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Background, Additional 
reading

• WVL (Walsh, Visscher, Lynch) 2024.  
– Appendix 6:  Multiple comparisons, meta-

analysis
– Chapter 21 (sections on gene– and 

pathway-based tests)

• Walsh and Lynch 2018
– Chapter 27 (EVT, pp 1003-1005)



Motivation
• Genomics generates high-dimensional 

data sets
• Serious concerns about

– Corrections for Multiple comparisons
– Combining p values over different sets 

(such as using all of the SNPs within a gene 
for a gene-based test)

– Combining estimates of effect sizes over 
multiple studies (meta-analysis)

– Model selection with high-dimensional data



Overview
• Control of significance tests over multiple 

comparisons
– Are there an excess number of false positives?
– Bonferroni and sequential Bonferroni (Simes, etc)
– Effective number of tests
– False discovery rates (FDR)
– Bayesian approaches
– Permutation tests and EVT

• Combining p values from multiple sources
– Fisher, Schaffer, Tippett, Simes, Cauchy

• Meta-analysis
• Fitting high-dimensional models

– Penalized regressions
– Model selection, AIC, BIC,



• Significance = prob of a false positive
– Declaring a test statistic to be significant when it is 

actually from the null (H0)

• Test-level significance (error rare)
– p = 0.05 implies that only 5% of the time (under the 

null) would one see a test statistic this extreme
– Also called the comparison-wide error rate (CWER)

• Experiment-wide significance (error rare)
– g = 0.05 means a 5% chance that any of the tested 

hypotheses in the set (experiment) would have a test 
statistic that extreme under the null (H0)

– Also called the family-wide error rate (FWER)

• Discoveries = Tests declared to be significant 
– could be true (from H1) , or false (from H0) 5



The problem
• Suppose 100 hypotheses are all tested 

at p = 0.05
• Expected 100*0.05 = 5 false positives 

even if all under the null
• Hence, have adjust the critical p value, 
t,  for each test (CWER) downward  to 
control for the overall probability (or 
number) of false positives over the 
family of tests (FWER)
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Key idea
• If all tests are from the null, then 

– the distribution of p values is a uniform 
over 0,1

– The cdf (q-q) plot is linear
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Part I:
Number of false positives 

over a family of tests
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Given an excess number of false positives, we can
estimate the number of true discoveries.
Typically, want to estimate no = # of nulls,

or the fraction of nulls. po = no / n
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All 100 are nulls

80 of 100 are nulls

Could use the Chow 
Test (Chapter 10)  to 
determine where the 
regression break
occurs
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no = 513

no = 537
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The beta distribution
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Null pdf

Alternative pdf



Part II
Controlling the FWER
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Key topics
• Bonferroni corrections

– Standard
– Sequential (Holm’s, Simes, Hommel’s)
– Correcting for effective number of tests

• FDR – the false discovery rate
• Bayesian framework
• Permutation tests and extreme value 

theory (EVT)
– Using the trinity theorem to obtain small p 

values
21
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p = 0.05/10 = 0.005
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FDR
• The false discovery rate

– Bonferroni essentially assumes that ALL of your 
tests are from the null

– In modern genomics, we EXPECT a subset (likely 
a small fraction) to be from the alternative

– In such settings, we would like to control the false 
positive (or false discovery) rate among a set of 
tests that we declare to be significant

– A FDR of 0.01 implies that only 1% of all tests 
declared to be significant (discoveries) are false 
positives
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• To set an FDR, we find the critical p value for each CWER as 
follows.
– If we set this critical value as t, then n t = expected 

number of false positives (more generally, no t)
– The resulting FDR is d = n t /(Number of tests with p < t)
– Suppose n = 1000 and we try t = 0.01, so that 10 false 

positives are expected.  If the actual number of tests with 
p < 0.01 is (say) 120, then FDR =10/120, or 0.083

– Suppose we instead take t = 0.005, so that 5 false 
positives are expected, while (say) the actual number of 
tests with p < 0.0075 is now 110, giving FDR = 5/110 = 
0.045

– Setting the critical p value at t = 0.005 gives FDR = 0.045
– For each set of p values, one tries different t values until 

the desired FDR is obtain 32
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PER– Posterior Error Rate
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Bayesian hypothesis testing
(Chapter 20, pp 678 - 680)
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Permutation tests: I
• In complex data sets, p values are often 

obtained using permutation tests (the 
gold standard).

• If the data consists of the n vectors 
(zi,mi), the trait value and marker vector 
for individual i, 
– randomize z over m (keeping the elements 

intact)
– Repeat this shuffling several thousand 

times to generate an empirical distribution. 
(histogram) under the null 44



Permutation tests: II
• Pros

– Very straightforward when the 
exchangeable units are obvious (z vs m in 
our example)

– Very robust when done correctly

• Cons
– The exchangeable units may be unclear 

(e.g., z are now from families)
– Computationally demanding for very small 

p values (n ~ 10/p, e.g.,  107 for p = 10-6)
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Extreme Value Theory
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Permutation + EVT
• In some settings, such as combining results 

from different data sets, need very small p 
values to control the PER/FDR
– Could use permutation tests in each, but 

computationally very demanding to obtain the 
small-p cutoffs for each test

– However, could  use a modest size permutation 
tests (n ~ 10,000 to 20,000) and then use ML on 
the observed “tail” (extreme) p values to fit the 
generalized Pareto expected for extreme values 
(i.e., estimate k), and then obtain your desired 
extremely small p cutoff analytically
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Part III
Combining p values

• Motivation:
– Gene (or pathway)-based GWAS
– Suppose that you test k SNP to see if they 

(as a group) are significant (i.e., clustered 
near zero)
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Combining p values
• Key:  under the null, the distribution of 

p values is a uniform (over 0-1)
– Implies -log(p) ~ chi^2_2. (Fisher)
– While no single p might be significant, a 

clustering near zero can also give a signal
– e.g., while none in the p-value sequence 

of tests   0.06, 0.07, 0.075, 0.08, 0.85 are 
significant, it is clear that they are highly 
nonrandom
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Other p-combining methods

Simes method

Can replace n by ne
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Cauchy	distribution
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Part VI:
Meta-analysis
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Combining estimates over 
studies

• While p-value combining can be used, 
the more typical question is not 
whether an effect is significant, but 
rather its effect size.

• The field of meta-analysis (the analysis 
of analyses) offers methodology for this 
task
– Much more in WVL Appendix 6
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Fixed- vs random-effect meta-
analysis

• Under fixed, weights based on precision of 
estimates

• Under random, weights also include random-
effects variance.  Hence, study weights are 
more even
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Part V:
Fitting high-dimensional data 

and model selection
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Overview

• Hotelling’s T2

• Penalized regressions
• Model selection: AIC, BIC,
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Penalized regressions
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Assessing model fit
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Need to adjust goodness of fit by 
number of used model parameters

74



If models are nested, can use LR tests to 
compare them

If not-nested, use ad-hoc metric
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