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Overview

e GWAS methodology
e Overview of GWAS results
e More on LD (D’ vs r?)

— Common marker-rare causal allele
mismatch

® eSNPs and regSNP

— Cis vs trans
— Other regSNPs

— Mediation
e GWAS, Architectures, and selection
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Part I:
Association Mapping

e Association mapping uses a set of very dense
markers in a set of (largely) unrelated
individuals

* Requires population level LD

e Allows tor very fine mapping (1-20 kB)



Mutation generates LD
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LD: Linkage disequilibrium

D(AB) = freq(AB) - freq(A)*freq(B).
LD = 0 if A and B are independent. If LD not zero,
correlation between A and B in the population

It a marker and QTL are linked, then the marker and
QTL alleles are in LD in close relatives, generating
a marker-trait association.

The decay of D: r?(t) = (1-¢)t r?(0)
here c is the recombination rate. Tightly-linked genes
(small c) initially in LD can retain LD for long periods of

time




LD range in major crops

A. thaliana’ Maize® Barley!! Ricel? Sorghum!3 Soybean* Human'®
Silent diversity ~ Ecotypes: 0.7%  Wild: 2.1% Wild: 1.7% Wild: 0.58%  Landraces: 0.24% Wild: 0.28% 0.05%
o Landraces: 1.4% Landraces: 0.71% 0.sativa: 0.35% Landraces: 0.18%
g°”"’°d'”9 sites Diverse inbreds: 1.2%  Elites: 0.47% Elites: 0.12%
ynonymous sites
Elites: 0.63%
LD decay? Ecotypes: <10 kb Wild: <1 kb Wild: <1 kb Divergent Landraces: Wild: 36-77 kb~ 10-100 kb
Landraces: <1 kb Landraces: 80-100 kb naplotypes and  5_50 kb Elites: >300 kb
. . . extensive LD
Diverse inbreds: 1-2 kb Elites: >200 kb
Elites: >100 kb
Predominant Selfing Outcrossing Selfing Selfing Selfing Selfing Outcrossing
mating type
7
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Association mapping

Marker-trait associations within a population of unrelated
individuals

Very high marker density (~ 100s of markers/cM) required

— Marker density no less than the average track length of
linkage disequilibrium (LD)

Relies on very slow breakdown of initial LD generated by a new

mutation near a marker to generate marker-trait associations

— LD decays very quickly unless very tight linkage

— Hence, resolution on the scale of LD in the population(s) being studied (
1 ~ 40 kB)

Widely used since early 2000’s. Mainstay of human genetics,
strong inroads in breeding, evolutionary genetics

Power a function of the genetic variance of a QTL, not its mean
effects, Var(m) = r> Var(QTL) = r? 2a?p(1-p)



Manhattan plots

 The results for a Genome-wide Association study (or

GWAS) are typically displayed using a Manhattan
plot.

— At each SNP, -In(p), the negative log of the p
value for a significant marker-trait association is

plotted. Values above a threshold indicate
significant effects

— Threshold set by Bonferroni-style multiple
comparisons correction

— With n markers, an overall false-positive rate of p
requires each marker be tested using p/n.

— With n = 10° SNPs, p must exceed 0.01/10° or
10-%to have a control of 1% of a false-positive
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Linkage vs. Association

The distinction between linkage and association
is subtle, yet critical

Marker allele M is associated with the trait if
Cov(M,y) is not O

While such associations can arise via linkage, they
can also arise via population structure.

Thus, association DOES NOT imply linkage, and
linkage is not sufficient for association

14



When population being sampled actually consists of several distinct
subpopulations we have lumped together, marker alleles may provide
information as to which group an individual belongs. If there are other
risk factors in a group, this can create a false association btw marker
and trait

Example. The Gm marker was thought (for biological reasons) to be
an excellent candidate gene for diabetes in the high-risk population
of Pima Indians in the American Southwest. Initially a very strong
association was observed:

Gm™ Total % with diabetes
Present 293 8%
Absent 4. 627 29%

15



Gm* Total % with diabetes

Present 293 8%

Absent 4. 627 29%

Problem: freq(Gm™) in Caucasians (lower-risk diabetes
Population) is 67%, Gm* rare in full-blooded Pima

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:

Gm* Total % with diabetes

Present 17 59%

Absent 1,764 60%




Indicator (O / 1) Variable
for SNP genotype k. Typically
k=3, i.e. AA, Aaaa

e

y=p+) B Mp+) vbi+e
o '\ =1 S~

Significant B indicates m unlinked markers that

marker-trait association vary across subpopulations.
b, = marker genotype indicator
SNP marker variable

under consideration

Variations on this theme (eigenstrat) --- use all of the
marker information to extract a set of significant

PCs, which are then included in the model as cotfactors
17



Structure plus Kinship Methods

Association mapping in plants offer occurs by first taking
a large collection of lines, some closely related, others
more distantly related. Thus, in addition to this collection
being a series of subpopulations (derivatives from a
number of founding lines), there can also be additional
structure within each subpopulation (groups of more
closely related lines within any particular lineage).

Y=XB+Sa+Qv+Zu+e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 18



Q-K method

Y=XB+Sa+Qv+Zu+e

ﬁ = vector of fixed effects

a = SNP effects

v = vector of subpopulation effects (STRUCTURE)
Q; = Prob(individual i in group j). Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.

Cov(u) = var(A)*A, where the relationship matrix

A estimated from marker data matrix K, also called a
GRM - a genomic relationship matrix

19



Which markers to include in K?

* Best approach is to leave out the marker
being tested (and any in LD with it) when
construction the genomic relationship matrix

— LOCO approach - leave out one chromosome
(which the tested marker is linked to)

* Best approach seems to be to use most of
the markers

e Other mixed-model approaches along these
ines

20



Part |l
Overview of GWAS data
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Take-home message from GWAS

 The marker-effect in a GWAS is the amount of
variation that a marker explains (effect weighted
by frequency), 2a%p(1-p)

— A marker tagging a causative site with a low frequency
major effect allele gives a small marker variance

— Poor power to detect all but major alleles when they
are rare

— Inverse relationship between frequency and effect size
* |s the bulk of genetic variation from

— “"common” alleles (p > 5%) of small effect
— Rare alleles (p < 1%) of large effect

22



Take-home message from early
GWAS (pre-2015):

* Many sites, each of small effect

— Infinitesimal-like result (from a marker-variance
standpoint)

— Large-effect (variance) markers are very rare

e DOES NOT imply alleles of large effect (a >> 1) are
absent, rather just at very low frequency

— Inverse relationship between allelic effect size
and frequency

e > 80% of Hits are in noncoding regions
— Importance of regulatory mutations

23



Problems with early GWAS

e |nitially, human geneticists (and others) were
thrilled with the ability of GWAS to localize
chromosomal regions contributing to genetic
variation to very small (kilobase) regions

e Found essentially all had very small effects
(variance explained by a marker)

e Further problem: the sum of such detected
markers fell far short of accounting for the
known genetic variation

24



Review

Nature 461, 747-753 (8 October 2009) | doi:10.1038/nature084594; Received 25 June 2009; Accepted 11
September 2009

Finding the missing heritability of complex diseases

Teri A. Manoliol, Francis S. Collinsg, Nancy J. Coxg, David B. Goldsteini, Lucia
A. Hindorff2, David J. Hunterg, Mark I. McCarthyZ, Erin M. Ramos2, Lon R.
Cardon— Aravinda Chakravarti2 , Judy H. Chol—o, Alan E. Guttmacherl,
Augustine Kongii, Leomd Kruglyak12 Elaine Mardisi3, Charles N. Rotimils,
Montgomery Slatkini2 , David Valle Alice S. Whnttemore , Michael
Boehnkell , Andrew G. Clark18 Evan E. Eichlerl2 , Greg Glbson@ Jonathan L.
Halne521, Trudy F. C. Mackayzz, Steven A. McCarrolI23 & Peter M. VisscherZ2

A number of GWAS workers noted that the sum of

their significant SNP marker variances was much less
(typically 10%) than the additive variance estimated

from biometrical (relative-based) methods. Where is

this “missing” heritability? Does this suggest a
fundamental flaw in quantitative genetics? .




Part |ll:
Measures of LD
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_ [DAiBj (t)]Q _ (1 o C)2t [DAiBj (O)]2
pa;pB;(1 —pa,)(1 —pB;) Dpa,pB,(1—pa,)(1—DpB,)
= (1 —ie)*ra,5,(0) (5.13d)

ra, B, (t)

Example 5.5. Because the maximum value of D varies over allele frequencies, Lewontin
(1964) proposed a standardized measure

D
B = ,  where —1<D <1 (5: 155
max|D)|
with
min[p(1 —q),(1 —p)g]  forD >0

max|D| = { (5.15b)

max[—pg, —(1 —p)(1 —¢)] for D <0

27



2

To see how this metric differs from 7, consider the two following situations:

Case One Case Two

M m M m
Q 20 0 Q 20 0
q 4 6 q 0 10

In case one, Dy =24/30=8/10, pg =20/30 =2/3, and Dy =20/30 = 2/3, yielding

Darg = Puiq — Par g = 2/3 — (8/10)(2/3) = 2/15 = 0.133

B (Dirg)? _ (2/15)2
© 7 Pu(1—Par)Pa(l —Pg) — (8/10)(2/10)(2/3)(1/3)

Because Das(1 —pg) = 4/15and (1 — par) po = 2/15, max|D| =2/15 (Equation 5.15b) and

—1/2

,_2/15 _
2/15

Hence, while D’ might suggest complete disequilibrium, its 7* value is only 0.5. Note that
while Q is always found on M-bearing chromosomes, some M-bearing chromosomes instead
contain g. Hence, while Q is always associated with M, the converse is not true. The former
gives D’ = 1, while the latter implies that 7% < 1.



Case One Case Two

M m M m
Q 20 0 Q 20 0
q 4 6 q 0 10

For case two, Py = Pgo = Dmq =2/3, yielding Dy = 2/9 = 0.22 and r2p9 = 1.
Further, pas(1 — Do) = (1 — par) Po = 2/9, giving D’ = 1. In general, r? = 1 implies that
|D'| = 1, but the converse is not true. In terms of the 2 x 2 contingency table, one zero off-
diagonal element (one allele is always found on the background of the other) implies |D’| = 1,
while 7% = 1 only when both off-diagonal elements are zero.

~
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As fully developed by Wray (2005), the key idea is that #* is large only when the marker and
causative alleles have very similar allele frequencies. To formally see this, first note that the
maximal value of 7? occurs when a causative Q is only found on one marker allele background
(M). In this setting, let ps be the frequency of M, and pg = apys be the frequency of Q, with
0 < a < 1. Given that the frequency of the MQ gamete is po = apys, then

Dyg =pmg —PMDPQ =9 — Pum -PQ = apym(l —pur)

> [apn (1 —pm))? ol —pwm) o ’
T™MQ = L —pen(l—pa) | l—po - (5.15¢)

30



N M Q 0.03
- M - 0.60
N - - 0.05

Example 20.1 A common misconception in GWAS studies is the assumption that markers
closer to a causal site will have larger LD values, and hence larger marker effects (via larger
r? values). Such need not be the case. Consider a new causal allele, Q, that arose on an NM
marker background (haplotype), where the QTL locus is much closer to M than N. Suppose that
recombination is sufficiently rare such that no Q alleles are found on any other haplotypes
in the GWAS sample. D';, = D’ =1 in this case (as Q is only found on an N or an
M background), but their r? values (which determine how much of the actual variance is
accounted for by the marker variance) are a function of the marker allele frequencies.

31



where p) is the frequency of the marker allele (M) and «js the frequency of M alleles associ-
ated with Q (so that ayrpyr = pg is the frequency of Q). Suppose that the frequency of Q is
3%, while the frequencies of M and N are, respectively, 60% and 5%. Here pj; = 0.6 and aps =
3760 = 0.05; givinér%wo = LU — RS /] — (103 = 0.0206,]50 that the M marker variance ac-
counts for only 2.06% of the causal (actual) variance. Conversely, for the more distant marker,
N, py =0.05and ay =3/5 = 0.6, giving o = (0.6 — 0.03)/(1 — 0.03) = 0.588. [Thus, the
marker variance for the more distant site captures almost 60% of the actual (causal) variance,
a thirty-fold increase over the marker variance for the closer site, M. This is an illustration of
the concept from Chapter 5 that 72 LD values are largest when the causal and marker allele
frequencies are similar, and fall off as their absolute frequency difference increases (i.e., as o ps
becomes smaller). As we will see, this impacts the power of a GWAS to detect common versus
rare alleles.




Part 1V:
Implications for GWAS
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Key:

¢ |f the marker and causative alleles have

miss-matched frequencies, then the LD
petween them will be small

e Hence, common marker alleles very
ooorly tag rare alleles

— Var(Marker) = r? Var(Causal site)
— Most rare alleles not tagged

— The marker SNP with the strongest signal
is likely NOT the closest SNP

34



Even after sequencing the entire association block (so that all variants, including those
that are causal, are scored), the lead, or index, SNP (that displaying the most significant p
value) within that block is likely not the causal variant, especially when power is low and
LD is extreme (Ledur et al. 2010; Udler et al. 2010; van de Bunt et al. 2015; Wu et al. 2017;
Huang et al. 2018; Schaid et al. 2018). Simulations by van de Bunt et al. (2015) assuming
whole-genome sequencing (WGS) data still found that the lead SNP corresponded to the
causal SNP only 80% of the time when the allele had high frequency and a strong effect (p
= 0.5; odds ratio, OR, of 1.5), and less than 3% of the time when the allele was less common
and of modest effect (p = 0.05, OR =1.1). Hence, even with WGS data and a large population
sample, determining the causal variants is far from trivial. The term QTN (quantitative trait
nucleotide) has been used to declare a clear demonstration of a causal SNP (or some other
variant, such as a CNV), but this has been very challenging to accomplish in most settings
(see Example 21.8 for some exceptions).

35



Lead SNP (LS) unlikely causal

Simulations by Wu et al. (2017)

I causal SNP (CS) is “common” p > 0.01

— Under WGS, 80% of LS within 10kb of CS
— Under imputation, goes to 25-35 kb

I causal SNP is “rare” (p < 0.01)

— Under WGS, 95% of LS are within 5kb

— Under Imputation, only 37% within 5kb

Key message: WGS not helpful for common
causal SNPs, useful for rare causal SNPs

36



Example 21.5 An important cautionary tale on fine-mapping was offered by Smemo et al.
(2014). A set of roughly 90 variants in very high LD that map within a 47 kb region spanning
introns 1 and 2 of the FTO gene had very strong, and highly reproducible, GWAS hits for
human obesity (measured by body mass index, BMI). Individuals homozygous for risk alleles
averaged more than 3kg heavier than individuals homozygous for non-risk alleles. Deletion
of FTO in mouse models results in leaner mice, while mice overexpressing FTO are heavier.
Finally, this 47kb region is heavily enriched with cis-acting control factors (enhancers, repres-
sors, DNAse I sensitivity sites, TF binding sites). However, none of the variants within this
region map as eQTLs for FTO expression. Smemo et al. found that this regions is involved
in chromatin looping to a region over a megabase away containing the gene IRX3. In a hu-
man EWAS using brain tissue, 11 of the FTO SNPs associated with BMI were also eSNPs for
IRX3, butnot FTO, expression. Further, of the eSNPs associated with IRX3 expression in either
brain or mature adipose tissue, only those expressed in the brain showed highly significant
associations with BMI. Hence, the FTO GWAS hits appear to be distal eSNPs that impact ex-
pression levels of IRX3 in the brain. The apparent colocalization of FTO GWAS hits and mouse
knockout effects gave a misleading picture of how these specific causal sites influence human
body mass. Further, focusing expression studies solely on one obvious target, mature adipose
tissue, would have missed this signal.

37



An independent study by Claussnitzer et al. (2015), using gene editing in human tissue
cultures, offered a rather different finding, highlighting the subtleties of tissue choice. They
found strong effects of a particular SNP variant (rs1421085) within this FTO region on the
expression of IRX3 and the nearby IRX5 gene in precursor adipocyte cells, resulting in a switch
from fat burning to fat storage. This variant disrupted a repressor within this region (ARIDS5B),
resulting in the activation of a rather potent early adipocyte enhancer and a doubling of IRX3
and IRX5 expression early adipocyte differentiation. Thus, there appear to be potentially
several different gene circuits (with different tissue specificity) influencing BMI from genes
some distance from the location of the GWAS hits. The different, but not necessarily exclusive,
conclusions from these two studies highlight the concern stressed by Barbeira et al. (2018) that
researchers need to adopt a more agnostic scanning approach when assessing correlations
between expression levels and trait values.
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The case of the missing heritability | |

Infamous figure from Nature on the angst of human geneticists over
the finding that all of their discovered SNPs only accounted for a
fraction (~ 10%) of relative-based heritability estimates of human

disease.
39



"There is something simultaneously
remarkable and encouraging about the
fact that a centuries-old method
requiring no more than a ruler, a pencil
and (| suppose) a slide rule out
performed, by an order of magnitude,
the fruits of the genomic revolution”

--Ben Sheldon (2013)

40



-log,, P

No “missing heritability”

— Low power because sites of small effect are unlikely
to be called as significant, esp. given the high
stringency associated with control of false positives

over tens of thousands of tests.
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Haloptype Frequency |effect
QM rp a
qM (1-r)p 0
gm 1-p 0

Resulting SNP
effects:

Effectof m=0

Effect of M = ar

Genetic variation associated with causative site Q
= 2(rp)(1-rp) a® ~ 2rpa? when Q rare — gives a small signal.

Genetic variation associated with marker SNP M is
2p(1-p)(ar)?~ 2pa’r?

Ratio of marker/true effect variance is ~ r

Thus, if Q rare within the M class (r << 1), even a completely

linked SNP marker captures only a fraction of variance 42




The tide starts to shift as N

grows

Human height, h? ~ 0.7 t0 0.8

Using only markers reaching genome-wide
signiticance, and scoring hits using common SNPs

2008, GWAS N = 40,000

— 27 "hits”, 6%

2010, N = 180,000

— 200 "hits”, 14%

2014, N = 253,000

— 700 hits, 20%

— Using 2000, 3700 & 9500 SNPs, 26%, 30%, 36%
2018, N = 700,000

— 3,000 hits, 35%
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It one includes all markers, and asks that variance they

explain,

2010, N = 4,000 -> 62% of heritability

2015, N = 44,000 -> 80%

Variance of variance explained by a chromosome is very

highly correlated with its length

— Schizophrenia, 70% of all 1 MB regions contain a risk
site

2022, N = 25,500 WGS

— 68% using common markers (p > 1%)

— 50-56% using imputed markers (predicting rare
alleles)

— > 90% using WGS. Most gain from very rare alleles
in low LD with common sites, hence poorly imputed

Current estimates (based on estimated distribution of y
effect sizes) of 95,000 to > 100,000



Part V:
GWAS hits &

Gene regulation
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Steps from gene regulation to
trait variation

Gene Histone tail

Histone

DNA inaccessible, gene inactive

Histone tail

Acetyl group

DNA accessible, gene active

Methylation of DNA and
histones causes nucleosomes
to pack tightly together.
Transcription factors cannot
bind the DNA, and genes are
not expressed.

Histone acetylation results

in loose packing of nucleo-
somes. Transcription factors
can bind the DNA and genes
are expressed.

cytoplasm

nucleus

introns exons

1 J
transcription unit

s ol lTRANSCRIPTION

“primary RNA transcript”

T N T .
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protein S
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mRNA stability, mRNA editing,
mRNA decay, translation

Promotes cancer cell survival, invasion,
metastasis, angiogenesis and drug
resistance and immune system evasion
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Gene products
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° A

QTL/GWAS & regulation

number of QTL and GWAS studies

looked at QTLs showing variation for a
number of regulatory features, such as

MRNA levels
soform variation in splicing
Histone modification

_arge number of such regQTLs/regSNPs
found (despite the low power, N < 5000) of
most designs.

Trait GWAS hits enriched for regSNPs
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Table 21.1 A few of the different classes of QTLs (SNPs). The general terminology is to use QTLs
generically, especially in a linkage-based analysis to indicate a region, and SNP in a GWAS setting to
refer to a SNP showing an association. The QTL/SNP terminology is a bit idiosyncratic, with different
versions for some of these abbreviations appearing in the literature.

acQTL/acSNP Chromatin acetylation QTL/SNP
aseQTL /aseSNP Allele-specific expression QTL/SNP
caQTL/caSNP Chromatin accessibility QTL/SNP
cis-xQTL/cis-xSNP Cis (local) QTL/SNP for feature x
dsQTL/dsSNP DNAse I sensitivity QTL/SNP
eQTL/eSNP RNA expression QTL/SNP
epiQTL/epiSNP Chromosome epiallele QTL/SNP
hQTL/hSNP Histone QTL/SNP
haQTL/haSNP Histone acetylation QTL/SNP
hmQTL /hmSNP Histone methylation QTL/SNP
meQTL/meSNP DNA methylation QTL/SNP
methQTL/methSNP DNA methylation QTL/SNP
miR-QTL/miR-SNP MicroRNA QTL/SNP
pQTL/pSNP Protein expression QTL/SNP

pb-xQTL/pb-xSNP
QTN

Population-based QTL/SNP for feature x
Quantitative trait nucleotide

QIT Quantitative trait transcript
rQTL/rSNP Ribsome occupancy QTL/SNP
regQTL/regSNP Regulatory QTL/SNP

sQTL/sSNP Splicing QTL/SNP
sb-xQTL/sb-xXSNP Sex-based QTL /SNP for feature x
tQTL /tSNP Trait QTL/SNP

trans-xQTL /trans-xSNP Trans (distal) QTL/SNP for feature x
vQTL/vSNP Variance QTL/SNP
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Figure21.1 A stylized transcriptome map, plotting eQTL locations versus the location of the
coding region for a transcript. Both axes correspond to genome position, with the horizontal
(z) axis denoting a region /marker being tested as an eQTL and the vertical (y) axis the location
of the coding region for a transcript (occasionally in the literature these two axes are reversed).
A point or pixel at position (x, ) on this map indicates a significant association between a
transcript whose coding region is at genomic position ¥ and a marker i region at genomic
position x. Points falling on the diagonal correspond to eQTLs that map very close to, or at,
the same location as the coding region for the transcript they influence. These have been called
cis eQTLs, but as discussed in the text are better referred to as local (proximal) eQTLs. Points
falling off the diagonal correspond to eQTL locations that influence transcripts whose coding
regions are at a different location from the eQTL. These have been called trans eQTLs, but are
better referred to as distant (distal) eQTLs. A vertical stack of points corresponds to a (small)
genomic region that is enriched for eQTLs, and is called a hotspot or hub, with the eQTLs in
that region impacting numerous transcripts.
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Figure21.2 The concept of cis-mediation. The observationis that eSNP 7 acts at some distance
away from a coding region (G';) to regulate the level of its transcript 1’; (eSNP ¢ is a trans-eSNP
for transcript 7). The mediation hypothesis is that the impact of eSNP ¢ is through a cis effect
on the transcript from (local) gene G&;, whose transcript 7; then influences the regulation of
transcript 7’; of a distant gene ;. Path analysis methods (Figure 21.3; Appendix 2) allow this
idea to be extended over much more complex regulatory networks, as well as providing a
framework for estimating direct and indirect effects of any component player (Example 21.3).
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Figure 21.3 Path-analysis of a trio (eSNP;, 13, and 17) to separate direct and indirect effects.
(A): The path diagram when only these trio elements are involved (Example 21.3). The direct
effect eSNP; — T (avoiding 73) is given by 35, and the indirect (mediated) effect via 73,
eSNP;, — T; — T, is (32 - [34. The total effect is given by 31 = 35 + (32 - [34. This same logic
can be applied to a trio of an eSNP, a transcript it impacts, and a trait value (i.e., replacing
T’; with 2y, the value for trait £), or other more complex regulatory pathways (e.g., Example
A2.2). (B): Mediator confounding occurs, in the simplest case, when an unmeasured factor
(a confounding variable C; U, for unmeasured variable, is also used in the literature) impacts
both 7 and 7. In this setting, estimates of the direct and indirect effects can be biased.

53



Example 21.3 Asdeveloped by anumber of investigators, one can use conditional regressions
(path analysis methods; Appendix 2) to both detect, and quantify, the amount of mediation
that gene ¢ has on transcript j (Chen et al 2007; Jiang et al. 2013; Pierce et al. 2014; Yang et
al. 2017; Yao et al. 2017; Shan et al. 2019). This is done using a nested series of regressions to
establish causality. Using the notation in Figures 21.2 and 21.3, first consider the association
between the dosage of SNP ¢ (the minor allele number copy number V; =0, 1, or 2) and the
transcript associated with coding region j (17),

Tj = a1+ O1N; + eq (21.1&)

One declares SNP 7 to be a trans-eSNP for coding region j when the slope [3; is significant.
This slope measures the total effect of SNP 7 on 7, the contributions from both direct effects
and indirect effects (such as through 7;). Next, we declare SNP ¢ to be a cis-eSNP for coding

region (z; when the regression
T; = ag + B2 N; + e (21.1b)

has a significant slope. Similarly, we declare the 7; has an effect on 7;; when (33 is significant

for the regression
Tj = a3 + (371} + e3 (21.1C)

Significant slopes in the above three regressions establish that: i) SNP ¢ is associated with 7
(1 # 0); ii) SNP ¢ is associated with 7} (82 # 0); and iii) 7; is associated with 77 (83 # 0).
These univariate regressions, by themselves, do not separate direct from indirect effects. To
do so, a multiple regression of 7’; is constructed based on both /V; and 77,

Tj — @i+ 64,1—; + 65Nz e (2110)



T; = aq + BaT; + BsN; + €4 (21.1c)

If 85 = 0, then any effect from SNP 7 on 7’ is simply through its effect on 7}, namely, full
mediation (the effect of SNP 7 on 7 is entirely through its cis-effect on 7). When both (34 and
35 are significant, then partial mediation occurs, where both T; and SNP i (the latter through
a path independent of 7;; Figure 21.3A) impact 1’;. Note that this logic need not be restricted
to just transcripts, one could measure (say) F;, the level of protein from gene %, or some other
regulatory measure such as methylation, splicing, etc. Modifications of permutation tests to
accommodate the correlation structure of mediation analysis are discussed by Jiang et al.
(2013) and T. Wang et al. (2020). An excellent overview of mediation analysis is given by Otter
et al. (2018).

From the theory of path analysis (Appendix 2), the indirect effect of SNP 7 on 7’; through
the path given by 73, is just the product of the path coefficients, which turns out to be (32 - (34
from the above regressions. As shown in Figure 21.3A, the total path effect (3; assumes the
potential of a direct effect 35 from eSNP; to T (/N; — 1) and an indirect of eSNP; via paths
through 7’; (N; — 1; — T}) with effect 32 - 34. Hence, the proportion of the total effect on
T’; from eSNP; mediated via 7; is

(81 = B5)/B1 = B24/B1 (21.1d)
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From the theory of path analysis (Appendix 2), the indirect effect of SNP 7 on 1’; through
the path given by 73, is just the product of the path coefficients, which turns out to be 35 - 34
from the above regressions. As shown in Figure 21.3A, the total path effect (3; assumes the
potential of a direct effect 35 from eSNP; to 7 (/N; — 1) and an indirect of eSNP; via paths
through 7', (N; — 1; — 1) with effect 32 - 4. Hence, the proportion of the total effect on
T’; from eSNP; mediated via 7; is

(81 = Bs)/B1 = P24/ Br (21.1d)

If there are no unscored correlated factors that impact members of this trio, then the relation
1 = Bs + (B2 - 34, namely total effect = direct effect plus indirect effect, should hold. If it does
not, one is likely missing correlated elements (confounders). Figure 21.3B shows one example.
Such confounding could be caused by the focal eSNP; being in LD with different causal SNPs

for the cis effect on 1; and the trans effect on 1’; (Pierce et al. 2014).
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Colocalization analysis
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Figure 21.4 An apparent colocalization between a GWAS SNP for trait z (the small black
box), transcript (1'), and trait (2) could occur through three different pathways. (A): Direct
cis-mediation. The GWAS SNP is an eSNP which directly influences the transcript, which in
turn directly influences the trait. (B): Linkage. Two tightly linked SNPs are involved. One
directly impacts the transcript, the second directly impacts the trait. (C): Pleiotropy. The same
SNP directly impacts transcript levels and trait values separately, but the transcript level does
not impact the trait value. Any combination of these different pathways could be involved,
such as a direct cis-mediated SNP tightly linked to a separate SNP that only impacts the trait.
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Part VI:

GWAS, Architectures, and
selectionr
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Common vs rare alleles

e Common alleles are old (under drift)
— Mostly regulatory?

e Rare alleles are recent
— Mostly structural>

e Most Hits have small variances, but
could be common alleles of small effect
or rare alleles of large effect

e |nverse correlations between effect size
and allele frequency commonly seen
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Data on human height loci
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To see this, consider the situation where the underlying causal alleles are entirely neutral.
In this setting, the effect size should be independent of allele frequency. The simplest model
for ¢(x) is the Watterson distribution (WL Equation 2.34b), where the minor allele frequency x
across evolutionary replicates is proportional to [z(1 — 2 )] ~!. The resulting additive variance
contributed by a site with frequency x is thus expected to be

0% (x) - o(x) < 2a*2(1 — ) - [2(1 — 2)]~! = constant (21.10a)

The resulting fraction of the total additive variance for a trait under this model from alleles of

frequency x < pis thus p, implying that rare alleles (x < 0.01) only account for one percent

of the total genetic variation. (For rare alleles to have a much greater impact on the total]
variance, a“ must increase as x decreases, and/or more rare alleles are present than predicted

under the Watterson model. Even for strictly neutral alleles, the latter is true in humans, as

the Watterson assumption is a long term stable population size, while populations passing

through bottlenecks and subsequent expansion display an excess of rare alleles (WL Chapter

2). Further, selection also inflates the number of rare alleles relative to Watterson. Are these

factors sufficient to create a prominent role for rare alleles? Atleastin humans, models suggest

that this is unlikely.
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This was nicély illustrated by Zeng et al. (2018) and Schoech et al. (2019), who used a
two-component mixture model for the additive effect a of an allele by assuming (for SNP ),

CL

p(a; | z) = 8o - mo + N (0, 22, (1 — 2;)]°02) - (1 — 7o) (21.10Db)

where (1—m) is the polygenicity, the fraction of all SNPs that impact a trait, the delta function
0o denotes a point mass at zero (¢ = (), and S is a selection parameter. A value of S < 0
implies that average a* values increase as & decreases (corresponding to negative selection
agamst alleles), while S = 0 corresponds to a neutral assumption of no correlatlon between

and x. MCMC (Appendix 8) can be used to estimate the model parameters S, 02, and 7,
an approach Zeng et al. called BayesS. Note that by rearranging Equation 2.3b,

E[a?|z,a% > 0] = 0%(a|a® > 0) + (E[a|a® > 0])? = [2z,;(1 — z;)]° o2 + 0% (21.10c)
showing that the variation associated with SNPs with an MAF of x is

(2200 — %) o) 231 —ah) = [ 250 —25)] T°a; (21.10d)

a
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showing that the variation associated with SNPs with an MAF of x is

(1225(1 — 2;))%02) - 22;(1 — z;) = [22;(1 — ;)]0 (21.10d)
Both Zeng et al. (2018) and Schoech et al. (2019) considered over two dozen, largely non-
overlapping, traits/diseases from the UK Biobank. Zeng et al. found that all but one of their
traits had a negative estimate of S (ranging from —0.609 to 0.012), 24 of which were significantly
negative, with a median S of —0.37. The polygenicity (1 — mp) had a median value of 5.4%
and ranged from 0.6% to 14.0%. Schoech et al. obtained very similar results for S. Substituting
these S values into various population genetic models for ¢(x|s) showed that no more than
10% of the variance could be due to rare alleles (x < 0.01).
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Key GWAS observations

Traits are massively polygenic (> 10K sites)
The per-site variation is typically very small

Effect sizes range over at least two orders of
magnitude

Inverse correlation between effect size and
allele frequency

Most significant sites in noncoding regions,
but highly enriched for regSNPs
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The Omnigenic Model

e Pritchard suggested a model for the molecular
basis of QG variation: the Omnigenic (all-genes)

model

e A few core genes active in the tissues directly
impacting the trait/disease of interest

* A massive number of peripheral genes that show
regulatory variants in these tissues

— Implication: any gene showing regulatory variation in
a tissue can have a nontrivial impact on trait variation

— Large fractions of the genome can host regulations
with regulatory impact
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An old friend

* The omnigenic model is, in part, a
recasting of the large (& rare) vs. small
(& common) debate

* Variants in core genes are expected to
often have large effects and thus be
rare

* Variants in peripheral genes are
expected to have small effects and thus
be common
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Current view of QG Variation:

* Regulatory regions are at least as important as
structural regions

— Focusing on coding regions may be misguided

* Much of the low-frequency variation is likely due to
novel mutations, restricted to a lineage or
extended pedigree, but often in the same gene

— Hence, unlikely to show up in association studies
unless related lines are used

— However, there are likely candidate genes at
which novel variation arises
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