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Overview
• GWAS methodology
• Overview of GWAS results
• More on LD (D’ vs r2)

– Common marker-rare causal allele 
mismatch

• eSNPs and regSNP
– Cis vs trans
– Other regSNPs
– Mediation

• GWAS, Architectures, and selection 



Background, Additional 
reading

• WVL (Walsh, Visscher, Lynch) 2024.  
– Chapter 20:  GWAS
– Chapter 21:  Quantitative Genomics
– Appendix 2:  Mediation analysis



Part I: 
Association Mapping

• Association mapping uses a set of very dense 
markers in a set of (largely) unrelated 
individuals

• Requires population level LD
• Allows for very fine mapping (1-20 kB)
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Mutation generates LD
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D(AB) = freq(AB) - freq(A)*freq(B).
LD = 0 if A and B are independent.  If LD not zero,
correlation between A and B in the population

LD:  Linkage disequilibrium

If a marker and QTL are linked, then the marker and
QTL alleles are in LD in close relatives, generating
a marker-trait association.

The decay of D:  r2 (t) = (1-c)t r2(0)
here c is the recombination rate.  Tightly-linked genes
(small c) initially in LD can retain LD for long periods of
time



Buckler and Gore 2007. Nat. Genet. 39:1056-1057

Non-coding sites
Synonymous sites

LD range in major crops
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Association mapping
• Marker-trait associations within a population of unrelated 

individuals
• Very high marker density (~ 100s of markers/cM) required

– Marker density no less than the average track length of 
linkage disequilibrium (LD)

• Relies on very slow breakdown of initial LD generated by a new 
mutation near a marker to generate marker-trait associations
– LD decays very quickly unless very tight linkage
– Hence, resolution on the scale of LD in the population(s) being studied ( 

1 ~ 40 kB)
• Widely used since early 2000’s.  Mainstay of human genetics, 

strong inroads in breeding, evolutionary genetics
• Power a function of the genetic variance of a QTL, not its mean 

effects, Var(m) = r2 Var(QTL) = r2 2a2p(1-p)



Manhattan plots
• The results for a Genome-wide Association study (or 

GWAS) are typically displayed using a Manhattan 
plot.
– At each SNP, -ln(p), the negative log of the p 

value for a significant marker-trait association is 
plotted. Values above a threshold indicate 
significant effects

– Threshold set by Bonferroni-style multiple 
comparisons correction

– With n markers, an overall false-positive rate of p 
requires each marker be tested using p/n.

– With n = 106 SNPs,  p must exceed 0.01/106 or 
10-8 to have a control of 1% of a false-positive  
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Linkage vs. Association

The distinction between linkage and association
is subtle, yet critical

Marker allele M is associated with the trait if
Cov(M,y) is not 0

While such associations can arise via linkage, they
can also arise via population structure.

Thus, association DOES NOT imply linkage, and 
linkage is not sufficient for association
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Gm+ Total % with diabetes

Present 293 8%

Absent 4,627 29%

When population being sampled actually consists of  several distinct 
subpopulations we have lumped together, marker alleles may provide 
information as to which group an individual belongs.  If there are other 
risk factors in a group, this can create a false association btw marker 
and trait

Example.  The Gm marker was thought (for biological reasons) to be 
an excellent candidate gene for  diabetes in the high-risk population 
of Pima Indians in the American Southwest.  Initially a very strong 
association was observed:
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Gm+ Total % with diabetes

Present 293 8%

Absent 4,627 29%

Problem:  freq(Gm+) in Caucasians (lower-risk diabetes
Population) is 67%, Gm+ rare in full-blooded Pima

Gm+ Total % with diabetes

Present 17 59%

Absent 1,764 60%

The association was re-examined in a population of Pima
that were 7/8th (or more) full heritage:
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Variations on this theme (eigenstrat) --- use all of the 
marker information to extract a set of significant
PCs, which are then included in the model as cofactors
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Structure plus Kinship Methods
Association mapping in plants offer occurs by first taking 
a large  collection of lines, some closely related, others 
more distantly related.  Thus, in addition to this collection 
being a series of subpopulations (derivatives from a 
number of founding lines), there can also be additional 
structure within each subpopulation (groups of more 
closely related lines within any particular  lineage). 

Y = Xb + Sa + Qv + Zu + e

Fixed effects in blue, random effects in red

This is a mixed-model approach. The program TASSEL
runs this model. 
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Q-K method

Y = Xb + Sa + Qv + Zu + e

b = vector of fixed effects

a = SNP effects

v = vector of subpopulation effects (STRUCTURE)
Qij = Prob(individual i in group j).  Determined
from STRUCTURE output

u = shared polygenic effects due to kinship.  
Cov(u) = var(A)*A, where the relationship matrix
A estimated from marker data matrix K, also called a
GRM – a genomic relationship matrix



Which markers to include in K?

• Best approach is to leave out the marker 
being tested (and any in LD with it) when 
construction the genomic relationship matrix
– LOCO approach – leave out one chromosome 

(which the tested marker is linked to)

• Best approach seems to be to use most of 
the markers

• Other mixed-model approaches along these 
lines 
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Part II:
Overview of GWAS data



Take-home message from GWAS

• The marker-effect  in a GWAS is the amount of 
variation that a marker explains (effect weighted 
by frequency), 2a2p(1-p)
– A marker tagging a causative site with a low frequency  

major effect allele gives a small marker variance
– Poor power to detect all but major alleles when they 

are rare
– Inverse relationship between frequency and effect size

• Is the bulk of genetic variation from
– “common” alleles (p > 5%) of small effect
– Rare alleles (p < 1%) of large effect
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Take-home message from early 
GWAS (pre-2015):

• Many sites, each of small effect
– Infinitesimal-like result (from a marker-variance

standpoint)
– Large-effect (variance) markers are very rare

• DOES NOT imply alleles of large effect (a >> 1) are 
absent, rather just at very low frequency

– Inverse relationship between allelic effect size 
and frequency

• > 80% of Hits are in noncoding regions
– Importance of regulatory mutations
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Problems with early GWAS

• Initially, human geneticists (and others) were 
thrilled with the ability of GWAS to localize 
chromosomal regions contributing to genetic 
variation to very small (kilobase) regions

• Found essentially all had very small effects 
(variance explained by a marker)

• Further problem: the sum of such detected 
markers fell far short of accounting for the 
known genetic variation
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A number of GWAS workers noted that the sum of 
their significant SNP marker variances was much less 
(typically 10%) than the additive variance estimated 
from biometrical (relative-based) methods.  Where is 
this “missing” heritability?  Does this suggest a
fundamental flaw in quantitative genetics?
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Part III:
Measures of LD
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M QN 0.03

M -- 0.60

- -N 0.05
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M QN 0.03

M -- 0.60

- -N 0.05
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Part IV:
Implications for GWAS



Key:
• If the marker and causative alleles have 

miss-matched frequencies, then the LD 
between them will be small

• Hence, common marker alleles very 
poorly tag rare alleles
– Var(Marker) = r2 Var(Causal site)
– Most rare alleles not tagged 
– The marker SNP with the strongest signal 

is likely NOT the closest SNP
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Lead SNP (LS) unlikely causal
• Simulations by Wu et al. (2017)
• If causal SNP (CS) is “common” p > 0.01

– Under WGS, 80% of LS within 10kb of CS
– Under imputation, goes to 25-35 kb

• If causal SNP is “rare” (p < 0.01)
– Under WGS, 95% of LS are within 5kb
– Under Imputation, only 37% within 5kb

• Key message:  WGS not helpful for common 
causal SNPs, useful for rare causal SNPs
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Infamous figure from Nature on the angst of human geneticists over 
the finding that all of their discovered SNPs only accounted for a 
fraction (~ 10%) of relative-based heritability estimates of human 
disease. 



• “There is something simultaneously 
remarkable and encouraging about the 
fact that a centuries-old method 
requiring no more than a ruler, a pencil 
and (I suppose) a slide rule out 
performed, by an order of magnitude, 
the fruits of the genomic revolution” 

• --Ben Sheldon (2013)
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No “missing heritability”
– Low power because sites of small effect  are unlikely 

to be called as significant, esp. given the high 
stringency associated with control of false positives 
over tens of thousands of tests.

Only these markers
included  (as they are
declared significant)

Huge number of important,
but small effect, markers
not declared significant
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Haloptype Frequency effect

QM rp a
qM (1-r)p 0
qm 1-p 0

Genetic variation associated with causative site Q 
= 2(rp)(1-rp) a2 ~ 2rpa2  when Q rare – gives a small signal.

Genetic variation associated with marker SNP M is
2p(1-p)(ar)2 ~ 2pa2r2

Effect of m = 0

Effect of M = ar 

Ratio of marker/true effect variance is ~ r

Thus, if Q rare within the M class (r << 1), even a completely
linked SNP marker captures only a fraction of variance

Resulting SNP
effects:
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The tide starts to shift as N 
grows

• Human height, h2 ~ 0.7 to 0.8
• Using only markers reaching genome-wide 

significance, and scoring hits using common SNPs
• 2008, GWAS N = 40,000

– 27 “hits”, 6%
• 2010, N = 180,000

– 200 “hits”, 14%
• 2014, N = 253,000

– 700 hits, 20%
– Using  2000, 3700 & 9500 SNPs, 26%, 30%, 36%

• 2018, N = 700,000
– 3,000 hits,  35%
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• If one includes all markers, and asks that variance they 
explain,

• 2010, N = 4,000 ->  62% of heritability
• 2015, N = 44,000 ->  80%
• Variance of variance explained by a chromosome is very 

highly correlated with its length
– Schizophrenia, 70% of  all 1 MB regions contain a risk 

site
• 2022, N = 25,500 WGS

– 68% using common markers ( p > 1%)
– 50-56% using imputed markers (predicting rare 

alleles)
– > 90% using WGS.  Most gain from very rare alleles 

in low LD with common sites, hence poorly imputed
• Current estimates (based on estimated distribution of 

effect sizes) of 95,000 to > 100,000
44
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Part V:
GWAS hits & 

Gene regulation
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Steps from gene regulation to 
trait variation 
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Gene products

Trait value



QTL/GWAS & regulation

• A number of QTL and GWAS studies 
looked at QTLs showing variation for a 
number of regulatory features, such as  
– mRNA levels
– Isoform variation in splicing
– Histone modification
– Large number of such regQTLs/regSNPs

found (despite the low power, N < 5000) of 
most designs.

– Trait GWAS hits enriched for regSNPs
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Colocalization analysis
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Part VI:
GWAS, Architectures, and 

selection 



Common vs rare alleles
• Common alleles are old (under drift)

– Mostly regulatory?

• Rare alleles are recent
– Mostly structural>

• Most Hits have small variances, but 
could be common alleles of small effect 
or rare alleles of large effect

• Inverse correlations between effect size 
and allele frequency commonly seen
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Data on human height loci

Peter Visscher’s group at UQ

Zone of  no power
under current GWAS designs

Genes of large effect most likely with deleterious effects of 
other traits, resulting in their low frequency

Large effect alleles
Very low frequency

Small effect alleles
moderate- high frequency
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Key GWAS observations

• Traits are massively polygenic (> 10K sites)
• The per-site variation is typically very small
• Effect sizes range over at least two orders of 

magnitude
• Inverse correlation between effect size and 

allele frequency
• Most significant sites in noncoding regions, 

but highly enriched for regSNPs
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The Omnigenic Model
• Pritchard suggested a model for the molecular 

basis of QG variation:  the Omnigenic (all-genes) 
model

• A few core genes active in the tissues directly 
impacting the trait/disease of interest

• A massive number of peripheral genes that show 
regulatory variants in these tissues
– Implication:  any gene showing regulatory variation in 

a tissue can have a nontrivial impact on trait variation
– Large fractions of the genome can host regulations 

with regulatory impact
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An old friend
• The omnigenic model is, in part, a 

recasting of the large (& rare) vs. small 
(& common) debate

• Variants in core genes are expected to 
often have large effects and thus be 
rare

• Variants in peripheral genes  are 
expected to have small effects and thus 
be common
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Current view of QG Variation:

• Regulatory regions are at least as important as 
structural regions
– Focusing on coding regions may be misguided

• Much of the low-frequency variation is likely due to 
novel mutations, restricted to a lineage or 
extended pedigree, but often in the same gene
– Hence, unlikely to show up in association studies 

unless related lines are used
– However, there are likely candidate genes at 

which novel variation arises
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