You might have heard EFT offers a nodel-independent approach in a bottom-up setup. This lecture will aim at understanding l sharpening this stotenent.

In this road our first stop will in fact be to look at model deperderee, in the form of matching for which purpose we need the foll theory, waled beyond the EFT regive.

To set notation

A) Fermi Theory

It is perhaps the mort used exagle but it'll serve is to get started even if some of you dud this before.

The UV model's action $\left(W_{+}=\left(W_{-}\right)^{+}\right)$

$$
\left.\begin{array}{rl}
S_{u v}=\int d^{4} x[& w_{+}^{v}\left(\partial_{\mu} \partial^{\mu}+M_{W}^{2}\right) w_{v}^{-} \\
& -\frac{\partial}{\sqrt{2}} w_{\mu}^{+} J_{-}^{\mu}+h \cdot c \cdot
\end{array}\right]
$$

where $J_{\mu}=\bar{\nu} \gamma^{\mu} P_{L} e+\bar{u} \gamma^{\mu} P_{L} d$ ad $\alpha_{e m}=0$. for a single fermion generation.

We will convect, ie. watch this Reorg to the EFT

$$
\begin{aligned}
S_{E F T} & =S_{\text {QED, ARD }} \\
& +\int d^{4} \times\left(-\frac{4}{\sqrt{2}} G_{F} \bar{u} \gamma^{\mu} P_{2} d \bar{e} \gamma_{\mu} v_{2}+h_{0} c .\right)
\end{aligned}
$$

For that purpox the Feynman Rules for each

So we can torn the diagram-equation

expanding on k^{2} / M_{w}^{2} to get $M_{w}=\frac{g v}{2}$

$$
-\frac{i g^{2}}{2 M_{w}^{2}}=-2 \sqrt{2} G_{F}, G_{F}=\frac{s^{2}}{4 \sqrt{2} M_{w}^{2}}=\frac{1}{\sqrt{2} u^{2}}
$$

The diagrams also help look at the expansion in position space; if ore does not have energy enough to produce $W^{\prime} s K \ll M_{W} \sim L^{-1}$ so your microscope dos rot have resolution ($n K^{-1}$) small enough to "see" the W boson \& the interaction looks point-like = contact.

In tact the gooltion space elects ca be made explicit and what ore stains 13 a Yokara-lite potential induced by the W

$$
V_{\text {weak }} v \frac{g^{2}}{4 \pi} \frac{e^{-M_{w r} r}}{r}
$$

It is interesting, after our toy OM exc ples with sicglestic potentials, to set eyes on an actual short distance fundamental potential in roture.

Some elements (γs) cave aloy for the vide but were it needed for matching. One can ve-do the sane matching wither them using the path integral for mutation

$$
\begin{aligned}
e^{i S_{E F T}} & \equiv \int D W^{+} D W^{-} e^{i S_{U V}} \\
& =e^{i S_{U V}\left[W_{E_{O} M}\right]}(1+\theta(\hbar))
\end{aligned}
$$

The intuitive connection is we integante over the field we con it see directly to be left with the effects on other particles \& in a quantum exprrion He first ter follows the classical path i.e. He E.O.M.
(II.a) You con de this yourselves, take W's EoM

$$
\left(\partial^{2}+M^{2}\right) W_{E_{0} M}^{-}-\frac{g}{\sqrt{2}} J^{-} \equiv 0
$$

\& putting it back on the action, then expandiz on $\mathrm{J}^{2} / \mathrm{m}^{2}$ will produce

$$
S_{E F T}=\int_{1} d^{4} \times C_{E O M} \bar{T}_{\mu}^{+} J^{-\mu}
$$

which contain Fermi's ogerator

$$
+\int d^{\mu} x\left(-\frac{4}{\sqrt{2}} G_{F} \bar{u} \gamma^{\mu} p_{2} d \bar{e} \gamma_{\mu} v_{2}+h_{0} c .\right)
$$

and by equation the two of finding Com you can reproduce the diagram result for G_{F} as a function of $g 1 M_{W}$.
B) - A complex light scular

Consider row a conglex scalar ϕ bern the all particle with nos m below a scale A. This will be the central scenario for the rest of the lectoves so better get familiar

$$
\phi \equiv \frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right)
$$

Here is a $U(1)$ global squinty $\phi \rightarrow e^{i \theta} \phi$ which we assure is conserved.
If's action to order $1 / \Lambda^{2}\left(\phi^{\prime}{\underset{\mu}{\mu}} \phi \equiv \phi^{*} \partial_{\mu} \phi-\left(\partial_{\mu} \phi^{v}\right) \phi\right)$

$$
\begin{array}{r}
S_{\text {EFT }} \equiv S_{4} \equiv \int d^{4} \equiv \mathcal{L}_{4} \\
+\frac{\int d^{4} x\left(\partial_{\mu} \phi^{*} \gamma^{\mu} \phi-m^{2} \phi^{k} \phi-\frac{\lambda}{4}\left(\phi \phi^{k}\right)^{4}\right.}{\Lambda^{2}}\left(\phi^{*} \phi\right)^{3}+\frac{c_{s}}{\Lambda^{2}} \phi^{*} \phi \partial^{2} \phi^{*} \phi \\
\left.+\frac{c_{z}}{n^{2}}\left(\phi^{*} \dot{\partial}_{\mu} \phi\right)\left(\phi^{*} \dot{\partial}^{\mu} \phi\right)+\sigma\left(\frac{1}{\Lambda^{4}}\right)\right)
\end{array}
$$

If you dou't know ar have for golten dienional analysis gives $[\phi]=[2]=1$ and determines in torn powers of Λ.

For the remainder of this lecture we will work on matching to illustrate model (in)dejendree
B. 1 Heavy Singlet

Consider a real scalar S with action in the UV $\swarrow=\mathcal{L}_{4}\left(m \rightarrow m_{O V}, \lambda \rightarrow \lambda_{U V}\right)$

$$
S_{W}=\int d^{k}\left(\mathcal{L}_{4}^{u v}-\frac{1}{2} S\left(\partial^{2}+m_{s}^{2}\right) S-k M_{s} S \phi^{k} \phi\right)
$$

where we take S leary $M_{s}>m$ so we can integrate it out as we died with the w to get to co con do this's

$$
\begin{aligned}
S_{E F T}^{s}=\int d^{4} x(& \mathcal{L}_{4}^{u v}+\frac{1}{2} k^{2}\left(\phi^{*} \phi\right)^{2} \quad(\text { yourselves } \\
& \left.-\frac{k^{2}}{2} \frac{1}{M_{s}^{2}}\left(\phi^{*} \phi\right) \gamma^{2}\left(\phi^{*} \phi\right)+\theta\left(M_{s}^{-4}\right)\right)
\end{aligned}
$$

and matching with the original $S_{E F T}^{S}=S_{E F T}$

$$
\begin{aligned}
& \lambda=\mathcal{Z}_{u v}-2 v^{2} ; \frac{c_{s}}{a_{0 u}^{2}}=-\frac{k^{2}}{2 M_{s}^{2}}, c_{G}=c_{g}=0 . . . ~ . ~ . ~ \\
& m_{0}^{2}
\end{aligned} ;
$$

B. $2 \operatorname{sU}(2) / U(1)$ Goldstones
consider the case in which ϕ is a preudo geldatove boson and so naturally light although we won't get into bow it obtained its mass.

The galditure could have cone from a citrogly interacting sector of scale $\Lambda_{s}=4 \pi f$ but regardless the action is largely determined by the group structure That defines the Goldstones. Cone of this has been covered bet let we give the basics

Any grays dement can be factonsed into a broke \& unbroken part
Element: $\quad G_{T}=G_{i} G_{t}$ Unbroken
exponential of exponential of
Gerevators: $\quad T=\{X, t\}$
Broken" "unbroken
Consider the field dependent goop eleven ξ which 13 of the tom $G_{\text {Ex }}$.

How does ξ tron form?
As groups elements to, it I do a transformation $G_{1} d$ then mother G_{2} the rousting is $G_{2} G_{1}$. Nom tare $G_{1}=\xi_{1} G_{2}=G$

$$
\xi \longrightarrow G \xi=\xi^{\prime} h \quad \xi^{\prime}=G \xi h^{-1}
$$

field indeguedut
for He RHS ${ }^{\text {T }}$ to be in $G_{x} h(\xi)$
Now to the case at had su(2) moke to U(1)

$$
\begin{aligned}
& \xi=e^{i \sigma \cdot \varphi / t} \hat{\uparrow} \quad \varphi=\binom{\varphi_{1}}{\varphi_{2}} \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& \text { scale }[t]=1 \quad \sigma \cdot \varphi=\varphi_{1} \sigma_{1}+\varphi_{1} \sigma_{2}
\end{aligned}
$$

where σ_{1}, σ_{2} are the broken generators (X) while σ_{3} is unbroken (t). They satisfy:

- Generators $t=\left\{\sigma_{3}\right\}, X=\left\{\sigma_{1}, \sigma_{2}\right\}$,
- Lie Algebra $[t, t] \rightarrow t,[t, X] \rightarrow X$,
- Trace $\operatorname{Tr}(X t)=0$.
as follows from the unbroken group being dosed l fully antisyminetric structure costars.

The fields φ tronform ron-lineorly

$$
\xi \rightarrow G \xi h(\xi) i \quad h=e^{i \sigma_{3} g(\xi)}
$$

but the wrbiration

$$
\xi^{+} \partial_{\mu} \xi \rightarrow \frac{h^{+}(\xi) \partial_{\mu} h(\xi)}{\text { in } h}+\frac{h^{+}(\xi)\left(\xi^{+} \partial_{r} \xi\right) h(\xi)}{\text { in x }}
$$

when projuted into the broken piece

$$
U_{\mu}^{a} \equiv \operatorname{Tr}\left(\frac{\sigma^{a}}{2} \xi^{\dagger} g_{\mu} \xi\right) \quad a=1,2
$$

freeform as $u_{\mu}^{a} \sigma_{a} \rightarrow h^{+} U_{\mu}^{\alpha} \sigma_{a} h$
Now we can write invariant (the squinty is von-livear but it 13 still there!) terns in our action, the first:

$$
S_{u V}^{g}=\int d^{4} x\left(-\frac{t^{2}}{2} \sum_{a=1,2} u_{\mu}^{a} u^{a \mu}\right)
$$

One can fard $U_{j r}$ in exact form bat for us it's enough to expand on 1/t (II) One can use the formula

$$
e^{-A} \partial e^{A}=\sum_{n} \frac{1}{n!} \underbrace{\left[-A,\left[-A, \ldots[\partial A)_{--}\right]\right.}_{n \text { tines }}
$$

to obtain

$$
u_{\mu}^{a}=i\left[\frac{2 \mu \varphi^{a}}{t}+\frac{2}{3 t^{3}} \varphi_{1}{\underset{z}{4}}_{2} \varepsilon_{b 3 a} \varphi_{\substack{b \\ \text { levi-cinta }}}+\sigma\left(\frac{\varphi^{5}}{t^{5}}\right)\right]
$$

This yield es an action

$$
S_{E E T}^{\delta}=\int d^{4} x\left(\frac{2 \varphi \partial \varphi}{2}-\frac{2}{3 t^{2}}\left(\varphi_{1} \tilde{2} \varphi_{2}\right)^{2}+\theta\left(\frac{1}{t^{4}}\right)\right)
$$

where it is useful to vote I define

$$
\begin{aligned}
\varepsilon_{a b_{3}} \varphi^{a} \partial_{\mu} \varphi^{b} & =\varphi^{\prime} \partial_{\mu} \varphi^{2}-\varphi^{2} \partial_{\mu} \varphi^{\prime}=\varphi^{\prime} \stackrel{\rightharpoonup}{\partial} \varphi^{2} \\
& \equiv \varphi^{\top} T \partial_{\mu} \varphi=\phi^{\cdot} \stackrel{\partial_{\mu}}{ } \phi
\end{aligned}
$$

with $T=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), \phi=\frac{1}{\sqrt{2}}\left(\varphi_{1}+i \varphi_{2}\right)$,
whore the bart relation allows corneetio with the original EET action as

$$
c_{6}=c_{5}=0, \frac{c_{g}}{\Lambda^{2}}=\frac{2}{3 t^{2}}
$$

Extra Problem you asked about it so Lave's a perturbative UV confection of

$$
\begin{aligned}
& S_{\text {UV: }}^{g:} \\
& S_{(O v)^{2}}^{g}=\int d^{2} x\left(\frac{1}{4} \operatorname{Tr}\left(\partial_{\mu} \Delta \gamma^{r} \Delta^{+}\right)\right. \\
&-\frac{\lambda}{4}\left[\tilde{f}^{2}-\frac{\operatorname{Tr}\left(\Delta \Delta^{+}\right)}{2}\right]
\end{aligned}
$$

where

$$
\Delta=\left(\begin{array}{cc}
\Delta_{3} & \Delta_{1}
\end{array}-i \Delta_{2}+\left\{\Delta_{1}+i \Delta_{2} \quad-\Delta_{3} .\right)=\left\{\sigma_{3} \xi^{t}\right.\right.
$$

with Δ_{i}, S real seulars ξ as given and $\Delta \rightarrow G \Delta G^{+}$under SueZ)

- what is the voe.vo of S, 〈0|S|0〉?
- Is there al unbroken sym actors?
- Roy you obtain Suv if you substitute S by its vel in the action?
B. 3 A slice of AdS /CFT

Conformal field thong has so scale but one can introduce scales above ad below a conformal rage $\left(\Omega, \Lambda_{p}\right)$. In the Ads dual this corresponds to a "slice" \therefore i. two braves each associated with $1, \Lambda_{p}$ where $\Lambda \sim \Lambda_{p} e^{-\Lambda_{p} \pi R}$ with Λ_{p} the AdS curvature \& πR the slice length,

Ad below n we have that EET works. To cet it short the AdS aide allows us to conpute correlation funitions, for a scalor cougled to a CFT ogerator of dinension $v+3$

$$
\delta_{u v}=\int d^{4} \times\left(\mathcal{L}_{4}^{u v}(\underline{\varphi})+\frac{\omega}{\Lambda_{p}^{2}} \underline{\varphi} \theta_{C F T}+\mathcal{L}_{C F T}\right)
$$

with the self evergy (Ghergletta TAS/ Leetores) being

$$
\begin{aligned}
S_{U V} & =\int \frac{d_{p}^{4}}{(2 \pi)^{4}} \frac{1}{2} \underline{\varphi}(-p) \sum_{c \in T}(p) \underline{\varphi}(p)+S_{4} \\
\sum_{C F T}(p) & =\beta \frac{q_{0}\left[I_{v}\left(q_{0}\right) K_{v}\left(q_{1}\right)-I_{v}\left(q_{1}\right) K_{v}\left(q_{0}\right)\right]}{I_{v+1}\left(q_{0}\right) K_{V}\left(q_{1}\right)+I_{v}\left(q_{1}\right) E_{V+1}^{*}\left(q_{0}\right)} \\
q_{1} & =\frac{p}{\Lambda}, \quad q_{0}=\frac{p}{\Lambda_{p}}
\end{aligned}
$$

ad I_{v}, K_{v} are the firt k secend
modified Bessel functions of the first \& second and with expannou

$$
\begin{aligned}
& I_{a}(z)=\left(\frac{z}{2}\right)^{a} \sum_{n=0}^{\infty} \frac{\left(z^{\eta} / 4\right)^{n}}{n!\gamma(n+a+1)} \\
& \left.I_{-a}(z)=\frac{\pi}{2} \frac{\left(I_{-a}(z)-I_{a}(z)\right.}{\sin (\pi a)}\right)
\end{aligned}
$$

(III) with this meh information ore can export on $P / \Lambda \ll 1$ to obtain ($\alpha \equiv \Lambda\left(\Lambda_{p}\right)$

$$
\begin{gathered}
\sum_{C F T}=\beta\left(\frac{p^{2}}{2 v}\left(1-\alpha^{-2 v}\right)+a_{4}(\alpha) \frac{p^{4}}{\Lambda^{2}}\right) \\
a_{4}=\frac{(1-v) \alpha^{-4 \nu-2}+(1+\nu) \alpha^{-2}-\alpha^{-2 v}\left(2 \alpha^{-2}+(v-1) \nu\left(1-\alpha^{-2}\right)\right)}{8 v^{2}\left(v^{2}-1\right)}
\end{gathered}
$$

which con be taken beak to portion rep to obtain

$$
S_{E F T}^{A A S}=\int d^{2} x\left(\frac{1}{2} \varphi^{T}\left[-\partial^{2}\left(1+\beta \frac{1-\alpha^{-2 v}}{2 v}\right)+\frac{\alpha_{4} \beta}{\Lambda^{2}}\left(\partial^{2}\right)^{2}\right) \underline{\varphi}+\ldots\right.
$$

which we can toun into the form of SEFT by forot renormalising the fiellds

$$
\underline{\varphi}=\left(1+\frac{\beta\left(1-\alpha^{-2 v}\right)}{2 v}\right)^{-1 / 2} \varphi \equiv z^{-1 / 2} \varphi
$$

ung EoM for φ

$$
\begin{aligned}
& S_{\psi}^{W}(\varphi)=\int d^{4} x\left(\frac{1}{2} \varphi^{T}\left(-2^{2}-\frac{m_{u v}}{z}\right) \varphi-\frac{\chi_{v v}}{4 z^{2}} \frac{\left(\varphi^{\top} \varphi\right)^{2}}{4}\right) \\
& C^{\operatorname{com}}-\left(\partial^{2}+\frac{m_{\omega}^{2}}{z^{2}}\right) \varphi-\frac{4 \lambda u}{16 z^{2}} \varphi \varphi^{2}=\theta\left(\frac{1}{\Lambda^{2}}\right) \\
& \int_{E F T}^{A d S} C \int d^{4} x \frac{a_{4}}{2 a^{2} z}\left(\frac{m_{u v}^{2} \varphi}{z}+\frac{z_{v u}}{4} \frac{\varphi \varphi^{2}}{z^{2}}\right)^{2}
\end{aligned}
$$

to obtain

$$
\begin{aligned}
& m^{2}=\frac{m_{u v}^{2}}{z}+? \quad \lambda=\frac{\lambda_{u v}}{z^{2}}+? \\
& \frac{c_{6}}{n^{2}}=\frac{a_{4} \lambda^{2}}{4 \Lambda^{2} 7^{5}} \simeq \frac{a_{4} \lambda^{2}}{4 \Lambda^{2} z^{5}}+\theta\left(\Lambda^{-4}\right)
\end{aligned}
$$

Summary
We have seen that different UV models will give rise to differat coefficients c_{i} \& sone right he zero. However if oe keeps all coefficients general od confutes observables there's always the possibility to set whichever coefficient vanishing in the predictions.

That is the sense in which EFTS are nodal indepalnt, ore doen't weed the c's as a function of UU parameters joint to know that fley ave there to mock in an EFT. That's what well do in the next lecture.

