosmic structures
from QUANTUM
fluctuations
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de Sitter spacetime (Cosmological patch)

η = 0

η
=
−∞

, |~x
| =

∞
|~ x
|=

0

i− I−

i0I+

ds2 = a(η)2(−dη2 + d~x2), a(η) = − 1
Hη

, and η ∈ (−∞, 0).
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de Sitter spacetime (Cosmological patch)

time

Σ1

Σ2

Σ3

ds2 = a(η)2(−dη2 + d~x2), a(η) = − 1
Hη

, and η ∈ (−∞, 0).

H−1

27



Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

Σ

H−1: Hubble radius

γΦ = (0 f (~x))T γΠ = (−g(~x) 0)

R H

28
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∫
Σ
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Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

Σ

γΦ = (0 f (~x))T γΠ = (−g(~x) 0)

Φ̂[f ] :=
∫
Σ

d3x f (~x)φ̂(~x) , Π̂[g ] :=
∫
Σ

d3x g(~x)π̂(~x)

[Φ̂[f ], Π̂[g ]] = i → (Φ̂[f ], Π̂[g ]) is a single-mode

28



Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

Similarly for 2-mode subsystem

Σ

A

B

(Φ̂[fA], Π̂[gA])

[Φ̂[fA], Π̂[gA]] = i

(Φ̂[fB], Π̂[gB])

[Φ̂[fB], Π̂[gB]] = i

29



1

f (~x), g(~x)

(Φ̂[f ], Π̂[g ])

R H

2

R H

B

f (~x), g(~x) f (~x), g(~x)

A

30



1

f (~x), g(~x)

(Φ̂[f ], Π̂[g ])

R H
Entanglement between
(Φ̂[f ], Π̂[g ]) and the rest?

2

R H

B

f (~x), g(~x) f (~x), g(~x)

A
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1

f (~x), g(~x)

(Φ̂[f ], Π̂[g ])

R H
Entanglement between
(Φ̂[f ], Π̂[g ]) and the rest?

2
Entanglement between
(Φ̂A[f ], Π̂A[g ]) and (Φ̂B[f ], Π̂B[g ])?

R H

B

f (~x), g(~x) f (~x), g(~x)

A

30



1 Entanglement between (Φ̂[f ], Π̂[g ]) and the rest?
Idea: Find (f̄ , ḡ) such that (Φ̂[f̄ ], Π̂[ḡ ]) purifies (Φ̂[f ], Π̂[g ])

0.0 0.5 1.0 1.5 2.0

- 0.5

0.0

0.5

1.0

1.5 f = g

0.0 0.5 1.0 1.5 2.0

- 0.5

0.0

0.5

1.0

1.5

de Sitter
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1 Entanglement between (Φ̂[f ], Π̂[g ]) and the rest?
Idea: Find (f̄ , ḡ) such that (Φ̂[f̄ ], Π̂[ḡ ]) purifies (Φ̂[f ], Π̂[g ])

f = g

ḡ

0.0 0.5 1.0 1.5 2.0

- 0.5

0.0

0.5

1.0

1.5

de Sitter
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Entanglement isspread
outat longdistances

32



2 Entanglement (Φ̂A[f ], Π̂A[g ]) and (Φ̂B[f ], Π̂B[g ])?

A

B

(Φ̂A[f ], Π̂A[g ])

(Φ̂B[f ], Π̂B[g ])
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2 Entanglement (Φ̂A[f ], Π̂A[g ]) and (Φ̂B[f ], Π̂B[g ])?

A

B

(Φ̂A[f ], Π̂A[g ])

(Φ̂B[f ], Π̂B[g ])

EN (A,B) = EN (A,B)Mink + extra contribution

extra contribution < 0

33



Entanglement
withthepartneractsas

noise
for localobservables

34



Inflationdoesnotcreate
entanglement in local

observables∗

∗ Ribes-Metidieri, Agullo, and Bonga (2025); Agullo, Bonga,
Ribes-Metidieri (2024). 35



Implications for cosmology

Inflation

36



3.2. A proposal to probe QFT vacuum entanglement

37



Entanglement between localized modes...

� ...becomes sparser in increasing spatial dimensions...
Agullo, Bonga, Ribes-Metidieri, Kranas, and Nadal-Gisbert (2023)

� ...is generic in multimode systems
Agullo, Bonga, Martín-Martínez, Nadal-Gisbert, Perche, Polo-Gómez,
Ribes-Metidieri, Torres (2023)

� ...is affected by the spacetime curvature
Nambu, Yamaguchi (2023) ; Agullo, Bonga, Ribes-Metidieri (2024);
Ribes-Metidieri, Agullo, Bonga (2025)
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Entanglement between localized modes...

� ...becomes sparser in increasing spatial dimensions...
Agullo, Bonga, Ribes-Metidieri, Kranas, and Nadal-Gisbert (2023)

� ...is generic in multimode systems
Agullo, Bonga, Martín-Martínez, Nadal-Gisbert, Perche, Polo-Gómez,
Ribes-Metidieri, Torres (2023)

� ...is affected by the spacetime curvature
Nambu, Yamaguchi (2023) ; Agullo, Bonga, Ribes-Metidieri (2024);
Ribes-Metidieri, Agullo, Bonga (2025)

Can we experimentally test QFT vacuum
entanglement and its properties?

38



Quantum Fluid Simulators

Point of no
return

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.∗

∗ Carlos Barceló, Liberati, Visser (2024); ∗∗ Unruh (1980); Visser (1993) 39



Quantum Fluid Simulators

Point of no
return

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.∗

Theorem: Sound waves in inviscid,
barotropic, irrotational fluids satisfy
a curved Klein-Gordon equation.∗∗

∗ Carlos Barceló, Liberati, Visser (2024); ∗∗ Unruh (1980); Visser (1993)

Can simulate Black holes, expanding
universes, ergorregions, ...

39



Analogue Experiments in Bose-Einstein Condensates (BEC)

BEC: atoms are cooled down
until they “condense” in their
lowest energy state

40
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Linearized collective excitations
in BECs, ϕ, satisfy

(
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Speed of sound

Healing length
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Analogue Experiments in Bose-Einstein Condensates (BEC)

BEC: atoms are cooled down
until they “condense” in their
lowest energy state

Linearized collective excitations
in BECs, ϕ, satisfy

(
1 − ξ2

2 ∇
2
)−1

(∂2
t − c2

s ∇2)ϕ = 0

Collective linear excitations in BECs
behave as a scalar field in a thermal
state when ξ2∇2ϕ � ϕ!

40



Existing experimental platforms

� Experimental platform∗:
(1 + 2)-dimensional BEC

� Quantum state reconstruction

� Temperatures ∼ 10 nK

*Viermann, Sparn, Liebster, Hans, Kath, Parra-López, Tolosa-Simeón,
Sánchez-Kuntz, Haas, Strobel, Floerchinger, Oberthaler (2022) 41



Existing experimental platforms

� Experimental platform∗:
(1 + 2)-dimensional BEC

� Quantum state reconstruction

� Temperatures ∼ 10 nK

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

5

*Viermann, Sparn, Liebster, Hans, Kath, Parra-López, Tolosa-Simeón,
Sánchez-Kuntz, Haas, Strobel, Floerchinger, Oberthaler (2022) 41



Local degrees of freedom in BECs
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Local degrees of freedom in BECs
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QFT vacuum entanglement with BECs

5 10 15 20
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0.8

1.2

∗Agullo, Delhom, Parra-López,
Ribes-Metidieri (In preparation)
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QFT vacuum entanglement with BECs

5 10 15 20
0
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∗Agullo, Delhom, Parra-López,
Ribes-Metidieri (In preparation)

2D
5% relative errors
3σ contours
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Quantum fluid platforms are promising as probes
of QFT vacuum entanglement
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4. SUMMARY AND CONCLUSIONS
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QFT vacuum has a surprisingly rich entanglement structure
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Summary

QFT vacuum has a surprisingly rich entanglement structure

How is entanglement
distributed?

What part of this entanglement
can we access?

Partner systems
Entanglement between a finite

number of local degrees of freedom
46
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during inflation

A proposal to probe QFT
vacuum entanglement
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� This “spread out” entanglement
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� Inflation does not create entan-
glement in local observables � Extremely low temperatures

needed—Finally feasible!

� Quantum fluid platforms are
promising as probes of QFT vacuum
entanglement 47



Questions?

Thankyou for your attention!

Contact information:

patricia.ribesmetidieri@york.ac.uk
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The Reeh-Schlieder Theorem

Consider a quantum free scalar field φ̂ in Minkowski space

Σ
A

� Let |0〉 denote the vacuum.

� Define Φ̂F :=
∫
dVF (x)φ̂(x) such

that suppF ⊂ A.

2



The Reeh-Schlieder Theorem

Consider a quantum free scalar field φ̂ in Minkowski space

Σ
A

� Let |0〉 denote the vacuum.

� Define Φ̂F :=
∫
dVF (x)φ̂(x) such

that suppF ⊂ A.

Theorem: Acting on |0〉 with operators Φ̂F1 · · · Φ̂FN localized in any open
spacetime region A, we can approximate any state in the Hilbert space
of the theory arbitrarily well.∗

∗ Reeh, Schlieder (1961). See Witten (2018) for a pedagogical proof. 2



The Reeh-Schlieder Theorem II

Quantum Lab

Why surprising?
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The Reeh-Schlieder Theorem II

Quantum Lab

Why surprising?

Entanglement is
ubiquitous in the vacuum

3



Intuitive explanation: Entanglement
This is reminiscent of something well-known in Quantum Mechanics

Let HA and HB be Hilbert spaces of two systems, both of dimension n. Any state
in HA ⊗HB can be written as

|Ψ〉 =
n∑

i=1
ci |i〉A ⊗ |i〉B , (Schmidt form)

with {|i〉A}n
i=1 and {|i〉B}n

i=1 bases in HA and HB

If ci 6= 0 ∀i → |Ψ〉 is fully entangled

If |Ψ〉 is fully entangled, then

Any state in HA ⊗ HB can be written as ÔA ⊗ ÎB |Ψ〉
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Quantifying Entanglement

Entanglement monotones: Functions of a quantum state that

� vanish on separable states

� do not increase under LOCC

Example: Logarithmic negativity

� Measures distillable entanglement

� Valid for mixed Gaussian states

� Faithful for system of 1 vs N modes
5



Single-Mode Subsystem in a Massless Scalar Theory

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0
Free, massless scalar field in Minkowski spacetime

γ1(~x) =
(

0
f (δ)(~x)

)
, γ2(~x) =

(
−f (δ)(~x)

0

)

f (δ)(~x) = Aδ

(
1 − |~x |2

R2

)δ

Θ(R − r) ,

ΓA = span(γ1, γ2) ⊂ Γ̄C
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Single-Mode Subsystem in a Massless Scalar Theory

The corresponding smeared operators are:

Φ̂δ := Ôγ1 =
∫
Σ
d3x f (δ)(~x)φ̂(~x) , Π̂δ := Ôγ2 =

∫
Σ
d3x f (δ)(~x)π̂(~x) ,
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Φ̂δ := Ôγ1 =
∫
Σ
d3x f (δ)(~x)φ̂(~x) , Π̂δ := Ôγ2 =

∫
Σ
d3x f (δ)(~x)π̂(~x) ,

[Φ̂δ, Π̂δ] = −iω12
A = i
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ω(γ1, γ1) ω(γ1, γ2)
ω(γ2, γ1) ω(γ2, γ2)

)
=

(
0 −1
1 0

)
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σA =

(
σ(γ1, γ1) σ(γ1, γ2)
σ(γ2, γ1) σ(γ2, γ2)

)
=

(
(f (δ)|f (δ))−1/2 0

0 (f (δ)|f (δ))1/2

)
,
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The corresponding smeared operators are:

Φ̂δ := Ôγ1 =
∫
Σ
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)
µ(γ1) = µ(γ2) = 0 in the Minkowski vacuum

σA =

(
σ(γ1, γ1) σ(γ1, γ2)
σ(γ2, γ1) σ(γ2, γ2)

)
=

(
(f (δ)|f (δ))−1/2 0

0 (f (δ)|f (δ))1/2

)
,

(f |g)s :=
∫

d3k
(2π)3 |~k|2s f̃ (~k)?g̃(~k) Sobolev inner product
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Single-Mode Subsystem in a Massless Scalar Theory

All symplectic invariant information is contained in the symplectic
eigenvalue!

||f (δ)||21/2 = 4Γ(2δ)Γ(δ+1)2Γ(2δ+5/2)√
πΓ(δ+1/2)2Γ(2δ+1)Γ(2δ+2) , ||f (δ)||2−1/2 = 2Γ(δ+1)2Γ(2δ+5/2)√

πΓ(δ+1/2)Γ(δ+3/2)Γ(2δ+3) .

ν2
A = DetσA = ||f (δ)||2−1/2||f (δ)||21/2 > 1
for all δ ≥ 1

2 4 6 8 10
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
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Entropy of a single mode

ν2
A − (νMink

A )2 ≈ FA + . . .

Proposition: FA ≥ 0.
Proof: There are three cases to consider:

1 f (1)A 6= f (2)A , with both functions different from zero;

2 f (1)A = f (2)A 6= 0;

3 f (1)A = 0, f (2)A 6= 0 (or vice-versa).
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Case 1:

ν2
A − (νMink

A )2 = aA (RH)4−4µ2
(1 +O(µ2)) +O

(
(RH)3−3µ2)

,

with
aI = ||f (1)A ||2− 3

2+µ2 ||f
(2)

A ||2− 3
2+µ2 −Re(f (1)A |f (2)A )2

− 3
2+µ2 .

Cauchy-Schwarz inequality
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Case 2:

ν2
A − (νMink

A )2 = bA (RH)2−2µ2
(1 +O(µ2)) +O

(
(RH)1−µ2)

,

where
bA = ||fA||2− 3

2+µ2 ||g
(1)
A − g (2)

A ||21
2
−Re(fA|g (1)

A − g (2)
A )2

− 1−µ2
2

.

Applying Hölder’s inequality for s ′ ∈ [−1, 1] and s = −(1 − µ2)/2 , we find bA ≥ 0.
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Case 3:

ν2
A − (νMink

A )2 = cA (RH)2−2µ2
(1 +O(µ2)) +O

(
(RH)1−µ2)

with
cI = ||f (2)A ||2− 3

2+µ2 ||g
(1)
A ||21

2
−Re(f (2)A |g (1)

A )2
− 1−µ2

2
.

Following the same argument as in case (2), we find cI ≥ 0.
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1 Entanglement between (Φ̂[f ], Π̂[g ]) and the rest?

10- 5 10- 4 0.001 0.010 0.100 1 10
0

2

4

6

8

10

12

14
de Sitter
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Mutual Information
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Mutual Information
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Correlated Subsystems

� A ⊂ Γ̄C a subsystem with dim(A) = 2NA.

� A⊥ = {γ′ ∈ Γ̄C | ω(γ, γ′) = 0 ∀ γ ∈ A}.
� ΠA: Symplectic projector onto A.
� ρ̂↔J a pure Gaussian state.

Definition: A is uncorrelated in ρ̂ if

Tr
[
ρ̂ ÔγÔγ′

]
− Tr

[
ρ̂Ôγ

]
Tr

[
ρ̂Ôγ′

]
= 0 , ∀ γ ∈ A and γ′ ∈ A⊥.

Proposition: A is uncorrelated in ρ̂ if and only if

[ΠA, J ] = 0.

17
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Partner of a System in a Pure State

Proposition: Let A be an N-mode subsystem correlated in the pure Gaussian
state J . Then, the single-mode subsystem

AP = Π⊥
A (JA),

is the partner of A in J . *

Sketch of the Proof: Assume A is correlated in J . Then,

1 The system A + JA is uncorrelated.

2 Π⊥
A (A + JA) = Π⊥

A (JA) is symplectic orthogonal to A and non-empty.

* Agullo, Martín-Martínez, Nadal-Gisbert, RM, and Yam-
aguchi (In preparation) 18
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Quantum Fluid Simulators

Point of no
return

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.∗

∗ Carlos Barceló, Liberati, Visser (2024); ∗∗ Unruh (1980); Visser (1993) 19



Quantum Fluid Simulators

Point of no
return

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.∗

Theorem: Sound waves in inviscid,
barotropic, irrotational fluids satisfy
a curved Klein-Gordon equation.∗∗

g ∝ −(c2
s − v2)dt2 − 2~v · d~xdt + d~x · d~x

v = fluid velocity and
cs = speed of sound

∗ Carlos Barceló, Liberati, Visser (2024); ∗∗ Unruh (1980); Visser (1993) 19
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