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Motivation

e Genomics generates high-dimensional
data sets

¢ Serious concerns about

— Corrections for Multiple comparisons

— Combining p values over different sets
(such as using all of the SNPs within a gene
for a gene-based test)

— Combining estimates of effect sizes over
multiple studies (meta-analysis)

— Model selection with high-dimensional data



Overview

Control of significance tests over multiple
comparisons

— Are there an excess number of false positives?

— Bonferroni and sequential Bonferroni (Simes, etc)
— Effective number of tests

— False discovery rates (FDR)

— Bayesian approaches

— Permutation tests and EVT

Combining p values from multiple sources

— Fisher, Schafter, Tippett, Simes, Cauchy
Meta-analysis

Fitting high-dimensional models
— Penalized regressions

— Model selection, AIC, BIC,



* Significance = prob of a false positive

— Declaring a test statistic to be significant when it is
actually from the null (Hy)

e Test-level significance (error rare)

— p = 0.05 implies that only 5% of the time (under the
null) would one see a test statistic this extreme

— Also called the comparison-wide error rate (CWER)

e Experiment-wide significance (error rare)

— v = 0.05 means a 5% chance that any of the tested
hypotheses in the set (experiment) would have a test
statistic that extreme under the null (Hp)

— Also called the family-wide error rate (FWER)
e Discoveries = Tests declared to be significant

— could be true (from H;) , or false (from Hy)



The problem

* Suppose 100 hypotheses are all tested
at p =0.05

e Expected 100*0.05 = 5 false positives
even if all under the null

* Hence, have adjust the critical p value,
1, for each test (CWER) downward to
control for the overall probability (or

number) of false positives over the
family of tests (FWER)




Key idea

o |f all tests are from the null, then
— the distribution of p values is a uniform

frequency

over 0,1

— The cdf (g-g) plot is linear
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g-q plot




Count

(A) (B) (©)

500 1500 1500 |-

1000 1000
300
500 500
100
0 0 0
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08

p value

Figure A6.2 Simulated distribution of p values based on 5000 tests for samples of 25 draws
from a normal distribution with a mean of ;1 and a variance of one. The null hypothesis is
Hy : pn < 0. A: The distribution of p values when i1 = 0 (the null is correct) is uniform. B: The
distribution when 1 = 0.2 is skewed toward an excess of values near zero. C: The distribution
when 1 = —0.2 is skewed toward an excess of values near one.
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Part I:
Number of talse positives
over a family of tests



How Many False Positives?

Suppose we perform n independent tests, each with a Type-I error rate of «. If all hypotheses
are truly null, the number, j, of false positives follows a binomial distribution (Wilkinson
1951), with a “success” probability (a false positive) of a, and n trials (the number of tests),
yielding
n!

(n— )
For n large and o small, this is closely approximated by the Poisson distribution (Equation
2.21a), with Poisson parameter na (the expected number of false positives), yielding

Pr(j false positives) = (1—0a)" 7o’ (A6.7a)

—no

(na)le
7!

Pr(j false positives) ~ (A6.7b)
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Example A6.5. Suppose 250 independent tests are performed, each with o = 0.025 (a 2.5%
chance of declaring a result from the null hypothesis to be significant), and 15 tests are declared
significant by this criteria. Is this number greater than expected by chance? The expected
number of significant tests under the global null hypothesis is nav = 250 - 0.025 = 6.25.
From Equation A6.7a, the probability of observing 15 (or more) significant tests is

250 250 550!
: o _ : 250 j
j:§15 Pr(j false positives) = jzg L (250 - /)17 (1 — 0.025)“°"~7 0.025’

We could either sum this series directly or use the cumulative distribution function for a
binomial. In R, the probability that a binomial with parameters n and p has a value of 7 or
less is obtained by using the command pbinom(i,n,p). The probability of 15 or greater is
one minus the probability of 14 or less, or 1- pbinom(14,250,0.025), for which R returns
0.0018. A similar calculation can use the Poisson approximation (Equation A6.7b), with 1-
ppois(14,6.25) returing a value of 0.0021. Given that there is only a 0.2% chance of seeing
this many significant tests under the global null, we expect that some of these significant tests
are true discoveries (those whose associated null hypothesis is incorrect), not false positives.
The critical question, of course, is which ones?

Given an excess number of false positives, we can
estimate the number of true discoveries.
Typically, want to estimate n, = # of nulls,

or the fraction of nulls. 7, = n, / n "
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Figure A6.1 A Schweder-Spjetvoll plot is one approach for detecting departures from a
uniform distribution of p values. The p values are ordered from smallest, p(1), to largest,
p(n), and one plots the rank of 1 — p(i) versus its value. These ranks are reversed from the
ranks of p(7), as the rank of 1 — p(n), being the smallest value, is 1. Under a uniform, the
result is a straight line passing through the origin and the point (1, ). The upper curve (solid
triangles), generated by randomly sampling n = 100 values from a uniform (0,1), fits this
pattern. The lower curve (open circles), generated by simulating p values for 80 true nulls and
20 tests where the alternative was correct, shows an inflation of p values near zero (1 — p values
near one). This results in a strong departure from linearity near one. Ignoring this upturn and
extrapolating the linear fit for the values below this inflection point gives an approximate
value of 80 for the value of this projected line when 1 — p = 1. This yields an estimate of ng.

oy 555& Could use the Chow
. Test (Chapter 10) to
4 determine where the
regression break
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Figure A6.3 An empirical distribution of p values (for n = 644 tests) from Mosig et al.
(2001). The number of p values in each of ten bins (of width 0.1) are given above the bars. Note
the large excess of values near zero.
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If there are ng truly null tests, then the expected number of p values from these tests that
fall within an interval 0 < a < b < 1is simply

b b
iige | ©Oylp)dp = nO/ 1-dp=mno(b—a) (A6.8b)
Hence ey B . ;
D= umber o pl()z) values in (a, b) (A6.50)
— i
Likewise, an estimate for the fraction w9 = ng/n of true nulls is
7ola,b) = Number of p(i) values in (a, b)
n(b—a)
_ Fraction of p(z) values in (a, b) (A4.8d)
— - :

14



175

[ 155
150 |- [T
125 |
%100_ 69 70(.-....-.-......-.} no:537
67
U 75_ — — @llllllll 52 50 _ n0:513
o 46 4 44
50 |-
0
01 02 03 04 05 06 07 08 09 10
p

Figure A6.3 An empirical distribution of p values (for n = 644 tests) from Mosig et al.
(2001). The number of p values in each of ten bins (of width 0.1) are given above the bars. Note

Example A6.6. What is an estimate of n,, given the data in Figure A6.3? Consider the bins
centered around p = 0.5. Based on the central three bins (0.4, 0.5, and 0.6), a total of 60 + 46 +
48 = 154 tests have p values in this interval. From Equation A6.8b, 154 = ng- 0.3 or ng =154/0.3
= 513, and hence a fraction, myg = ng / n =513/644 = 0.80, of the tests are true nulls. Using the
bins from 0.3 to 0.8 yields ng = 322/0.6 = 537, or my = 537 /644 = 0.83. Hence, it appears that
around 80% of the tests are consistent with true nulls. Mosig et al. (2001; also see Nettleton et
al. 2006) used an iterative approach (also based on bin counts in the p-value histogram) and
arrived at an estimate of ng = 500 (78%).



Storey and Tibshirani (2003) proposed an estimator of n,, based the number of p values
exceeding some tunable parameter value, A (taking a = A and b = 1 in Equation A6.8b), on
the logic that for larger values of A, most of these draws are from the uniform corresponding
todraws from the null. Let 7o (\) denote the estimated fraction of truly null hypotheses based
on using a tuning value of )\, then

~ Number of p(i) values > X
B n(l — A)

Fo(\) (A6.9a)

and
_ Number of p(¢) values > A

L= X
By focusing on the interval (A, 1), the Storey-Tibshirani estimator is potentially biased

Ao(A\) = n - Fo(N) (A6.9b)
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The beta distribution

p(xlow,p)

Figure A7.3 For a = [3 = 1 (long-dashed curve), the beta distribution is simply the uniform
distribution over (0, 1). The pdf for the beta distribution can also be U-shaped (o« = 3 = 0.5;
solid curve), unimodal (o« = 2, 3 = 5; short-dashed curve), or L-shaped (o« = 10,8 = 1;
dotted curve). Because the beta distribution is symmetric in v and /3, switching their parameter
values generates a distribution of the same shape translated about 0.5.



Estimating ny: Mixture Models

Allison et al. (2002) suggested that m( can be estimated by treating the distribution of p
values as a mixture, a fraction 7y of which comes from a uniform (and hence a uniform
distribution function, ¢,), while the remainder (1 — m) are from the distribution, ¢ 4(p),
of p values when the alternative hypothesis is true (Figure A6.4). While the general form
of ¢4(p) is unknown, a very flexible modeling approach is to assume a beta distribution

(Appendix 7; Figure A7.3)

['(a +b)

(o) T (D) pE L ) (A6.10a)

Pa(p) =

Under the alternative hypothesis, we expect an increase in p values near zero, which occurs
when a < 1. Likewise, the beta distribution can easily accommodate an increase in p values
near one (b < 1). When a = b = 1, this simply reduces to a uniform.

I'(a+b)

OO p* 11-p)®l+m  (A6.10b)

{(p) = (1 = m0) ¢a(p) + mo Pulp) = (1 — o)
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Figure A6.4 The empirical distribution of p values can be treated as a mixture model of
a uniform plus a beta distribution (whose shape parameters, a and b, can be estimated via
ML), see Equation A6.10b. In this hypothetical example, a weighted mixture of a uniform
(horizontal dashed line) and a beta with (¢ < 1,0 = 1; dashed curve), yields the mixture
distribution (solid curve) that fits the empirical distribution of the p values.
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Part |l
Controlling the FWER
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Key topics

e Bonferroni corrections
— Standard
— Sequential (Holm's, Simes, Hommel's)
— Correcting for effective number of tests

* FDR - the false discovery rate
® Bayesian framework

e Permutation tests and extreme value
theory (EVT)

— Using the trinity theorem to obtain small p

values 5



Standard Bonferroni Corrections

The probability of not making any Type-I errors (false positives) over n independent tests,
each at level ¢, is (1 — a)”. Hence, the probability, 7, of having at least one false positive
over the entire collection is simply one minus this value,

T=1—(1-a)"” (A6.3a)
If we solve for the o value required for each test,
a=1—(1-m)i/m" (A6.3b)

This is often called the Dunn-Sididk method. If we note that (1 — a)” ~ 1 — na, we obtain
the Bonferroni method by taking
a=7/n (A6.3c)

Both Equations A6.3b and A6.3c are referred to as Bonferroni corrections. In the literature,
7 is the family-wide error rate (FWER; also the genome-wide error rate, GWER), while «
is the comparison-wise error rate (CWER), also referred to as the point-wise significance

level (PWSL).
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Sequential Bonferroni Corrections

Under a strict Bonferroni correction, only those tests whose associated p values are < 7 /n
are rejected (declared significant); all others are accepted (or more formally, fail to be
rejected). This results in a considerable reduction in power if two or more of the hypotheses
are actually false. When we reject a hypothesis, one fewer test remains, and the multiple
comparison correction should reflect this, resulting in sequential Bonferroni corrections.
Sequential approaches have increased power compared to standard Bonferroni corrections,
as illustrated below in Example A6.4. Shatfer (1995) reviewed these, and other, approaches.
The basic structure is that one has a collection of multiple tests, with H (i) denoting the null
hypothesis for test « — for example, the test that marker ¢ has a nonzero effect, in which
case H (1) is the null hypothesis of no effect. In this case, rejecting H (i) suggests evidence
for a nonzero effect for marker .

Example A6.4. Suppose for n = 10 tests, the (ordered) p values are as follows:
i (1 2 ] 3 4 5 6 7 8 9 10

p(7) L().OOZO 0.0045 J0.006O 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350

n+m 0.0050 0.0056 0.0063 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

p = 0.05/10 = 0.005

23



Holm’s Method

The simplest of these sequential adjustments is Holm’s method (Holm 1979). The first
step is to order the p values for the n hypotheses being tested from smallest to largest,
p(1) <p(2) <--- < p(n),and let H (i) be the hypothesis associated with p(i). One proceeds
with Holm’s method as follows:

i) If p(1) > n/n, accept all n null hypotheses (i.e., none are declared significant).
(i) Ifp(1) <7/n,reject H(1) [i.e., H(1) is declared significant], and consider H(2).
(i) Ifp(2) >7/(n—1),accept H(i) (fori > 2).

iv) Ifp(2) <7/(n—1),reject H(2) and move onto H(3).

(v)  Proceed with rejecting hypotheses until reaching the first ¢ such that
p(it) >7n/(n—14+1).

We can also apply Holm’s method using Equation A6.3a —namely, a =1 — (1 — m)1/", the
Dunn-Sidék correction — in place of a = 7 /n.

Example A6.4. Suppose for n = 10 tests, the (ordered) p values are as follows:

i (1 2 3 ) 4 5 6 7 8 9 10

p(z) | 0.0020 0.0045 0.0060| 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
_0.0050 0.0056 0.0063) 0.0071 0.0083 0.0100 0.0125 0.0167 0.0250 0.0500

s
n—i+1
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Simes-Hochberg Method

With Holm’s method, we stop once we fail to reject a hypothesis. An improvement on this
approach is the Simes-Hochberg correction (Simes 1986; Hochberg 1988), which effectively
starts backward, working with the largest p values first.

(i) If p(n) < 7, then all hypothesis are rejected.

(ii)) If not, H(n) cannot be rejected, and we next examine H (n — 1).

(iii)) Ifp(n—1) < 7w/2, thenall H(:) for i <n — 1 are rejected.

(iv) Ifnot, H(n — 1) cannot be rejected, and we compare p(n — 2) with 7/3.

(v) Ingeneral, if p(n —i) < 7/(n—i+1),thenall H(i) for i < n — i are rejected.

Example A6.4. Suppose for n = 10 tests, the (ordered) p values are as follows:
i (1 2 S 4 5 6 \ 7 8 9 10

p(z) | 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 |0.0175 0.0250 0.1055 0.5350

— lek0.0050 0.0056 0.0063 0.0071 0.0083 0.0100) 0.0125 0.0167 0.0250 0.0500
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Hommel’s Method

Hommel’s method (1988) is slightly more complicated, but it is more powerful than the
Simes-Hochberg correction (Hommel 1989). Under Hommel’s method, we reject all hy-
potheses whose p values are less than or equal to 7/k*, where

k*:max(p(n—i+j)>7rl,) terall g = 1,u86.9
7 [

Example A6.4. Suppose for n = 10 tests, the (ordered) p values are as follows:
i (1 2 3 4 5 6 ) 7 8 9 10

p(2) | 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 [0.0175 0.0250 0.1055 0.5350

= | KO.OO5O 0.0056 0.0063 0.0071 0.0083 0.0100 )0.0125 0.0167 0.0250 0.0500
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Dealing with Dependency: Eigenvalue-based Approaches

When different tests share correlated data, this introduces dependency between the p values
for these tests. How do we account for this? One approach (Cheverud 2001; Nyholt 2004; Li
and Ji 2005; Patterson et al. 2006) is to use the nature of the dependency structure of the data
to estimate an effective number of independent tests, n.. This value is then substituted
for n in the above methods; e.g., Equation A6.3b becomes @ = 1 — (1 — 7r)1/ me and n.
replaces n in both the Tippett (Equation A6.4a) and Simes (Equation A6.4b) statistics. A
classic application of this approach is correcting for correlations among tests of marker-trait
associations over a set of linked markers in either a QTL mapping experiment or a GWAS
(Chapters 18-20).

To proceed, we need to introduce a few facts about the eigenstructure of a correlation
matrix, C, whose eigenvalues are denoted (from largest to smallest) by Ay, ---, \,. First,
because C is a positive-semidefinite matrix, all \; > 0 (WL Appendix 5). Second, C is an
n X n matrix with ones on its diagonal, which makes its trace (the sum of its diagonal
elements; Chapter 9) equal to a value of n. The importance of this result is that the trace of
a matrix equals the sum of its eigenvalues (Equation 9.34b), which demonstrates that the
average eigenvalue of C is

mn
n=! g N=n"‘n=1
i=1

27



n
n=! E N=n"‘n=1
i=1

When all of the underlying variables that generate C are uncorrelated, then \; = - - - =
An = 1, while when all of the observations are completely correlated, then \; = n and
Ay = -+ = )\, = 0. These two cases represent the extremes of n independent tests (the
former) and one independent test (the latter). As with principal components (Chapter 9),
the spread of the eigenvalues tells us about dependency. One metric of this is the variance
in the eigenvalues, 0%()\). If all of the eigenvalues are equal, then o2()\) = 0, while if only
one eigenvalue is nonzero, then o%(\) = n.

Motivated by the above eigenstructure observations, Cheverud’s method (2001) com-
putes the effective number of independent tests as

(n — 1)202()\)> 7 where a2(\) = 1 Zn:()\i —1)* (A6.5a)

n—1
=it

Ne,Cheverud = N (1 —
n

This returns n, = n when ¢?(\) = 0 and n. = 1 when ¢%(\) = n, which matches the
expected results from the eigenvalue analysis for these extreme cases. A closely related
variance-based estimator was suggested by Patterson et al. (2006).
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Li and Ji (2005) noted that Cheverud’s method often returns an overly large value of
ne (and therefore, less power), especially when used with a large number of moderately
correlated tests. While Cheverud’s approach considered the two extreme cases (n vs. one
independent test), Li and Ji noted that a set of ¢ identical tests will result in an eigenvalue
of ¢ > 1, while tests that are only partially correlated with others will generate eigenvalues
values < 1. Hence, they partitioned an eigenvalue into two parts, its integer value and the
remainder, where the integer part implies identical tests (and hence is counted as contribut-
ing one independent test), while the remainder represents partial correlations. Hence, if an
eigensequence is 4.1,3.5,1,0.5,0.1, - - -, then the first three eigenvalues correspond to three
independent tests, with the total of their non-integer residuals (0.1 + 0.5 + 0.5 + 0.1 = 1.2)
adding one additional test, giving (for this part of the sequence) an effective number of four
independent tests. Formally, the Li-Ji method is coded as

N N
NeLi—si = Y _I(Ai > 1)+ (X — floor[\]) (A6.5b)

=1

where the indicator function I(z > 1) returns a value of one when x > 1, and otherwise
returns a value of zero. Hence, the first sum in Equation A6.5b is the number of eigenvalues
of C that are > 1. The floor|z]| function in the second term corresponds to the largest integer
< z,s0 the second sum is all of the remainder terms (the effects of partial correlations among
tests). A related estimator was suggested by Li et al. (2011) and additional corrections for
dealing with correlated tests have been proposed by a number of authors (e.g., Zaykin et
al. 2002; Owen 2005; Efron 2007; Leek and Storey 2007, 2008; Gao et al. 2008; Moskvina and
Schmidt 2008; Galwey 2009; Li et al. 2012).



FDR

* The false discovery rate

— Bonferroni essentially assumes that ALL of your
tests are from the null

— In modern genomics, we EXPECT a subset (likely
a small fraction) to be from the alternative

— In such settings, we would like to control the false
positive (or false discovery) rate among a set of
tests that we declare to be significant

— A FDR of 0.01 implies that only 1% of all tests
declared to be significant (discoveries) are false
positives

30



To formally motivate the concept of the FDR, suppose a total of n hypotheses are tested
(e.g., genes), S of which arejudged significant (i.e., the p value for the testis < some threshold
value, 7). If we had complete knowledge, we would know that n, of the hypotheses have
the null true and n; = n — np have the alternative true, and we might find that F' of the
true nulls were called significant, while 7" of the alternative trues were called significant,
yielding the following table

Called significant Called not significant Total
Null true F ng — F no
Alternative true i3 ng—1T ny
Total 5 n—.9S n

For this experiment, the false-discovery rate is the fraction of tests called significant that are
actually true nulls, FDR = F//S. (The term discovery follows in that a significant result can
be considered as a discovery for future work.) As a point of contrast, the normal Type-I error
(which we can also call the false-positive rate [FPR]), which is the fraction of true nulls that
are called significant, is F'/ng. Note the critical distinction between these two error rates.
While the numerator of each is F', the denominators are considerably different — the total
number, S, of tests called significant (for FDR), versus the number, n, of hypotheses that are
truly null (FPR). As the threshold value (7) for significance is changed, so too is the fraction
F'/S. To obtain a FDR of § over our experiment, 7 is adjusted to find its largest value such
that some expectation of F'/S is bounded above by 4. Finally, Gadbury et al. (2004) defined
the expected discovery rate (EDR) as 1'/n; (the fraction of all true discoveries declared to
be significant), which is the analog of statistical power in this setting.



 To set an FDR, we find the critical p value for each CWER as
follows.

— If we set this critical value as 1, then n t = expected
number of false positives (more generally, ng 1)

— The resulting FDR is 6 = n 1 /(Number of tests with p < 1)

— Suppose n = 1000 and we try t = 0.01, so that 10 false
positives are expected. If the actual number of tests with
p < 0.01 is (say) 120, then FDR =10/120, or 0.083

— Suppose we instead take t = 0.005, so that 5 false

positives are expected, while (say) the actual number of
tests with p < 0.0075 is now 110, giving FDR = 5/110 =

0.045
— Setting the critical p value at T = 0.005 gives FDR = 0.045

— For each set of p values, one tries different t values until
the desired FDR is obtain 32



Another way to see the distinction between the false-positive rate and the false-discov-
ery rate is to consider them as probability statements for a single test involving hypothesis
i. For the FDR, we condition on the test as being significant,

FDR = Pr(i is truly null | i is declared significant) = ¢ (A6.11a)
whereas for the false-positive rate, we condition on the hypothesis being null

FPR = Pr(¢ is declared significant | ¢ is truly null) = « (A6.11b)

33



Example A6.9. Consider again the 10 ordered p values from Example A6.4. Computing
n p(k ) /k = 10p(k)/k, where k denotes the test with the k-th smallest p value, yields the
followmg table:

k 1 2 3 4 5 6 7 8 9 10
p(k) 0.0020 0.0045 0.0060 0.0080 0.0085 0.0090 0.0175 0.0250 0.1055 0.5350
L{C) 0.0200 0.0225 0.0200 0.0200 0.0170 0.0150 0.0250 0.0313] 0.1172 0.5350
Thus, if we wish an overall FDR value of 0 = 0.05, we would reject hypotheses when

np(k)/k < § = 0.05, which is satisfied by H(1) through H(8). Notice that this procedure
rejects more hypotheses (i.e., returns more discoveries) than any of the sequential Bonferroni
methods (Example A6.4).
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PER— Posterior Error Rate

Fernando et al. (2004) and Manly et al. (2004) both noted that FDR measures are closely
related to Morton’s (1955b) posterior error rate (PER), originally introduced in the context

of linkage analysis in humans (this is also referred to as the false positive report proba-
bility [FPRP]; Wacholder et al. 2004). Morton’s PER is simply the probability that a single
significant test is a false positive,

PER=Pr(F=1|S=n=1) (A6.12)

The connection between the FDR and the PER is that if we set the FDR to ¢, then the PER
for a randomly drawn significant test is also 0.

PER = Pr(F=1|S=n=1) = Pr(false positive | null true) - Pr(null)

(A6.13)

Pils =1 =1
o - T B (1—6)'(1—71'0) e
PER_a-7r0+(1—6)-(1—770)_(1+ o - o )
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Sham and Purcell (2014) noted that one can rearrange Equation A6.15a to find the a
value to obtain a desired PER value of v, with

o= (ﬁ) (1 ;0”0) (1- 1) (A6.15b)

In particular, if there is complete power (8 = 0) and only one of the n tested hypotheses
departs from the null (7o = 1 — 1/n), Equation A6.15¢ reduces to

= (%) =)-

which recovers the Bonferroni correction (Equation A6.4).

The Type-I error rate, o, of a random test, and the PER for a significant test, which are
often assumed to be the same, are actually very different. In addition to «, the PER also
depends on the power, 3, of a test and the fraction, 7, of tests that are truly null (as these
latter parameters influence the probability that a test is declared to be significant). Manly et
al. (2004) noted that the PER is acceptably low only if the fraction of alternative hypotheses
(1 — ) is well above a.

(A6.15¢)

3|2
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Example A6.7. In Morton’s original application, because there are 23 pairs of human chro-
mosomes, he argued that two randomly chosen genes had a 1/23 >~ 0.05 prior probability of
linkage, namely, 1 — m9 = 0.05, and thus 79 = 0.95. Assuming a Type-I error rate of &« = 0.05
and 80% power to detect linkage (8 = 0.20), applying Equation A6.15a yields a PER of

0.05-0.95

= 0.54
0.05-0.95+ 0.80-0.05

Hence, with a Type-I error control of v = 0.05, arandom test showing a significant result (p <
0.05) has a 54% chance of being a false positive. This occurs because most of the hypotheses
are expected to be null — for example, if we draw 1000 random pairs of loci, 950 are expected
to be unlinked and we expect 950 - 0.05 = 47.5 of these to show a false positive. Conversely,
only 50 are expected to be linked, and we would declare 50 - 0.80 = 40 of these to be significant,
so that 47.5/87.5 = 0.54 of the significant results are due to false positives.

What value for « is needed under the above parameters to given a PER of v = 0.05? From
Equation A6.15b,

Q= (ﬁ) (1 ;0”0) (1-78) = (%) (%) (1 —0.2) = 0.0022

Hence, declaring significance when p < a = 0.0022 gives a PER of 5%.
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Example A6.8. Suppose weset &« = 0.005 for each test, and assume that the resulting power
is essentially 1 (i.e., # =~ 0). Consider 5000 tests under two different settings. First, suppose
that the alternative is very rare, with ny =1 (79 = 0.9998). Under this setting, we expect 4999 -
0.005 = 24.995 false positives and one true positive (1-[1 — 3] = 1), yielding an expected PER

o 24.995
PER = : = 0.961
24.995 + 1
Thus, a randomly chosen significant test has a 96.1% probability of being a false positive.
Now suppose that the alternative is not especially rare, for example n; = 500 (7y = 0.9).
The expected number of false positives is 4500 - 0.005 = 22.5, while the expected number of

true positives is 500, yielding a PER of

225

—— = 0.043
522.5

PER =

The PER is thus rather sensitive to m, the fraction of all tests that are truly from the null
hypothesis. If 7y is essentially 1, a PER of 0 is obtained using the Bonferroni correction,
a = §/n.However, if T departs even slightly from one (i.e., more than a few of the alternative
hypotheses are correct), then the per-testlevel of «x to achieve a desired PER rate is considerably
larger (i.e., less stringent) than that given by the Bonferroni correction, namely, 0425 ) =dn.
For example, for a 0.04 experiment-wide error rate, « = 0.04/5000 = 8 - 10~°, which is
roughly 625 times smaller than the value of & = 0.005 required for a 4% FDR, highlighting
the greatly increased power under the FDR framework. This increased power arises because
the FDR approach acknowledges that some fraction of the tests are not from the null.



Bayesian hypothesis testing
(Chapter 20, pp 678 - 680)

Finally, a rather different approach was suggested by Wacholder et al. (2004), WTCCC
(2007), and subsequent authors (Thomas and Clayton 2004; Wakefield 2007, 2008, 2012; Ball
2011), namely using a Bayesian framework. An excellent discussion of Bayesian approaches
for multiple GWAS comparisons is given by Stephens and Balding (2009). As suggested by
Thomas and Clayton (2004), the basic tenet of this framework is that

“itisnot the number of tests performed but rather the prior credibility of the hypotheses
that is important in interpreting a set of observed associations. That is, when a hypoth-
esis is unlikely to be true a priori, we should require strong evidence to be convinced of
its truth”
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In this framework, the strength of evidence can be expressed as the posterior odds ratio
in favor of a true association. Letting 7" denote the value of the test statistic and 7 the
significance threshold, then the odds ratio in favor of a true association when the test is
deemed significant can be written as

Pr(Hy | T>a) PP S| Hy) P L)) Pl =)
Pr(tly| T'>7) Pu(l >+ | Hy)Pr(He)/ Pl =)
_ [PI‘(T = T‘H1>] |:PI’(H1)] 1 — 6 PI'(Hl)

Pr(T > 7|Hy)| |Pr(Hp) a  Pr(Hp)

(20.7a)

where the first step follows from Bayes theorem (Equation 3.3b). Here « is the Type-I error
rate, 3 the Type-II error rate (for a power of 1 — 3), and Pr(H;) and Pr(Hy) are the prior
probabilities for, and against, an association. To apply Equation 20.7a, one must have some
loose idea about the fraction of independent regions that generate associations with the
trait, and some details about the effect size (and frequency) in order to specify 3. WTCCC
(2007) suggested values for Pr(H;) in the range of 10~ to 10~°. More recently, Yengo et al.
(2022) detected 12,000 (genome-wide) significant SNPs for height out of roughly a million
tested, for a Pr(H;) value closer to 0.01.

40



Equation 20.7a is very closely related to Morton’s (1955b) posterior error rate (PER) —
which Wacholder et al. (2004) referred to as the false positive report probability (FPRP) —
see Appendix 6. Denoting the posterior odds ratio (Equation 20.7a) as PO, an alternative
metric is the posterior probability of association, PPA (Stephens and Balding 2009), where

PO
PPA= ——> (20.7b)
Finally, a more general approach is to replace
PEE =7 Hy) : Pr(T| Hy)
h 20.
PrT>7[Hy) T Py(T|H) ere)

Namely, replacing a threshold being exceeded with the actual value, 7', of the test statistic
for that marker. This ratio of support for the data (7') under the alternative versus the null
hypothesis is called a Bayes factor, BF (Appendix 7). Computing the BF requires assump-
tions about the prior distribution of allele effects (and their associated allele frequencies),
see Wakefield (2007, 2008, 2012) and Stephens and Balding (2009) for details. Stephens and
Balding make the important point that as GWAS analysis moves beyond one-marker-at-a-
time considerations to more complex units of interactions, Bayesian approaches can offer
much more flexibility than frequentist methods.
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Example 20.6 As an application of Equation 20.7a, consider the scenario where ten regions,
out of one million LD blocks, influence the trait of interest, and suppose that there is 50%
power to detect each effect. To obtain an odds-ratio of ten to one in favor of a true effect,
rearranging Equation 20.7a gives a required « value of

o= (rias=0) (- )
1 10/10°

= — = (5
10 1 —10/106

= 5% 107

Under these parameters, we expect an average of 0.5 - 10 = 5 true discoveries and 5 x 107" -

(10° — 10) = 0.5 false discoveries, for an expected FDR of 0.5/5.5, or around 9%. The PPA

for an odds ratio of 10 (PO = 10) becomes PPA = 10/11 = 0.909. Similarly, for a posterior odds
ratio of 20 (with a resulting PPA of 20/21 = 0.952), = 2.5 x 10~7, which yields an expected
0.25 false discoveries and an expected FDR of 0.25/5.25, or slightly under 5%.
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Now suppose a highly pol};genic trait, such as height, which Iilay have a large number of
regions (say 1000), but, given their smaller effect sizes, lower power of detection (say 3 = 0.8,
or a power of 20%). The critical value for a odds ratio of ten becomes

I o5 1000/10°

A9 = 92%x10°°
10 1 —1000/106

In this setting we expected an average of 0.2- 1000 = 200 true discoveries and 2 x 107> -
(10° — 1000) =~ 20 false discoveries, for an expected FDR of 20/220, or again around 9%.
For a posterior odds ratio of 20:1, « = 1 X 107°, yielding an expected FDR of 10/210, again
slightly under 5%.
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Permutation tests: |

* In complex data sets, p values are often
obtained using permutation tests (the
gold standard).

e |f the data consists of the n vectors
(z,m), the trait value and marker vector
for individual i,

— randomize z over m (keeping the elements
intact)

— Repeat this shuftling several thousand
times to generate an empirical distribution.
(histogram) under the null 44



Permutation tests: ||

e Pros

— Very straightforward when the
exchangeable units are obvious (z vs m in
our example)

— Very robust when done correctly

e Cons

— The exchangeable units may be unclear
(e.g., z are now from families)

— Computationally demanding for very small
o values (n ~ 10/p, e.g., 107 forp = 10
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Extreme Value Theory

The critical result from EVT is the so-called trinity (or Fisher-Tippett-Gnedenko) theo-
rem, which states that the distribution of draws of extremes (the extreme-value distribution)
from any underlying distribution are given by the generalized Pareto distribution (Pickands
1975), a family of distributions determined by a scale parameter, 7, and shape parameter, »
(also called the tail index), which falls into one of three limiting types (or domains), depending
on the value of kK (Equation 27.7). Because our interest is in the distribution of fitness values
for new beneficial alleles, setting the fitness of the current allele to 1, then the fitness of a
beneficial allele is 1 + X, where the fitness increase, X, is drawn from the tail of the underlying
distribution to the right of zero. Following Beisel et al. (2007), the families of extreme-value
distributions for such draws are given by

(1 - +xrz/7)V/* >0 if K > 0 (Fréchet)
Pr(X <z|rk)=<{ 1-(1+rz/7)* 0<z<-—7/k ifk <0 (Weibull)
) =R ), x>0 if k=0 (Gumbel)

(27:T)

Most common distributions (normal, gamma, etc.) have a Gumbel EV distribution (x =
0), which has an exponential tail. This is the most commonly assumed EV distribution for
beneficial mutations. When the underlying distribution is truncated to the right (the upper
bound of —7/k > 0, as k < 0), the extreme-value distribution is in the Weibull domain.
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Permutation + EVT

* |n some settings, such as combining results
from different data sets, need very small p
values to control the PER/FDR

— Could use permutation tests in each, but
computationally very demanding to obtain the
small-p cutofts for each test

— However, could use a modest size permutation
tests (n ~ 10,000 to 20,000) and then use ML on
the observed "tail” (extreme) p values to fit the
generalized Pareto expected for extreme values
(i.e., estimate «), and then obtain your desired
extremely small p cutoff analytically
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Part |l
Combining p values

e Motivation:

— Gene (or pathway)-based GWAS

— Suppose that you test k SNP to see if they
(as a group) are significant (i.e., clustered
near zero)
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Combining p values

Key: under the null, the distribution of
o values is a uniform (over 0-1)

— Implies -log(p) ~ chir2_2. (Fisher)
— While no single p might be significant, a
clustering near zero can also give a signal

— e.g., while none in the p-value sequence
of tests 0.06, 0.07, 0.075, 0.08, 0.85 are
significant, it is clear that they are highly
nonrandom
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Fisher’s combined probability test: for £ independent tests, where p; denotes the p value
for test 7, the sum

= —QZln(pi) (A6.1a)

approximately follows a x3, distribution. Fisher’s method is a special case of the more
general Gamma method (Lancaster 1961; Zaykin et al. 2007; Biernacka et al. 2012), based
on inverses of gamma functions (Table A7.1). Other approaches, such results based on the
distribution of the sum of n unit uniforms, have also been proposed (e.g., Edgington 1972),
see Folkes (1984), Kocak (2017), and Heard and Rubin-Delnchy (2018) for a brief overviews.

Example A6.1. Suppose five different groups collected data to test the same hypothesis, and
these groups (perhaps using different methods of analysis) reported p values of 0.10, 0.06,
0.15, 0.08, and 0.07. Notice that while none of these individual tests are significant, the trend
is clearly that all are “close” to being significant (p = 0.09). Fisher’s statistic becomes

k
X?=-2) In(p;) =24.3921  with  Pr(xJ, > 24.39) = 0.0066
= |

Hence, when taken together, these five tests show a highly significant p value. This is rea-
sonable, as each p value, while not individually significant, still all cluster near small values,
while under the null, p should be around 0.5 (the average of a unit uniform). In particular,
note that two tests each with p = 0.06 (X2 = 11.25,Pr(x7 > 11.25) = 0.024) offer more

support against the null than a single test with p = 0.05.



Stouffer’s Z Score

An alternative to Fisher’s approach for combining p values was offered by Stouffer et al.
(1949; and independently by Liptak 1958), who transformed the individual p values into
Z scores (unit normal random variables). The sum of k independent unit normals is itself
normal, with a mean of zero and a variance of k. These results lead to Stouffer’s Z score
method: assign a score of Z; for test i by solving Pr(U > Z;) = p;. Let Z, denote the sum
over the transformed p values of k tests, scaled by k~!/2 to give it a variance of one, with

k
e 7
Tr— % (A6.2a)

Because Z; ~ N(0, 1), the overall p value is obtained as

= Pe(ll > 2, (A6.2b)

Besides providing symmetric values for large and small p values (i.e., pand 1 — p), a
second advantage of the Z-score approach is that one can individually weight p values from
different tests (Mosteller and Bush 1954; Liptak 1958), as the weighted sum of unit normals
is itself a unit normal (while the weighted sum of y? variables — the analog for Fisher’s
test — is considerably more complex). The resulting weighted version becomes

k
: A

Zy = 2iz1 ¥ (A6.2c)
Zk—1 w;



Example A6.2. Reconsider the data from Example A6.1. The Z; values are easily obtained
using R, as the command gnorm(1-p) returns Z satisfying Pr(U < Z) = 1 — p, or (equiva-
lently) Pr(U > Z) = p. For example, Z; is calculated by gnorm(1-0.1), or 1.281. Similarly
computing the other Z; values yields

5
6.754
Y Z;=6.754, hence Z,=—— =3.020
=1 \/5

Because Pr(U > 3.020) =0.00126, as in Example A6.1, the combined p value is highly significant.
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Other p-combining methods

Tippet’s Combined p-value Estimator

Rearranging Equation A6.3a yields Tippett’s method (1931), also called the Bonferroni-
adjusted minimum p-value, for combining p values from independent tests. Here 7 is
interpreted as the combined p value of n tests (pri,), while « is replaced by the smallest p
value in the series, p(1), yielding

Pprip =1 — [1 — p(1)]™ =~ np(1) (A6.4a)

Wilkinson (1951) generalized this method to using the jth smallest p value.

Simes method

PSimes — mink

Can replace n by ng
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Dealing with Dependency: Aggregated Cauchy Approaches

A recent alternative strategy (Pillai and Meng 2016; Liu et al. 2019; Liu and Xie 2020) for
dealing with dependency among testsis build around using the Cauchy distribution, whose
density function is given by

1
f _ AG.
() 1+22) or 00 S < D@ (A6.6a)

This is a standard Cauchy, akin to a unit normal. (More generally, the Cauchy has both a
location z¢ and scale v parameter, which do not concern us here, with the standard using
ro = 0 and v = 1.) The Cauchy arise as the distribution for the ratio of two unit normals
(one can also think of it as a t distribution with one degree of freedom). If C is Cauchy
distributed, then its cdf (cumulative distribution function) is given by

. 1 arctan(x) 1
< — _— — .
PH(EE) /_oow(1+x2) i 4 (AG.6b)
and hence @ 1 . @)
SFCLAn( arctan(x
PI‘(C = .CC) = 4 ( - —+ 5) = 5 — - (A660>

55



Cauchy distribution
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Recalling that arctan(x) — 7/2 as x — oo, shows that Pr(C < z) — 1 as ¢ — oo. From
Equation A6.6b, it immediately follows that the quantile x,, — the value of x, satisfying
Pr[C < z,] = p—is given by solving p = arctan(z,)/m + 1/2, yielding

T, = tan [w(p — 1/2)] (A6.6d)

Because tan(z) — oo as x — m/2, it follows that x, — ccasp — 1.
For many students, the Cauchy has an unfortunate image, being mainly known as
a pathologic distribution (its density function integrates to one, but none of its moments

are finite). This feature is due to having heavy tails that do not decline sufficiently fast at
large values. A less appreciated feature of the Cauchy is that the weighted sum of standard
Cauchys is itself a Cauchy (and, hence, Cauchy random variables do not obey the central
limit theorem). Building on this fact, the interest in using the Cauchy for combining p values
started with a striking finding by Pillai and Meng (2016). Suppose that y and x are both
vectors of unit MVNss with correlation matrix V. Pillai and Meng showed that the weighted
sum Y w; (y;/x;) is a standard Cauchy. Noting that y; /z; itself is Cauchy, this implies (in
least in this setting) that the weighted sum of Cauchy random variables with arbitrary
dependency structure is still a Cauchy.
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~ Recall that Stouffer’s Z score approach translates individual p values into Z values (unit
normals), and the weighted sum of these values (which is a normal) is back-transformed
into an overall p value. This same approach, but now using the Cauchy, was proposed
by Liu et al. (2019) with their aggregated Cauchy association test (ACAT). As a result of
its heavy-tail, the Cauchy is largely insensitive to correlations among p values, especially
when the p values are small (Liu et al. 2019; Liu and Xie 2020). The ACAT test statistic for

combining p values is

Peiias = Z w; tan[(0.5 — qu)ﬂ] (A66€)
i=1
namely the weighted (w; > 0 and ) w; = 1) Cauchy values associated with the p values
of each test (Equation A6.6d), resulting in the weighted sum also being a standard Cauchy.
The associated overall p value follows from Equation A6.6¢c, with

arctan[T'acar] (A6.6f)

PacaT D —
T
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Part VI:
Meta-analysis
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Combining estimates over
studies

* While p-value combining can be used,
the more typical question is not
whether an effect is significant, but
rather its effect size.

* The field of meta-analysis (the analysis
of analyses) offers methodology for this
task

— Much more in WVL Appendix 6
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Table A6.3 The potential data available for a meta-analysis of k studies. One has reported values
for the estimated effect, 7}, for each study. A study may also have m reported moderator variables
(cofactors such as sex, laboratory, species, etc.). In the simplest setting, the study only reports a p
value for whether the effect is significant. In such cases, an overall p-value can be obtained from the
methods discussed earlier in this Appendix. If the study also reported the standard errors (SE) of the
estimates, or (under the assumption of a constant error per observation over all studies) the sample
size, then a formal (i.e., model-based) meta-analysis may be performed (as detailed in the text).

Effect
Study  Actual Estimate  Sample size  SE pvalue  Moderator variables
1 04 Ty n1 51 D1 M1, M2, , Mip,
2 02 15 N2 59 D2 Moy, Mag, - - -, Moy,
3 03 15 ns 53 D3 Mszi, M3a, -+ -, M3y,
k 0% iy, Nk Sk Dk Mg, M2, -+, Mim
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Under a fixed-effects meta-analysis (also called the common-effect model), we assume
that the actual effect size is the same over all studies (6; = ), which yields

T, =0+ ¢; (A6.30a)
where we assume that the residuals are independent but heteroscedastic, as o*(e;) = s2.
Under the fixed-effects model, our interest is in combining studies to obtain a better esti-
mate of the common (fixed) effect, 6. This simply involves generalized least-squares (GLS;
Equation 10.13a), with the resulting meta-analysis global estimate of 6 (given the £ studies)
being

k
— —q Wil
P =1 ¥ . where w; = 1 (A6.30b)
In other words, we use a weighted average, with each study weighted by its precision

(studies with smaller standard errors receive larger weights). The meta-analysis standard
error, s7, for the global estimate, 7', is
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For the situation where we assume that each individual observation in a given study has
the same variance, 0*(T;) = 02 /n;, then for k studies, each of size n,

— 0'2

g ()= ¢ (A6.30d)

An obvious next line of inquiry is whether the assumption of a common effect over all
studies is reasonable. This can be examined using the Cochran Q) test of heterogeneity,

— 2

=~ (T, - T)
=" . (A6.31)
i=1 i
where (under the null of §; = --- = 0, and assuming that the values of 7; are normally

distributed), the distribution of @ is x? with (k — 1) degrees of freedom.
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One potential reason for a significant () is that the study consists of different subsets
of groups (say, males versus females), with a common effect that was the same in each
group but differs among groups. In this case, we can extend the basic model by including
a regression on moderator variables,

T, =0+ bjM+e; (A6.32)

g1

Often the values of M;; are simply zero-one indicator variables (e.g., 0 for male, 1 for
female), but they can be more general regression slopes as well. For example, M, ; could be
the age of individuals within study j, with a significantly nonzero value of b; in Equation
A6.32 indicating that the treatment mean varies with age. Again Equation A6.32 is simply
a GLS regression, and one can test for moderator-variable effects (b; # 0) in the standard
regression fashion (Chapter 10).
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In most biological settings, the assumption of a single common value for the treatment
mean over all studies is unrealistic. For example, in a meta-analysis of QTL effect sizes, we
expect 6; to vary over studies, and our interest shifts to the variance among the actual effects.
This leads to the random-effects meta-analysis model

T =p+u; +e; (A6.33a)

where 1; ~ (0,02). Typically, the effect sizes (§; = p + u;) are assumed to be drawn from a
normal, §; ~ N(u,0?2), and are independent of the residuals (which remain heteroscedastic).
Under a random-effects analysis, our interest is the variation, o=, among the realized effects,
in addition to their overall grand mean, ;. The estimate for the latter is also of the form of
Equation A6.30b, but with a critical difference. Under a random-effects model, the weights
are now given by

1

= ———-=
D we =0
S O

(A6.33b)

where 72 is the estimate of o2. One option for obtaining this variance is the DerSimonian-
Laird estimator, which is based on Cochran’s () value (Equation A6.31),

6_\2 = Q o (k_ 1)
“ 81 —(52/51)°

k
where S, = Z s;? forj=1,2 (A6.33c)
i=1

which is set to zero if it is negative (DerSimonian and Laird 1986; 2015), although other
approaches (e.g., REML; Part II Chapter 33) could also be used, and more robust estimates
have been suggested by Knapp and Hartung (2003) and Sidik and Jonkman (2005).



Finally, in many settings, we might expect the grand mean to vary over different cate-
gories, such as when a gene’s transcript level differs between males and females. Similarly,
we may wish to examine whether the distribution of QTL effect size varies between life-
history versus morphological traits. The potential of different means over different major
categories can be accommodated in a meta-analysis model by the use of moderator vari-
ables (cofactors). These adjust the mean for a particular class, leading to a mixed-model
meta-analysis. Suppose that there are m < k moderators. The resulting mixed-model is

&5 =i Z bjMZ'j 8y 516 (A635a)

j=1

where b; is the (fixed) effect of a moderator, j, which has a value of M;; in study i. Equations
A6.32 and A6.33a are special cases of Equation A6.35a, which we can write in general-linear-
model form (Chapter 10) as

y=Mb+u-+e (A6.35b)

where y; = T;, b = (i, b1, - -, b,,)?, and the ith row of the k& x (m + 1) matrix, M, contains
the values of the m moderator variables associated with study i (with the first column of
M being all ones for the common ). The vectors, u and e, of random effects are assumed
uncorrelated, with e ~ (0,R) and u ~ (0,G), where R is a known diagonal matrix,

diag(s?, s5,--+,s%), and G = 02C, where C is a matrix of known constants.
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Fixed- vs random-effect meta-
analysis

e Under fixed, weights based on precision of
estimates

k
T = 2iiz=1 ¥ . where w; = =

Zfﬂ L i

e Under random, weights also include random-
effects variance. Hence, study weights are
more even |

D . 7D
S; T+ 04

w; —
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Part V:
Fitting high-dimensional data
and model selection
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Overview

Hotelling's T2

Penalized regressions
Model selection: AIC, BIC,




y:&+ﬁ121+5222-|-“°-|—ﬂnzn+6

Multivariate joint confidence intervals are in the form of ellipses (for two dimensions)
and ellipsoids for higher dimensions. To motivate the form of these intervals, we first consider
Hotelling’s T? statistic. This is essentially the multivariate extension of the classic univariate
t test, where for Z ~ N(uo, 02 /n),

(Z — po)?

S2/n
for the null hypothesis that the mean is yo given that the sample variance of z is S? (and
hence the sample variance for 7 is S?/n). Squaring both sides, we can express this as

t* = (Z — po)(S?/n) ™ (Z — po)

Hotelling’s T statistic generalizes this to multivariate form, where for Z ~ MNV (u,, S/n),

t =

T? = (Z - )" (S/n) " (Z — o) (A3.23a)

Under the null hypothesis (¢« = p),

n—p
( o l)p) T? ~ Fypyp (A3.23b)
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Penalized regressions

Example20.4 A commonsituationthatarisesinmodern quantitative genetics are regressions
whose number of parameters p exceeds, often greatly, the sample size n. In a standard least-
square regression framework, estimation proceeds using generalized inverses (Appendix 3),
resulting in a set of solutions. A more powerful approach is to use penalized (or regularized)
regressions. Consider the regression model

P
p=p+) BiX.i+e

=1

In the standard OLS framework, one solves for the Bj that minimizes the sum of squared

residuals,
2

n

n b
RSS = Z 6? = Z Y; — U — ZBin,j (2056)
=1 3—1

=1
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Penalized regressions start with this framework, and then place constraints on the 3,. Under
ridge regression (RR), one instead minimizes RSS +\ ) 632 (Hoerl and Kennard 1970), for
some shinkage parameter A > 0 (Hoerl et al. 1975; Lawless and Wang 1976, and Cule at al.
2011 discuss the choice of \). An alternative approach is the least absolute shrinkage and
selection operator, or LASSO, which minimizes RSS +\ ) _ | 3;| (Tibshirani 1996). Note that
for values of 3 near zero, 3° is a much less harsh constraint than | 3| (as | 3| > 3° for |3]| < 1),
so that the LASSO shrinks most of the 3; to exactly zero (yielding a sparse estimate), and hence
is often used in model selection (choosing the parameters in the final model as those with
nonzero [Js). The elastic net (Zou and Hastie 2005) combines the RR and LASSO approaches,
seeking to minimize RSS +A1 >~ 35| + A2 3 37 These approaches can also be extended to
generalized linear models, e.g., Le Cressie and van Houwelingen (1992) proposed a logistic
ridge regression method.
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Assessing model fit

In the same fashion that we decomposed the total variance into genetic and phenotypic
components (Chapters 4-7), we can decompose the total variance of a response vector y
into the variance accounted for by the linear model and the remaining (error or residual)
variance. This is typically done by considering three sums of squares, with the total sum
of squares (S57) being the sum of two components, the error (or residual) sum of squares
(SSg) and the model sum of squares (SSy;),

SSt = SSum + SSk

The total sum of squares measures the total variability in the data, while the model sum of
squares measures the amount of variation accounted for by the linear model. As noted in
our discussions of univariate regression in Chapter 3, the fraction of total variance explained
by a linear model is given by the coefficient of determination,

B2 il (A3.15a)
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Need to adjust goodness of fit by
number of used model parameters

One issue with r? is that goodness-of-fit improves (and hence r? increases) as more
model parameters are added. As a result, for n observations and p estimated parameters,
the adjusted r? (Ezekiel 1930)

MS. SSs7 (12— p)

VS = 1T S5/ 1) (A3.15b)

2
Tadj_l_

is often reported. This replaces sums of squares (SS) with mean squares (MS), with -2 7 = r?,

and allows for a more fair comparison of different models by discounting goodness-of-fit

as more model parameters are added. The connection between r* and 77, is

n—1
rgdj =1-—(1- r2) <n —p) (A3.15¢)
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If models are nested, can use LR tests to
compare them
If not-nested, use ad-hoc metric

Such comparisons introduce the broader issue of model selection (Burnham and An-
derson 2002). While a formal statistical framework occurs for nested comparisons (LR tests),
there is an informal framework for comparing models that are not nested. Here, various in-
formal statistics are used to compare models, and we focus on two, the AIC and BIC metrics.
For both of these metrics, a smaller value means a better model. We stress that while both
metrics are fully grounded in theoretical principles (Burnham and Anderson 2004), com-
paring values for two different models is largely ad hoc in that there is no formal test for
significance (i.e., there is no formal criterion for determining when one model is clearly
better than the others). Further, the different metrics can result in different model rankings.

The idea behind both metrics (as in a likelihood-ratio test) is reward goodness of fit
(i.e., smaller values of —2 In[L]| imply better fits), but also to penalize for the number of fitted
model parameters, k. This is a natural extension of the adjusted r? (Equations A3.15b and
A3.15c), which downweights goodness of fit by the number of fitted parameters. One of the
most widely used model-comparison metrics is the Akaike information criterion (Akaike
1975),

AIC = —2In(L) + 2k (A4.15a)

which was adjusted for the sample size, n, by Sugiura (1978),



2k(k + 1) 2kn
_ _2In(L
n—k—1 L i

AIC, should be used in place of AIC unless n/k > 40 (Burnham and Anderson 2004). Model

selection proceeds by computing the AIC values for all of our candidate models, and then

choosing the model with the smallest AIC value as the “best” model in the comparison test.
The other widely used metric is the Bayes information criterion,

AIC, = —21In(L) + 2k + (A4.15b)

BIC = —2In(L) + In(n)k (A4.15¢)

which was introduced by Schwarz (1978), and thus is also known as the Schwarz criterion.
While AIC and BIC are often used interchangeably, they are actually designed for slightly
different purposes. When one of the models being compared is the true model, then BIC
picks this model with a probability approaching one in large samples. Conversely, AIC
considers the situation where none of the candidate models may be correct and then tries to
pick among the best of these. Best practice is to typically present both AIC and BIC values,
especially if they result in different model rankings. A nice short review of various other
model selection criteria can be found in Grueber et al. (2011Db).
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