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Motivation

To ask deep questions about polygenic adaption, we
need insight into the genetic architecture (joint
distribution of allele-frequencies and eftfects) of traits

We can do this by tightly tagging causative sites with
scorable genetic markers

Linkage mapping (“QTL mapping”)

— Need families/pedigrees, “tagged” regions are
megabases in size

— Usually based on line crosses
— Captures between-population (~ fixed) differences

Association mapping (“GWAS” — genome-wide
association study)

— Random population sample, “tagged” regions
kilobases in size

— Captures within-population (segregating) variation



Background, Additional
reading

e WVL (Walsh, Visscher, Lynch) 2024.
— Chapter 5: linkage, LD

— Chapter 18: QTL mapping
— Chapter 20: GWAS




Overview

¢ Genetic Markers (SNPs, STRs, WQGS)
e [inkage and linkage disequlibrium (LD)
* Linkage mapping

— Marker-trait associations

— Hypothesis testing
— Examples and Limitations

— Beavis effects

e Association (LD) mapping (Intro)
— Marker-trait associations
— Correcting for population structure



Part I:
Genetic Markers,
Linkage,
Linkage disequilibrium (LD)



Mendel's original seven genes
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Molecular Markers

In the molecular era, genetic maps are based not on
alleles with large phenotypic effects (i.e., green vs. yellow
peas), but rather on molecular markers

SNP -- single nucleotide polymorphism. A particular
position on the DNA (say base 123,321 on chromosome 1)
that has two different nucleotides (say G or A) segregating

STR -- simple tandem arrays. An STR locus consists of

a number of short repeats, with alleles defined by

the number of repeats. For example, you might have

6 and 4 copies of the repeat on your two chromosome 7s

Even with whole-genome sequencing (WGS), sites are still
classified into these two classes (plus other types) 7
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SNPs SNPs vs STRs

Cons: Less polymorphic (~ 2 alleles)

Pros: Low mutation rates, alleles very stable

Excellent for looking at historical long-term
associations (association mapping)
Cheap to score 100,000s (+) on a single SNP Chip

STRs (= SSR)

Cons: High mutation rate

Pros: Very highly polymorphic (more information/site)

Excellent for linkage studies within an extended
pedigree (QTL mapping in families or pedigrees)



Linkage

It genes are located on different chromosomes they
(with very few exceptions) show independent assortment.

Indeed, peas have only 7 chromosomes, so was Mendel
lucky in choosing seven traits at random that happen to
all be on different chromosomes?

However, genes on the same chromosome, especially it
they are close to each other, tend to be passed onto
their offspring in the same contiguration as on the
parental chromosomes.
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Dihybrid Cross
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Independent
assortment

Pr(YyRr) = Pr(Yy)Pr(Rr)

Dependent

assortment

Pr(YyRr) =
Pr(Yy|Rr) Pr(Rr)

Pr(yyRR) = Pr(yR,yR) with linkage, deal with gametes
=[Pr(y[R) Pr(R)] [Pr(y|R)] Pr(R)] .




Mendel was wrong: Linkage

Bateson and Punnet looked at

flower color: P (purple) dominant over p (red)
pollen shape: L (long) dominant over | (round)

Phenotype | Genotype |Observed |Expected
Purple long | P-L- 284 215

Purple round | P-l 21 71

Red long ppL- 21 71

Red round ppll 55 24

Excess of PL, pl gametes over PI, pL

Departure from independent assortment 12
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Consider the Bateson-Punnet pea data

Let PL / pl denote that in the parent, one chromosome
carries the P and L alleles (at the flower color and
pollen shape loci, respectively), while the other
chromosome carries the p and | alleles.

Unless there is a recombination event, one of the two
parental chromosome types (PL or pl) are passed onto
the offspring. These are called the parental gametes.

However, if a recombination event occurs, a PL/pl
parent can generate Pl and pL recombinant chromosomes
to pass onto its offspring.

14



Let ¢ denote the recombination frequency --- the
probability that a randomly-chosen gamete from the
parent is of the recombinant type (i.e., it is not a

parental gamete).

For a PL/pl parent, the gamete frequencies are

Gamete type Frequency Expectation under
independent assortment

PL (1-c)/2 1/4

o] (1-¢)/2 1/4

pL c/2 1/4

P c/2 1/4

15



Parental gametes in excess, as (1-c)/2 > 1/4 forc < 1/2

Gamete type Frequency Expectation under

independent assortment
PL ﬁcm 1/4
o] (1-¢)/2 1/4
ol m 1/4

P| ki/z/‘/ 1/4

Recombinant gametes in deficiency, as ¢/2 < 1/4 forc < 1/2

16



Linkage vs. LD

Linkage considers the gametes from a SINGLE Parent

Linkage disequilibrium (LD) concerns a POPULATION
SAMPLE of gametes (think chromosomes or haplotypes)

Can have linkage without LD, and LD without linkage

17



Linkage Disequilibrium

e Under linkage equilibrium, the frequency of gametes
is the product of allele frequencies,
— e.g. Freg(AB) = Freg(A)*Freq(B)
— A and B are independent of each other

e |f the linkage phase of parents in some set or
population departs from random (alleles not
independent), linkage disequilibrium (LD) is said to
occur

* The amount Dag of disequilibrium for the AB gamete
is given by
— Dag = Freqg(AB) gamete - Freqg(A)*Freq(B)
— D > 0 implies AB gamete more frequent than expected
— D < Oimplies AB less frequent than expected

18



No LD: random distribution of linkage phases

AB/ab Ab/aB AB/ab Ab/aB
linkage
\ 4 \ 4 v \ 4
Excess of Excess of Excess of Excess of
parental parental parental parental
gametes gametes gametes gametes
AB, ab Ab, aB AB, ab Ab, aB

Pool all gametes: AB, ab, Ab, aB equally frequent
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With LD, nonrandom distribution of linkage phase

AB/ab AB/ab AB/ab Ab/aB
linkage
\ 4 \ 4 v \ 4
Excess of Excess of Excess of Excess of
parental parental parental parental
gametes gametes gametes gametes
AB, ab AB, ab AB, ab Ab, aB

Pool all gametes: Excess of AB, ab due to an excess
of AB/ab parents

20



Dynamics of D

e Under random mating in a large population,
allele frequencies do not change. However,
gamete frequencies do it there is any LD

e The amount of LD decays by (1-c) each
generation
- D(t) = (1-¢)* D(0)

* The expected frequency of a gamete (say AB)

IS
- Freq(AB) = Freq(A)*Freq(B) + D
— Freq(AB in gen t) = Freq(A)*Freq(B) + (1-c)t D(0)

21



Part |l:
QTL mapping and the use of
inbred line crosses
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e QTL mapping tries to detect small (20-40 cM)
chromosome segments influencing trait
variation

— Relatively crude level of resolution

e QTL mapping performed either using inbred
line crosses or sets of known relatives
(pedigrees)

— Uses the simple fact of an excess of parental
gametes

23



Key idea: Looking for marker-trait
associations in collections of relatives

It (say) the mean trait value for marker
genotype MM is statistically different
from that for genotype mm, then the M/m
marker is linked to a QTL

Sax (1923) spotted peas and weight

One can use a random collection of such
markers spanning a genome (a genomic
scan) to search tor QTLs

24



Inbred lines
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Inbred lines gametes  freq

M Q M Q 0.49
Fy
M Q
" M Q m g 0.49
m q
m 9 M q 0.01
m q
m Q 0.01
c=0.02

Creates a marker-trait association in offspring, with M-bearing
chromosomes co-segregating with Q, so that M-bearing gametes

will (on average) yield larger trait values (here 98% of M are Q)
26




Conditional Probabilities of
QTL Genotypes

The basic building block for all QTL methods is
Pr(Qy | M;) --- the probability of QTL genotype
Q, given the marker genotype is M.

Pr(QkMj)
Pr(M;j)
Consider a QTL linked to a marker (recombination

Fraction = ¢). Cross MMQQ x mmqg. In the F1, all
gametes are MQ and mq

Pr(Qk [Mj) =

In the F2, freq(MQ) = freq(mq) = (1-c)/2,
freg(mQ) = freq(Mq) = ¢/2

27



Hence, Pr(MMQQ) = Pr(MQ)Pr(MQ) = (1-c)4/4

Pr(MMQq) = 2Pr(MQ)Pr(Mq) = 2¢(1-c) /4
Pr(MMqq) = Pr(Mg)Pr(Mq) = c2/4

Why the 2?7 MQ from tfather, Mg from mother, OR
MQ from mother, Mg from father

Since Pr(MM) = 1/4, the conditional probabilities become
Pr(QQ | MM) = Pr(MMQQ)/Pr(MM) = (1-c)?

Pr(Qqg | MM) = Pr(MMQq)/Pr(MM) = 2¢(1-c)
Pr(gg | MM) = Pr(MMqq)/Pr(MM) = ¢?

How do we use these? )8



Expected Marker Means

The expected trait mean for marker genotype M;
IS just

N
HM; = Z Q. Pr(Qr | M; )
k=1

For example, it QQ = 2a, Qg = a(1+k), qg = 0, then in
the F2 of an MMQQ/mmqq cross,

(1M = i) 2 = a(1 = 2¢)

e |f the trait mean is significantly different for the
genotypes at a marker locus, it is linked to a QTL

e A small MM-mm difference could be (i) a tightly-linked
QTL of small effect or (i) loose linkage to a large QTL



Linear Models for QTL Detection

The use of differences in the mean trait value
for difterent marker genotypes to detect a QTL
and estimate its effects is a use of linear models.

One-way ANOVA.

Value of trait in kth
individual of marker

genotype type i

\
ik — U + 7{71' + €5k

Effect of marker
genotype i on trait

30
value



Zik = W+ b; + e

Detection: a QTL is linked to the marker it at least
one of the b; is significantly different from zero

Estimation: (QTL effect and position): This requires
relating the b; to the QTL effects and map position

31



Detecting epistasis

One major advantage of linear models is their
flexibility. To test for epistasis between two QTLs,
use ANOVA with an interaction term

Z =W T T br. + dii. + €
—7 A

Effect from marker genotype
at first marker set (can be > 1 loci)

Effect from marker genotype
at second marker set

Interaction between marker genotypes i in 1st
marker set and k in 2nd marker set

32



Detecting epistasis

<~ = [ + a; + b k (]z L+ €

e At least one of the a; significantly different from O
---- QTL linked to first marker set

e At least one of the b, significantly different from O
---- QTL linked to second marker set

e At least one of the d, significantly different from 0
---- interactions between QTL in sets 1 and two

Problem: Huge number of potential interaction terms

(order m?, where m = number of markers) s



Detecting QTLs for Dichotomous Traits: The Cochran-Armitage Trend Test

Many QTL experiments are concerned with dichotomous (binary) traits, such as disease
or pest resistance in crop plants or disease susceptibility in humans. In many cases, one
can score quantitative physiological traits contributing to the binary trait, such as blood
pressure or number of lesions per leaf, and the above methodology for QTL detection with
continuous traits applies. However, such underlying variables are often either unknown or
unmeasured, and the data are simply scored as presence/absence values (or cases versus
controls in the medical literature). The simplest procedure to detect marker-trait associations
in this setting is to test for independence using standard association tables (such as x? or
Fisher’s exact tests). As shown in the table below, the n total observations are partitioned
into counts for each particular class, e.g., np; is the sample number of Mm individuals
showing the trait.

Marker Genotype
mm Mm MM Totals
Present npo npi np2 np
Absent N A0 nNA1 N A2 na
Totals no nq o n

This same approach easily extended to polychotomous (ordinal) characters. With three
marker genotypes and two trait values, the result x? test has two degrees of freedom, with
a significant value indicating linkage to one (or more) QTLs.

34



Maximum Likelihood Methods

ML methods use the entire distribution of the data, not
just the marker genotype means.

More powerful that linear models, but not as flexible
in extending solutions (new analysis required for each model)

Basic likelihood function:

Trait value given
marker genotype is

type |

Z ‘r/ 2y Q. s O Pl(

This is a mixture model

15)

35



Maximum Likelihood Methods

Probability of QTL genotype
k given marker genotype

j --- genetic map and linkage

\l phase enter : here

N /

0z M;) = (2 nq,,0) Pr(Qr| M;)

k=1 T

Distribution of trait value given
QTL genotype is k

is normal with mean ug,. (QTL
effects enter here)

Sum over the N possible
linked QTL genotypes

36



ML methods combine both detection and estimation
of QTL effects/position.

Test for a linked QTL given from by the Likelihood
Ratio (or LR ) test

Maximum of the likelihood
under a no-linked QTL

/ model

max {r(z)

LR=—2In

max /(z)

The LR < often blotted b Maximum of the
e LR score is often plotted by N

trying different locations for the full likelihood

QTL (i.e., values of ¢) and computing

a LOD score for each J

LOD(¢c) = —log,, [

max lr(z)] LR(c) _ LR(¢)

max {(z,c) N

21In10 ~ 461



A typical QTL map from a likelihood analysis

Estimated QTL location

7L Support interval .-

Chromosome position



Interval Mapping with Marker
Cofactors

Consider interval mapping using the markers i and i+1. QTLs linked
to these markers, but outside this interval, can contribute (falsely) to
estimation of QTL position and effect

-1 ' 1+ +2

Interval being mapped

Now suppose we also add the two markers flanking the

interval (i-1 and i+2) .



-1 i i+1 i+2
<€— Il I . >
Inclusion of markers i-1 and i+2 fully account

for any linked QTLs to the left of i-1 and the
right of i+2

Interval mapping + marker cofactors is called
Composite Interval Mapping (CIM)

CIM works by adding an additional term to the
linear model,

CIM also (potentially) includes unlinked markers to
account for QTL on other chromosomes. 40



Frequency (in %)

Some early studies suggested an infinitesimal-like genetic
architecture, with the majority of genes having small effects

30 -

Despite low power for detection, ~ 60% of
— detected QTLs account for less that 0.5%
of the phenotypic variance of a trait
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M. lewisii

M. cardinalis
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Table 18.4 Number of detected QTLs influencing pollination characters involved in reproductive
isolation between Mimulus cardinalis and Mimulus lewisii and their estimated individual effects (mea-
sured by % of variance explained). Due to sampling error, the sum of individual r# values exceeds
100% in a few cases. (After Bradshaw et al. 1995.)

Number of % Phenotypic Variance

QTLs (r? x 100)

Pollinator attraction characters

Petal anthocyanins 2 33.5,21.5

Petal carotenoids 1 88.3

Corolla width 3 68.7.:330. 257

Petal width 3 42.4.41.2.952
Pollinator reward

Nectar volume 2 53.1,48.9

Nectar concentration 2 285,239
Pollination efficiency

Stamen length 4 7. 275218187

Pistil length 2 519,439

43



1990's: The age of semi-major
genes

e By the early-mid 1990’s, extensive QTL studies
suggested that genes of major effect are
common and underlie many of the fixed
differences between crossed lines

* Roughly exponential (“L-shaped”) distribution
of effects,
* many genes of small effect

e afew genes of large effect

e Usually detected in line-cross populations (hence
MAF = 2)

44



Power and Precision

While modest sample sizes are sufficient to
detect a QTL of modest effect (power), large

sample sizes are required to map it with any
precision

With 200-300 F,, a QTL accounting for 5% of
total variation can be mapped to a 40cM interval

Over 10,000 F; individuals are required to map
this QTL to a 1cM interval

45



Power and Repeatability: The
Beavis Effect

QTLs with low power of detection tend to have their
effects overestimated, often very dramatically

As power of detection increases, the overestimation
of detected QTLs becomes far less serious

This is often called the Beavis Effect, after Bill
Beavis who first noticed this in simulation studies.

This phenomena is also called the winner’s curse in
statistics (and GWAS)

46
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Beavis simulation: actual effect size is 1.6% of
variation. Estimated effects (at significant markers)
much higher
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Observed /actual effect for a detected QTL
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Inflation can be significant, esp. with low power
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Beavis Effect

Also called the “winner's curse” in the GWAS literature

Distribution of
the realized value of an

l
l
l
l
l
: effect in a sample
l

v

True value

l
Significance
threshold

High power setting: Most realizations are to the

right of the significance threshold. Hence, the

average value given the estimate is declared significant
(above the threshold) is very close to the true value.
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In low power settings, most realizations are below
the significance threshold, hence most of the time the
effect is scored as being nonsignificant

Significance
threshold

v

I -
True value :

\/
Mean among
significant results

However, the mean of those declared significant

is much larger than the true mean .



M. lewisii

M. cardinalis
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Table 18.4 Number of detected QTLs influencing pollination characters involved in reproductive
isolation between Mimulus cardinalis and Mimulus lewisii and their estimated individual effects (mea-
sured by % of variance explained). Due to sampling error, the sum of individual r# values exceeds
100% in a few cases. (After Bradshaw et al. 1995.)

Number of % Phenotypic Variance

QTLs (r? x 100)

Pollinator attraction characters

Petal anthocyanins 2 33.5,21.5

Petal carotenoids 1 88.3

Corolla width 3 68.7.:330. 257

Petal width 3 42.4.41.2.952
Pollinator reward

Nectar volume 2 53.1,48.9

Nectar concentration 2 285,239
Pollination efficiency

Stamen length 4 7. 275218187

Pistil length 2 519,439
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Figure18.14 Relationship between the effects of detected QTLs for Mimulus pollination traits,
expressed as percent of Fy phenotypic variation (r2), over two crosses with different sample
sizes (Bradshaw et al. 1995, 1998). Experiment one measured 96 Fo plants while experiment
two measured 465. Note that all detected QTLs had larger estimated values in the smaller
experiment, a clear example of the Beavis effect. The two values of zero from experiment two
correspond to the petal anthocyanin QTLs that were not replicated.
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Whatisa “QTL"

A detected “QTL" in a mapping experiment
is a region of a chromosome detected by
linkage.

Usually large (typically 10-40 cM)

When further examined, most “large” QTLs
turn out to be a linked collection of locations
with increasingly smaller effects

The more one localizes, the more subregions
that are found, and the smaller the effect in
each subregion

This is called fractionation
54



Limitations of QTL mapping

* Poor resolution (~20 cM or greater in most
designs with sample sizes in low to mid 100's)

— Detected "QTLs" are thus large chromosomal regions

* Fine mapping requires either

— Further crosses (recombinations) involving regions of
interest (i.e., RILs, NILs)

— Enormous sample sizes

* [t marker-QTL distance is 0.5cM, require sample sizes
in excess of 3400 to have a 95% chance of 10 (or
more) recombination events in sample

* 10 recombination events allows one to separate
effects that differ by ~ 0.6 SD
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Limitations ot QTL mapping (cont)

e “"Major” QTLs typically fractionate

— QTLs of large effect (accounting for > 10% of the
variance) are routinely discovered.

— However, a large QTL peak in an initial experiment
generally becomes a series of smaller and smaller
peaks upon subsequent fine-mapping.

e The Beavis effect:

— When power for detection is low, marker-trait
associations declared to be statistically significant
significantly overestimate their true effects.

— This effect can be very large (order of magnitude)
when power is low.
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QTL mapping in outbred
populations

* Much lower power than line-cross QTL
mapping

* Each parent must be separately
analyzed (linkage phase can vary over
parents)

* \We focus on an approach for general
pedigrees, as this leads us into
association mapping

57



General Pedigree Methods

Random effects (hence, variance component) method
for detecting QTLs in general pedigrees

Genetic effect of
chromosomal region
of interest

Trait value for | J ‘,
individuali > 2i = p+ A; +A; + e

\

Genetic value of other

(background) QTLs

The model is rerun for each marker



zi = p+ A + A: + e

The covariance between individuals i and j is thus

Resemblance

Variance
explained by between
the region of relatyes
interest correction

Fraction of chromosomal

region shared IBD Variance
between individuals i and j. explained by
the background
polygenes
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Assume z is MVN, giving the covariance matrix as

V=Roi+Ac%y —l—Icre2

R--—{l for i = j A--—{l for i = j
YUl Ry fori#j ] Y20y fori# g

Estimated from marker Estimated from
data the pedigree

The resulting likelihood function is

1 1 | _ |
0(z| p,0%,0%,02) = exp |[—5(z=p)' V7 (z—p)

NCEEN

A significant 6,7 indicates a linked QTL.
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