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No correlations

Correlations



Classical Quantum

M Trajectories B Uncertainty principle

B Deterministic B Probabilistic
B Correlations (as before) B Additional correlations



ENTANGLEMENT

A type of correlation in quantum systems
with no classical counterpart




I would not call [entanglement] one but
rather the characteristic trait of quan-
tum mechanics, the one that enforces its
entire departure from classical lines of

thought.”
E. Schrodinger

*x Schrodinger (1935)
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Why Does Entanglement Matter?

Quantum Technologies

e computation Black hole
@ information loss

distribution

Quantum key H

Quantum teleportation ] )
Quantum signals from the early
universe



A Surprising Property of QFT

Consider a quantum field in the vacuum

Choose two spacelike-separated points of the quantum field.
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A Surprising Property of QFT

Consider a quantum field in the vacuum

The vacuum is correlated at spacelike separations

Choose two spacelike-separated points of the quantum field.
No signal can travel between these points.
The vacuum two-point function is nonzero.



'Entanglement is built into the very structure of
the vacuum in QFT




The Reeh-Schlieder Theorem implies that the vacuum is so entan-
gled that local operations on it can approximate any global state in
the theory.”




The Reeh-Schlieder Theorem implies that the vacuum is so entan-
gled that local operations on it can approximate any global state in
the theory.”

How much entanglement is there and how is it distributed?

7 Reeh, Schlieder (1961); See Witten (2018) for the interpretatip:;i".g, i



GOALI:

Present a complementary approach
for analyzing entanglement in QFT *

* Bianchi and Satz (2019); Martin and Vennin (2021); Hackl and Bianchi
(2021); Agullo, Bonga, and Ribes-Metidieri (2021)
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degrees of freedom (Gaussian states + free evolution)




Framework Overview

Features:

Truncation of 4 Gaussian formalism
degrees of freedom (Gaussian states + free evolution)

(1) We avoid UV divergencies (Type I algebras).
(2) We can compute reduced states.

(3) We can use results from quantum information. )
(4) We retain features of the full QFT. o
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Framework Overview

Features:
Truncation of 4 Gaussian formalism
degrees of freedom (Gaussian states + free evolution)
Limitations:

M Limited to free theories and Gaussian states

B We focus on a finite subset of degrees of freedom (infinitely -
_many of them!)




GOAL II:

Discuss two interesting applications *

*Agullo, Bonga, Ribes-Metidieri (2024); Ribes-Metidieri, Aqullo, Bonga
(2025); Agullo, Martin-Martinez, Nadal-Gisbert, Ribes-Metidieri, Yamaguchi
(2025); Agullo, Delhom, Parra, Ribes-Metidieri (In preparation).
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2. FRAMEWORK
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Physical Setup

~

Free quantum scalar field (¢(x), #(x)) prop-
agating on a globally hyperbolic spacetime

(M, g):
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Physical Setup

~

Free quantum scalar field (¢(x), #(x)) prop-
agating on a globally hyperbolic spacetime

(M, g):

B The Klein-Gordon equation is well-posed.
B Phase space [ = vector space.

B Symplectic form on phase space:

w(72) = / 4% (A(%)&() - HF)e()).

where y; = (g1,) € I and v = (g, h) € T.
17



Physical Setup

~

Free quantum scalar field (¢(x), #(x)) prop-
agating on a globally hyperbolic spacetime

(M, g):

B The Klein-Gordon equation is well-posed.
B Phase space [ = vector space.

B Xlein-Gordon product:

(71,72) = —iw(77,72), where 1,7, € Ic.

17



Notation
Convenient way of organizing linear operators
yele—0,=i(y,R),

where R = (§(X), #(X)).
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Notation
Convenient way of organizing linear operators
yele—0,=i(y,R),

where R = (§(X), #(X)).

Local single mode: Algebra generated by
(0,, O,), with [O,, Oy] = —iw(y,y)1#0.
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Subsystems

Classical subsystem

‘ Symplectic subspaces ‘

Quantum subsystem

‘ Subalgebra of observables ‘

19
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yeACTe—= 0,=i(y,R)
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Subsystems

‘ Symplectic subspaces ‘ (—) ‘ Subalgebra of observables ‘

yeACTe—= 0,=i(y,R)

Focus on finite-dimensional
subsystems




Gaussian States

Gaussian states are fully characterized by:

W u(y) = ((A)D , 7 € I'c, defines a co-vector in l¢.
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Gaussian States

Gaussian states are fully characterized by:

W (0,,0)=3(c(v,")+ (7))

k> covariance matrix (two-covariant tensor in l¢)
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Gaussian States

Gaussian states are fully characterized by:

W (0,,0)=3(c(v,")+ (7))

L) covariance matrix (two-covariant tensor in l¢)

B Higher correlations follow from Wick's theorem

20



Gaussian states and Kahler Structures

For pure Gaussian states, define

J=wlo:Tc—T¢

J defines a complex structure, i.e., J> = —I, making (o,w, J) a K&hler
space.x

* See, e.q. Bianchi and Hackl (2024) for a recent review.
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Gaussian states and Kahler Structures
For pure Gaussian states, define

J = wlo: r(c — r(c
J defines a complex structure, i.e., J> = —I, making (o,w, J) a K&hler
space.x

For mixed Gaussian states, define J defines a restricted complex struc-
ture, i.e.,

J2< L

The spectrum of J encodes all information
about correlations and entanglement.
* See, e.g. Bianchi and Hackl (2024) for a recent review. 271
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How is entanglement distributed?

The partner of A in the state J is M Subsystem A M Subsystem B
the subsystem A, that encodes all

correlations and entanglement

with A.x 0
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*Wald (1975); Botero and Reznik (2003); Hotta, Schiitzhold, and Unruh (2015);
Trevison, Yamaguchi, and Hotta (2019); Agullo, Martin-Martinez, Nadal-

Gisbert, Ribes-Metidieri, and Yamaguchi (2025) 29
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How is entanglement distributed?

The partner of A in the state J is
the subsystem A, that encodes all
correlations and entanglement

with A.x 0

B For pure Gaussian states, the partner 0 0

exists and is unique (Determined from J) I 0

M For mixed Gaussian states, we have O

Entanglement partners Correlations partners 0

*Wald (1975); Botero and Reznik (2003); Hotta, Schiitzhold, and Unruh (2015);
Trevison, Yamaguchi, and Hotta (2019); Agullo, Martin-Martinez, Nadal-
Gisbert, Ribes-Metidieri, and Yamaguchi (2025)

B Subsystem A B Subsystem B

29



3. APPLICATIONS
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Sumimary

A proposal to probe QFT
vacuum entanglement

) >

D AL

Density profile of a 2-dimensional

) "' = Bose-Einstein condensate.x
Inflation V
* Adapted from Viermann et al. (202%)4




3.1. Entanglement generation during inflation

25



CosInic structures
from
fluctuations

All we need is
classical physics...



de Sitter spacetime (Cégmological patch)
ds® = a(n)*(—dn® + dx?), a(n) = — g, and 1 € (—00,0).

A i
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de Sitter spacetime

ds® = a(n)*(—dn* + dx?), a(n) = — 5. and 5 € (—o0,0).

1
A

ji/

2

/ |
1




Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

@

RH

H~-': Hubble radius

28



Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

w=0 )7 M

>

O[f] := [¢ dPx F(X)d(X),

28
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Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

O[f] = [ PxF(X)D(X), MNlg] = [p d®xg(X)7(X)
[®[f],N[g]] = i — (®[f],M[g]) is a single-mode

28



Setup: Local observables
Free, scalar field in de Sitter spacetime in the Bunch-Davies vacuum

Similarly for 2-mode subsystem

CIARIER)

[[fa], Mlge]] = i

(®[fa]. Ngal)

(], Algal] = i

29



RH

30



EAntanAglernent between
(®[f],MN[g]) and the rest?

RH
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EAntanAglement between
(®[f],MN[g]) and the rest?

EAntanqlement betAweenA
(Pa[f], Malg]) and (5[], M5[g])?




1 Entanglement between (¢[f],1[g]) and the rest?
Idea: Find (7, g) such that (®[f], 1[g]) purifies (®[f], [1[g])

]'5:_ f:g

1.0

0.5}

0.0f

- 0.5}

0.0 0.5 1.0 1.5 2.0



1 Entanglement between (¢[f],1[g]) and the rest?
Idea: Find (7, g) such that (®[f], 1[g]) purifies (®[f], [1[g])

150 f=g .. Flat spacetime
1.0}

0.5}

0.0f e SN~ mrmenenene
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1 Entanglement between (¢[f],1[g]) and the rest?
Idea: Find (7, g) such that (®[f], 1[g]) purifies (®[f], [1[g])

1.5k Flat spacetime

1.0¢ de Sitter spacetime

0.5F

0.0

- 0.5k

0.0 0.5 1.0 1.5 2.0
r/R



Entanglementis spread
outatlongdistances




2 Entanglement (4[f], (1a[g]) and (®5[f], Ms[g])?

, (®5[f], f5[e])

<$A[f]a IelA[g])

313



2 Entanglement (4[f], (1a[g]) and (®5[f], Ms[g])?

s ($slf] Mslg))

D

<$A[f]a IelA[g])

Ex(A, B) = Ex(A, B)M®% 1 extra contribution
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2 Entanglement (4[f], (1a[g]) and (®5[f], Ms[g])?

s ($slf] Mslg))

&0

(d\)A[f]a IelA[g])

Ex(A, B) = Ex(A, B)M®% 1 extra contribution

extra contribution < 0

313



Entanglement
with the partneractsas
noise
ot forlocal observables




‘ff"':-j
e
P o’i‘i

Inflationdoes not create

entanglementinlocal
e observablesx

* Ribes-Metidieri, Agullo, and Bonga (2025); Agullo, Bonga, ®-i
Ribes-Metidieri (2024).




Inflation

Implications for cosmology

36



3.2. A proposal to probe QFT vacuum entanglement

37



€
" Entanglement between localized modes... '

[}

.

M ...becomes sparser in increasing spatial dimensions...
Agullo, Bonga, Ribes-Metidieri, Kranas, and Nadal-Gisbert (2023)

B ...is generic in multimode systems
Agullo, Bonga, Martin-Martinez, Nadal-Gisbert, Perche, Polo-Gémez,
Ribes-Metidieri, Torres (2023)

B ...is affected by the spacetime curvature
Nambu, Yamaguchi (2023) ; Agullo, Bonga, Ribes-Metidieri (2024);
Ribes-Metidieri, Agullo, Bonga (2025)
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" Entanglement between localized modes... %

[}

.

M ...becomes sparser in increasing spatial dimensions...
Agullo, Bonga, Ribes-Metidieri, Kranas, and Nadal-Gisbert (2023)

B ...is generic in multimode systems
Agullo, Bonga, Martin-Martinez, Nadal-Gisbert, Perche, Polo-Gémez,
Ribes-Metidieri, Torres (2023)

B ...is affected by the spacetime curvature
Nambu, Yamaguchi (2023) ; Agullo, Bonga, Ribes-Metidieri (2024);
Ribes-Metidieri, Agullo, Bonga (2025)

Can we experimentally test QFT vacuum

entanglement and its properties?




Quantum Fluid Simulators

Amnalogue gravity explores analogues of general >
relativistic gravitational fields within other
physical systems.x

\

Point of no
return

* Carlos Barceld, Liberati, Visser (2024); *x Unruh (1980); Visser (1993)



Quantum Fluid Simulators

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.x

Theorem: Sound waves in inviscid,
barotropic, irrotational fluids satisfy
a curved Klein-Gordon equation.*x

XY

[~
Can simulate Black holes, expanding i
universes, ergorregions, ... %1/

* Carlos Barceld, Liberati, Visser (2024); *x Unruh (1980); Visser (1993)
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Analogue Experiments in Bose-Einstein Condensates (BEC)

BEC: atoms are cooled down
until they “condense” in their
lowest energy state
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BEC: atoms are cooled down
until they “condense” in their Linearized collective excitations

lowest energy state in BECs, ¢, satisfy

Healing length

T
1 €92) (82— V) = 0
2 (t Cs )90

l

Speed of sound




Analogue Experiments in Bose-Einstein Condensates (BEC)

BEC: atoms are cooled down
until they “condense” in their Linearized collective excitations

lowest energy state in BECs, ¢, satisfy

Collective linear excitations in BECs §
behave as a scalar field in a thermal
state when £2V?p < ¢!




Existing experimental platforms

s I\
5 5-/{‘{-};‘.";,\‘71‘1; Ao

e oY ae,
. SR N SR

B Experimental platform*:
(1+ 2)-dimensional BEC

B Quantum state reconstruction

B Temperatures ~ 10 nK

*Viermann, Sparn, Liebster, Hans, Kath, Parra-Lépez, Tolosa-Simeén,

Sanchez-Kuntz, Haas, Strobel, Floerchinger, Oberthaler (2022) a1



Existing experimental platforms

Rgrc
o 4
: = — T=11K
B Experimental platform*: E
(1 + 2)-dimensional BEC £ 37 T —5.1K
Q
O
. = 2t T =10 nK
B Quantum state reconstruction g
(<]
)
F

B Temperatures ~ 10 nK

of ~———

0.0 02 04 06 08 1.0 1.2
k&

*Viermann, Sparn, Liebster, Hans, Kath, Parra-Lopez, Tolosa-Simedn,

Sanchez-Kuntz, Haas, Strobel, Floerchinger, Oberthaler (2022) a1



Local degrees of freedom in BECs

49



Local degrees of freedom in BECs

{®[A], A[A]}

’:‘i-/ iy
l ’G'Y
Sl

VLR
L), '.‘,\Vh <

/¢

— Subsystem A — Subsystem B

20

25
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Local degrees of freedom in BECs
{®[A], NIA], S[A], AlL]}

r/§

— Subsystem A — Subsystem B
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Local degrees of freedom in BECs
{®[A]. NIA] O£ ALF]. ...}

— Subsystem A — Subsystem B
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Local degrees of freedom in BECs
{®[A]. NIA] O£ ALF]. ...}

— Subsystem A — Subsystem B

25
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QFT vacuum entanglement with BECs

LN

1.2

0.8

0.4

- — Ng=1
— Ng=2
: — Ng=3
— Ng=4
I — Ng =5
RN\
5 10 15
T [nK]

70 *Agullo, Delhom, Parra-Lépez,
Ribes-Metidieri (In preparation)
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QFT vacuum entanglement with BECs

1.2r — Ng =1
— Ng =2
E S
— Ng =4 2D
04+ 5% relative errors
' — Ng =5 30 contours
0 C 1 1
15 70 *Agullo, Delhom, Parra-Lépez,

Ribes-Metidieri (In preparation)
43




PR X
PR

Quantum fluid platforms are promising as probes
of QFT vacuum entanglement




4. SUMMARY AND CONCLUSIONS
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Summary

e - QFT vacuum has a surprisingly rich entanglement structure

é .~
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How is entanglement ]

distributed?
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How is entanglement ] [ What part of this entanglement ]

distributed? can we access?
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How is entanglement ] [ What part of this entanglement ]

distributed? can we access?

Partner systems
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How is entanglement What part of this entanglement
distributed? can we access?

Entanglement between a finite
number of local degrees of freedom
46

Partner systems



A proposal to probe QFT
vacuum entanglement

5 AL
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By7as 0
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Conclusions

Entanglement with the partner
spreads over large distances

This "spread out" entanglement
acts as noise for local observables

Inflation does not create entan-
glement in local observables

A proposal to probe QFT
vacuum entanglement

B Extremely low temperatures
needed—VFinally feasible!

B Quantum fluid platforms are
promising as probes of QFT vacuum

entanglement a7
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Thank you for your attention!

Questions?

Contact information:

patricia.ribesmetidieri@york.ac.uk
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The Reeh-Schlieder Theorem

Consider a quantum free scalar field ngﬁ in Minkowski space

- B Let |0) denote the vacuum.
B Define & := [dVF(x)¢(x) such
that suppF C A.




The Reeh-Schlieder Theorem

Consider a quantum free scalar field ngﬁ in Minkowski space
- B Let |0) denote the vacuum.
B Define & := [dVF(x)$(x) such
that suppF C A.

Theorem: Acting on |0) with operators &Dpl e &JFN localized in any open
spacetime region A, we can approximate any state in the Hilbert space
of the theory arbitrarily well.x

x Reeh, Schlieder (1961). See Witten (2018) for a pedagogical proof.



The Reeh-Schlieder Theorem II

Why surprising?
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The Reeh-Schlieder Theorem II

Why surprising?

Entanglement is
ubiquitous in the vacuum
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Intuitive explanation: Entanglement
[This is reminiscent of something well-known in Quantum Mechanics }

Let Ha and Hp be Hilbert spaces of two systems, both of dimension n. Any state
in Ha ® Hpg can be written as

n

W) =) cli)a®|i)g, (Schmidt form)
i=1

with {|i) 4}7_; and {|i/)g}7_; bases in H4 and Hg

Ifg # 0 Vi — |V)isfully entangled

If |W) is fully entangled, then

Any state in H4 ® Hp can be written as Oa ® I W)




Quantifying Entanglement

Entanglement monotones: Functions of a quantum state that
M vanish on separable states

M do not increase under L.OCC

Example: Logarithmic negativity

B Measures distillable entanglement

M Valid for mixed Gaussian states

B Faithful for system of 1 vs N modes



Single-Mode Subsystem in a Massless Scalar Theory

*I'ree, massless scalar field in Minkowski spacetime

2.0
e .~
. 0 B —f@)(x
71(X) = (f(ﬁ)()‘(’)) , 7(X) = ( 0( )) Lk
o =10
FO(X) = A (1 - %) OR—r), =
0.5
Fa = span(y1,72) C Mo 0.0




Single-Mode Subsystem in a Massless Scalar Theory é‘

o Lhe corresponding smeared operators are: %
L 2 ‘ i

®5:= 0, = [f B FOR)H(X), Ms:= 0, = [; d3x FOR)7(X),
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o Lhe corresponding smeared operators are: %

d5:= 0, = [ BxFOR)G(X), MNs:=0, =[x FOR)R(X),

e .~

[&35, ﬁg] = —I'(,«Jllq2 =

wp = (“lmm) @)y _ (0 -1
w2, M) w(v2,72) 1 0
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Single-Mode Subsystem in a Massless Scalar Theory

o Lhe corresponding smeared operators are: %

&5 := 0, = [ ExOR)HF), M= 0, = [; BxFOR)(X),
[&35, ﬁg] = —I'(,«Jllq2 =i
Wy = w(r,m) wlnr)) _ (0 -1
w(2,m) w(12:72) 10
(1) = p(y2) = 0 in the Minkowski vacuum

oa— <0(71,71) 0(%72)) _ ((f(5)|f(5))_1/2 0 ) |

‘7(72771) 0(72772) 0 (f(é)‘f(5))l/2

(flg)s f( 3|k|25f *&(k) Sobolev inner product



Single-Mode Subsystem in a Massless Scalar Theory

oAll symplectic invariant information is contained in the symplectic %
éigenvalue! ‘

e .~

VA

1
1
1
1
1
1
1
1

1FO1), =

N

14
12
10¢
.08}
.06}
.04t
02t
.00

AT (25)I(6+1)%T (26+5/2)

VAT (6+1/2)2T (20+ 1)1 (26+2)°

£

10

£(9) ’ |2 _ 2 (64+1)%r(25+5/2)
—1/2 7 /al(6+1/2)T(6+3/2)(25+3)"

va = Detoa = ||f(6)||2—1/2||f(6)||%/2 >1
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Entropy of a single mode

uf\ — (Vi\\ﬁnkf ~Fa+ ...

Proposition: 74 > 0.
Proof: There are three cases to consider:

dl) i ff), with both functions different from zero;
fa) = fa #0;
dl) =0, sz) # 0 (or vice-versa).



Case 1:

Vi — (VATR)2 = an (RH)* (14 O(%)) + O((RH)* ),
with

1 2 1 2
ar = 1712 5, 216015 e — Re(EV D) s

Cauchy-Schwarz inequality

10



Case 2:

VA — (VAT = ba (RH)Z 2 (1 + O(4i2)) + O((RH)),

where 1 2 1 2
04 = 1l 5 ol1gS" — 21 — Re(falgl — 85912 10

==

Applying Hilder's inequality for s’ € [-1,1] and s = —(1 — x2)/2 , we find by > 0.

11



Case 3:

VA — (V3EK)2 = ¢ (RH)? 2 (1 + O(12)) + O((RH)YH)

with , _—
1
cr = 167173, 2ll84 13 — Re(f3”gh)) 10

3 .
—3+u 2#

Following the same argument as in case (2), we find ¢; > 0.

12



1 Entanglement between (¢[f],1[g]) and the rest?

En

14}
12}

10f

----- Flat spacetime

T T T

de Sitter spacetime

T

104

RH
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Mutual Information
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Mutual Information
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Mutual Information
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Correlated Subsystems

B AC ¢ asubsystem with dim(A) = 2Nj.
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Correlated Subsystems

B AC ¢ asubsystem with dim(A) = 2Nj. M [1,4: Symplectic projector onto A.
B A ={yelc|wy)=0VyeAL B )< J a pure Gaussian state.




Correlated Subsystems

B AC ¢ asubsystem with dim(A) = 2Nj. B [14: Symplectic projector onto A.
WA ={yelc|wh)=0VyeA} B )< J a pure Gaussian state.

Definition: A is uncorrelated in p if

Tr [ﬁ (“)Wby] ~Tr [,6@7] Tr [,6@7/} —0, VYyeAand v €A,.

\Q\ ,E -
L PR ."

9
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Correlated Subsystems

B AC ¢ asubsystem with dim(A) = 2Nj. B [14: Symplectic projector onto A.
WA ={yelc|wh)=0VyeA} B )< J a pure Gaussian state.

Definition: A is uncorrelated in p if

TrV@@d—ITPOJTrFQJ:O,VveAamiyeAL

Proposition: A is uncorrelated in p if and only if

[Ma,J] = 0.

f L

é s .= RSN
Y, | .

e e q7



Partner of a System in a Pure State

Proposition: Let A be an N-mode subsystem correlated in the pure Gaussian
state J. Then, the single-mode subsystem

Ap = M (JA),

is the partner of Ain J. *

— * Agullo, Martin-Martinez, Nadal-Gisbert, RM, and Yam- . . o
g aguchi (In preparation) BTN S




Partner of a System in a Pure State

Proposition: Let A be an N-mode subsystem correlated in the pure Gaussian
state J. Then, the single-mode subsystem

Ap = M (JA),

is the partner of Ain J. *

Sketch of the Proof: Assume A is correlated in J. Then,

The system A + JA is uncorrelated.

Tﬁ * Agullo, Martin-Martinez, Nadal-Gisbert, RM, and Yam- Tl

,,i aguchi (In preparation)




Partner of a System in a Pure State

Proposition: Let A be an N-mode subsystem correlated in the pure Gaussian
state J. Then, the single-mode subsystem

Ap = M (JA),

is the partner of Ain J. *

Sketch of the Proof: Assume A is correlated in J. Then,

The system A + JA is uncorrelated.

N%(A+ JA) = N;(JA) is symplectic orthogonal to A and non-empty.

. 4§. '
\\ [ ‘ ‘e .
\ o

* Agullo, Martin-Martinez, Nadal-Gisbert, RM, and Yam- IR T e

aguchi (In preparation) . ""‘18



Quantum Fluid Simulators

Amnalogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.x

Point of no
return

=

* Car]

Barceld, Liberati, Visser (2024); «+x Unruh (1980); Visser (1933\}'- .




Quantum Fluid Simulators

Analogue gravity explores analogues of general
relativistic gravitational fields within other
physical systems.x

\
Point of no
return

Theorem: Sound waves in inviscid,
barotropic, irrotational fluids satisfy
a curved Klein-Gordon equation.*x

g x —(c2 — v?)dt? — 2v - dXdt + dX - dX

v = fluid velocity and
¢; = speed of sound S

% Carl@f Barceld, Liberati, Visser (2024); *x Unruh (1980); Visser (199,3:.}!7;,;7; S
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