A) Field redefinitions

To obtain a truly modblinderealet (or all-rodel enco-passing) EFT ore should write all terms allowed bn the symmetry to a given order. Not all ageratos are independent however; fields ave integration variables in the path integral 2 there exists a freedom to do field redefinition 2 obtain a theom physically indistinguishable. This reduindacy in the descugction follows from the LST fou ila

$$
S_{l n \rightarrow \text { wat }}=\frac{\int D \varphi\left[\prod \prod_{i} \frac{p_{i}^{2}-m^{2}}{\sqrt{z}} \tilde{\varphi}\left(p_{i}\right)\right] e^{i S[\varphi]}}{\int D \varphi e^{i S[\varphi]}}
$$

That says the S mather 13 in the alleles residue of correlation functions. Ore hus that a field tran form of the form

$$
\phi \rightarrow \phi+\delta \phi, \quad s \phi=\sum_{n=2} c_{n} \phi^{n}
$$ will change the correlation functions but not the residue.

We say that this is because both cases excite a oe partide state out of the vacuum

$$
\langle 0| \phi \quad a^{+}|0\rangle=\langle 0|\left(\phi+\sum_{n=2} c_{n} \phi^{n}\right) a^{+}|0\rangle
$$

and other lectures have gov into more depth as to why this happens.

Here instead of dwelvily in the them weill show how this harpers in practise.

Conslder the action $S=S_{4}+S_{E}$ with a snigle higler dinensiunal operator

$$
\begin{aligned}
S_{E} & =\int d^{4} x \frac{C_{E}}{\Lambda^{2}}\left(\phi^{k} \phi \partial^{2} \phi^{*} \phi-2 \phi^{*} \phi \partial_{\mu} \phi^{*} \partial^{\mu} \phi\right) \\
& =\int d^{4} x \frac{C_{E}}{n^{2}} \phi^{\alpha} \phi\left(\phi^{2} \partial^{2} \phi+\text { h.c. }\right)
\end{aligned}
$$

It is a lirear conbiration of an greator we considived ad oe we diduit. Now considar the field trastormation

$$
\phi \rightarrow \phi+\frac{S \phi}{\Lambda^{2}}
$$

and its effert an the PI

$$
\begin{aligned}
& S_{4}+S_{E} \rightarrow S_{4}+\frac{\delta_{\phi} \delta}{\lambda^{2}} \frac{\delta S}{\delta \phi}+h c \cdot+S_{E}+\theta\left(\frac{1}{n^{4}}\right) \\
& =S_{4}+S_{\bar{E}} \\
& +\int d^{4} \times \frac{\delta \phi}{\Lambda^{2}}\left[-\left(\partial^{2}+m^{2}\right) \phi^{\alpha}-\frac{\lambda}{2} \phi^{\alpha} \phi \dot{\phi}\right]+h \cdot c .
\end{aligned}
$$

Now if ore chooses $S \phi=C_{E} \phi^{\alpha} \beta \phi$ the venting action

$$
\begin{aligned}
& \bar{S} \equiv S_{4}+S_{6} \\
= & S_{4}-\frac{c_{E}}{\Lambda^{2}} \int d^{4} \times 2\left(\phi^{*} \phi m^{2} \phi^{*} \phi+\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{3}\right)
\end{aligned}
$$

with parameters in the \bar{S} case

$$
\bar{\lambda}=\lambda+\frac{c_{6} 8 m^{2}}{\Lambda^{2}} \quad / \quad c_{6}=\frac{\downarrow}{} \frac{7 c E}{n^{2}}
$$

(III. a) You can check Khat this 13 the sane resulting action if re use the Eam

$$
\partial^{2} \phi=-m^{2} \phi-\frac{7}{2} \phi^{2} \phi^{k} \quad o n
$$

$$
\left(\phi^{\alpha} \phi\right) \phi^{*} \partial^{2} \phi+h_{0} c_{0} \stackrel{\Downarrow}{=}-2 \phi^{r} \phi\left(m^{2} \phi^{*} \phi+\frac{\lambda}{2}\left(\phi^{*} \phi\right)^{2}\right)
$$

For higher order howe var vote that the procedure "safe to use" is with sod.

Let us row slow for a few S-ratrix elements that moth 5 \& \bar{S} give the sa re result.

First let's take $2 \rightarrow 2$ scattering or equivalently 4 -point where
5

$$
\begin{aligned}
& -\lambda(\phi \cdot \phi)^{2} / 4 \rightarrow \stackrel{\imath}{2} \rightarrow \quad-i 2 \cdot 2 \frac{\lambda}{4} \\
& \frac{c_{E}^{2}}{a^{2}} \phi^{\alpha} \phi\left(\phi^{\prime} D \phi+h \cdot c_{\cdot}\right) \\
& \downarrow \\
& \frac{c_{E}}{n^{2}} \quad i\left(-2\left(p_{1}^{2}+p_{3}^{2}\right)-2\left(p_{2}^{2}+p_{4}^{2}\right)\right) \frac{C_{E}}{n^{2}}
\end{aligned}
$$

The sum for on-shell partides
\bar{S}

$$
-i \lambda-i 8 \frac{m^{2}}{n^{2}} c=
$$

$$
\stackrel{\rightharpoonup}{\lambda} \quad-i \bar{\lambda}=-i\left(\lambda+\frac{8 m^{2}}{n^{2}} C E\right)
$$

Let's do another one, the contrut term@ Got
$\overline{5}$

+ non local terns $\frac{1}{9^{2}-m^{2}}$
If we compere with the contact term in SE we have to do sore conbinatoncs

$$
(4+4)(3!)^{2} \leftarrow \frac{\text { external }}{\text { consinatovics }}
$$

$$
\begin{aligned}
& x\left(\frac{6 m^{2}+2 q^{2}}{4}\right)\left(\frac{-i C_{E}}{n^{2}}\right) \frac{i}{q^{2}-m^{2}}\left(\frac{-i z}{4}\right) \\
& =-i(3!)^{2} \lambda \frac{G_{E}}{a^{2}}+\underbrace{\frac{8 m^{2}}{q^{2}-m^{2}}(-i) \frac{7}{2}(31)^{2}}_{\text {ron local }}
\end{aligned}
$$

(JIb) If you are confused by the combinatons the same result can be otstainal tron:

$$
\begin{array}{r}
\langle 0| e^{i \int d^{4} x \mathcal{L}_{3}} a_{1} a_{2}^{+} a_{3}^{+} b_{4}^{+} b_{5}^{+} b_{6}^{+}|0\rangle \\
=\ldots+\frac{1}{2}\langle 0|\left(i S_{\phi 4} i S_{E}+i S_{E} i S_{\phi^{4}}\right) \\
\\
\times a_{1}^{+} a_{2}^{+} a_{3}^{+} b_{4}^{+} b_{5}^{+} b_{6}^{+}|0\rangle
\end{array}
$$

with $S_{\phi^{4}}=\int d^{4} x\left[-\frac{\lambda\left(\phi^{\prime} \phi\right)^{2}}{4}\right], S_{E}$ as given, and ϕ are the quantised ϕ_{I} given in the int roduction.

It's quite tedious but remember we are all interested in the $\frac{q^{2}}{q^{2}-m^{2}}$ terms, which re tare as $\frac{q^{2}}{q^{2}-m^{2}}=\frac{q^{2}-m^{2}}{q^{2}-m^{2}}+\frac{m^{2}}{q^{2}-m^{2}}=1+$ local

What have we learned? The two theories are the sane \& fleve is so reed to confute twice, I con port choose ore. In our cases we defined our bases with S_{6} so we say

$$
\begin{aligned}
S_{E F T}+S_{E} \sim S_{Y} & +\int d^{4} x \frac{c_{G}-c_{E} \nexists}{n^{2}}\left(\phi^{*} \phi\right)^{3} \\
& +S_{g}+S_{S}
\end{aligned}
$$

But an unknown plus an unknown is an unknown is an unknown so thee's so reed to va 2 separate vanables, defoe

$$
c_{6}^{\prime}=c_{6}-C_{E} \lambda
$$

ad we are back in SEFT.
B) Unitarily

As we saw for Id seatterry, the EFT will signal its limit if ore krons where to look.

Consider $\phi(p)+\phi^{\prime \prime}(k) \rightarrow \phi\left(p^{\prime}\right)+\phi^{*}\left(k^{\prime}\right)$ scattering and the exact S midrib dement

$$
\begin{aligned}
S_{2 \rightarrow 2}= & (2 \pi)^{3} 2 E_{p} 2 E_{k} \delta^{3}\left(p-p^{\prime}\right) \delta^{3}\left(k-k^{\prime}\right) \\
& -i \mu(2 \pi)^{4} \delta^{4}\left(p+k-p^{\prime}-k^{\prime}\right)
\end{aligned}
$$

Unitonty dewars

$$
S S^{t}=(2 \pi)^{3} 2 E_{p} 2 E_{k} S^{3}\left(p-p^{\prime}\right) S^{3}\left(k-k^{\prime}\right)
$$

$$
\int \frac{d^{3} q^{\prime}}{2 E q^{\prime}(2 n)^{3}}
$$

(III.C) If you haver't already you con show that if $M=M_{0}$ with Moscattering-angle θ indegendut and neglecting $H e$ mas of ϕ

$$
2 \operatorname{Tm}\left(\mu_{0}\right)+\frac{\left|M_{0}\right|^{2}}{8 \pi}=0
$$

which jor can show, inglies

$$
|R e| M_{0}| | \leq 8 \pi .
$$

We do have a feer operators t Lat would be subject to this bound. Take

$$
\begin{array}{r}
\frac{c s}{\Lambda^{2}} \phi^{0} \phi \partial^{2} \phi^{0} \phi \\
-i m=-i \frac{c s}{\Lambda^{2}}\left[\left(p_{1}+p_{2}\right)^{2}+\left(p_{3}+p_{4}\right)^{2}\right. \\
\left.\quad \perp\left(p_{1}-p_{3}\right)^{2}+\left(p_{2}-p_{4}\right)^{2}\right]
\end{array}
$$

that is $M=2 \operatorname{cs} \frac{s+t}{\Lambda^{2}}$.
Thus con be expander in partial waves each with a bound; the oe ne know r about is

$$
M_{0}=\frac{1}{2} \int \text { sod } M P_{0}(\theta)=\frac{1}{2} \int 20 d \theta M
$$

You con show that this leads to

$$
\left|\frac{S C_{s}}{n^{2}}\right| \leqslant 8 \pi
$$

Ore can estimate the scale at which unitarily is not rergeected \mathscr{A} we expect hen physics as

$$
E_{U V} \leqslant \sqrt{\frac{8 \pi}{c_{s}}} \Lambda
$$

A similar bound applies to Fermi's Thong
or even to the SM wilhart the this scalar. In aralogy we have

$$
E_{a v} \leqslant \sqrt{8 \pi G_{F}^{-1}}=\sqrt{8 \sqrt{2} \pi} v
$$

which will help you understand why the LHC was said to have a guava teed discovery.

For the case of a model we know roth sides of the equation of re con cleek for consirterey.
(IIIC) Take the sight scaler role \& substitute $E_{G u}=M_{S} K$ the matchiz condition is the resulting ie quality constant for all k ?

