Anomalous dimensions
A) Experimental data

Too much calculating indoors is wot recommended by doctors so let's go out a concave with experiment

Say an experinentalest deduced the value or the local term in the G-goint englitude by reasuriy the differential cross seetra

$$
\phi^{*}+\phi \rightarrow \phi^{r}+\phi+\phi^{0}+\phi
$$

to find a value M local and the every at which their eygeri-at geared is KIR.

Then our co jutata dies

$$
\mu_{\text {local }}\left(K_{\text {IR }}\right)=\frac{(3!)^{2} c_{6}^{k}}{\Lambda^{2}}\left[1-\frac{\gamma}{2} \lg \left(\frac{\mu^{2}}{K_{\text {IR }}^{2}}\right)\right]
$$

where $\gamma=\frac{4(3!) \lambda}{(4 \pi)^{2}}$ as we found out. we rout to write predictions in term of observed paranctes so define

$$
\frac{C_{6}^{I R}}{\Lambda_{-}^{2}} \equiv \frac{\mu_{\text {coal }}\left(K_{I n}\right)}{(3!)^{2}}=\frac{C_{6}^{k}}{\Lambda^{2}}\left(1-\frac{\gamma}{2} g\left(\frac{\mu^{2}}{K_{I n}^{2}}\right)\right.
$$

Now use $C_{6}^{I K}$ to ante the a ghilude for by k

$$
\begin{aligned}
M_{\text {local }}(k) & =\frac{c_{6}^{I R}}{\Lambda^{2}} \frac{\left(1-\gamma / 2 \lg \left(\frac{m^{2}}{k^{2}}\right)\right)}{\left(1-\gamma / 2 \lg \left(\frac{m^{2}}{k_{I R}^{2}}\right)\right)} \\
& \simeq \frac{c_{G}^{I R}}{\Lambda^{2}}\left(1+\frac{\gamma}{2} \lg \left(\frac{k^{2}}{k_{I R}^{2}}\right)+\theta\left(\gamma^{2}\right)\right)
\end{aligned}
$$

So given $\gamma>0$ we have that if we repeat the experimat @ higher erergias the effective coupliy increases!
B) Anomalous dimensions

The example ne looked at showed that offer rooky contact with experi-es the elect is a lojanthine vacation with the scale of your experiment \& μ disappears

The un-physicalvess of μ can be further exploited to ohtach the rear ale sation group evolution.

Let's revisit the exagle \& demand that the final result have to pe dependence

$$
\begin{aligned}
& \mu \frac{d}{d \mu}\left(\frac{c_{6}}{\Lambda^{2}}\left(1-\gamma g\left(\frac{\mu}{k}\right)\right)\right)=0 \\
& \mu \frac{d}{d \mu} c_{G}=\frac{c_{6} \gamma}{(1-\gamma g(r / k))}=\gamma c_{6}
\end{aligned}
$$

subleading

We are in a loop expansion, so selviy the equation jenturbatively

$$
c_{6} \simeq \int_{\mu_{0}}^{\mu} \gamma c_{6}^{0}\left(\mu_{0}\right) \frac{d \mu^{\prime}}{\mu^{\prime}}=c_{6}\left(\mu_{0}\right)+\gamma c_{6}\left(\mu_{0}\right) g\left(\frac{\mu}{\mu_{0}}\right)
$$

whose effect on the observable

$$
c_{6}\left(\mu_{0}\right)+\gamma c_{6}^{0} l g\left(\frac{k}{\mu_{0}}\right)=\int_{\mu_{0}}^{k} d c_{6}(\mu)
$$

So we can obtain the grngsical vesolt if re town μ into a dummy variable integrate between two scales we - bierce.
so for it was all equivalent to I loup, bot row we con integrate wilhart expanding on γ

$$
\int \frac{d c_{6}}{c_{6}}=8 \int \frac{l_{\mu}}{\mu}
$$

Lef's se row the ratching valure of c_{6} in the UU as an ingut

$$
\int_{c_{6}}^{c^{6}} \frac{d \dot{c}_{6}}{c_{6}^{\prime}}=\gamma \int_{\Lambda}^{k} \frac{d_{\mu}}{\mu} \Rightarrow c_{6}(k)=c_{6}^{u v}\left(\frac{k}{\Lambda}\right)^{\gamma}
$$

so that the predection for e.g. He Al-CFT rodel is

$$
\mu_{\text {local }}=(3!)^{2} \frac{(k)^{\gamma}}{\Lambda^{2} \Lambda^{\gamma}} \frac{a_{4(\alpha)} \lambda^{2} \beta}{4 v(v+1)}
$$

Can you row see why γ is referved to as ano-alous dinensian?

In our jenturbative theory 8 is small so the divesion is lot for frum 2 stragly cougled systers con hore scaley far from the usual integerve. An exargle is the AdS/CET carplion which
in the limit $\alpha \rightarrow \infty$ gives

$$
a_{4} \rightarrow \frac{-1}{8^{v(\nu+1)}}\left(\frac{\Lambda}{\Lambda p}\right)^{2 \nu} \quad m i(h \quad v>0
$$

but ohermise arbitrary.
(Ia) We have approximated 8 to a contact; which is rot quite right since $\lambda(\mu)$ Las its own RGE of

$$
\mu \frac{d \lambda}{d \mu}=b_{0} \lambda^{2} \text { with bo costar }
$$

Use the chain role to write

$$
\mu \frac{d C_{6}}{d \mu}=\mu \frac{d \lambda}{d \mu} \frac{d C_{6}}{d \lambda}
$$

substitute the $R C^{-}$for A and solve for initial anditiou)

$$
C_{G}(\text { suv })=C_{G}^{u v}
$$

Extra po $=5 /(4 \pi)^{2}$ for 2 fields, reproduce this result.
C) Operator mixing

We have considered only divergences popentional to C_{6}. What about the others? They wald abs require renormalisation of their own corrals but thy also booing a rew feature, mixing.

An exagle we can see diagrammatically is

Since it will contribute to $\left(\phi^{*} \phi\right)^{3}$ but it comes from c_{s} or c_{g} so it will look like

$$
\operatorname{Sell} \subset \int d^{c}\left(\frac{c_{s} \#}{(4 \pi)^{2}}\left(\phi^{k} \phi^{3}\right)\right)
$$

That is it requires the revornalesation of c_{6} proportional to c_{s}.

$$
C_{G}=C_{G}^{R}+\# C_{G} \frac{1}{\varepsilon}
$$

By now me know to do better hern port a \# symbol, ne con worpte.

Ore can show that c_{8} will rot contribute which I leave as an exarcige. For C_{s} we need the second order variation:

$$
\begin{aligned}
(S \varphi)^{2} \delta^{2}\left(\varphi^{\top} \varphi\right) \partial^{2} \varphi^{\top} \varphi= & 2 S \varphi^{\top} S \varphi \partial^{2} \varphi^{\top} \varphi+2 \varphi^{\top} \varphi \partial^{2} \delta \varphi^{\top} S \varphi \\
& +8 S \varphi^{\top} \varphi \partial^{2} \varphi S \varphi^{\top} \\
= & S \varphi\left[4\left[\partial^{2}\left(\varphi \varphi^{\top} \varphi\right)\right] \mathbb{H}+8 \varphi \vec{\partial}^{2} \varphi^{\top}\right] \delta \varphi
\end{aligned}
$$

Neat we need the third term in

$$
\log (1+x)=1+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\theta\left(x^{4}\right)
$$

To put it in
iS l-loap

$$
\begin{array}{r}
C-\frac{1}{2} \frac{1}{3} T_{r}\left[\frac{-\delta^{2} S_{\beta}}{m^{2}-(l-i \alpha)^{2}} \frac{-\delta^{2} S_{\phi^{4}}}{\left.m^{2}-(l-i)\right)^{2}} \frac{-\delta^{2} S_{\phi^{4}}}{m^{2}-(l-i \alpha)^{2}}\right]+ \\
+\quad S_{\phi^{4}} \quad S_{s} \\
S_{\phi^{4}} \quad S_{\phi^{4}}
\end{array}
$$

$$
\begin{aligned}
& =+\frac{1}{2}\left(\frac{\lambda}{16}\right)^{2}\left(\frac{c s}{4 \Lambda^{2}}\right) \\
& \text { - } \int d^{\top}(d d l] \operatorname{tr}\left[4\left(2 \varphi \varphi^{\top}+\pi \varphi^{\top} \varphi\right) 4\left(2 \varphi \varphi^{\top}+\pi \varphi^{\top} \varphi\right)\right. \\
& \left(4 \text { I }\left(\left(\partial^{2} \varphi^{\top} \varphi\right)+8 \varphi(2-i \varphi)^{2} \varphi^{\top}\right)\right] \frac{1}{\left(m^{2}-l^{2}\right)^{3}} \\
& =\frac{1}{2}\left(\frac{\lambda}{4}\right)^{2}\left(\frac{\operatorname{cs}}{4 \Lambda^{2}}\right) \int d^{4}+\frac{i}{(4 \pi)^{2}}\left(\frac{1}{\varepsilon}+\lg \left(\frac{\mu^{2}}{k^{2}}\right)\right) \\
& \text { - } \left.8 \varphi^{\top} \varphi \operatorname{tr}\left(.(4+2) \varphi \varphi^{\top}+\pi \varphi^{\top} \varphi\right) \varphi \varphi^{\top}\right] \\
& =i \int d^{4} \times \frac{\gamma^{2}}{2} \frac{(6+N)}{(4 N)^{2}} \frac{c^{4}}{\Lambda^{2}} \frac{\left(\varphi^{\top} \varphi\right)^{3}}{8}\left[\frac{1}{\varepsilon}+\lg \left(\frac{\mu^{2}}{k^{2}}\right)\right] \\
& \equiv-\frac{\bar{\gamma}_{G S}}{2}
\end{aligned}
$$

This will contribute to $c_{s}-c_{G}$ mixing a inglies Nat even if c_{s} only was produced in the UV, by the tine ne
get to the IR, C_{6} would appear.
This is rot quite the full stony because we hare tm o diagram self. Let's roo compute then but look at their structure

$$
\begin{aligned}
& \sim \int \frac{p^{2}+l^{2}}{\left(l^{2}-m 2\right)}(d) \\
& \sim \frac{1}{(4 \pi)^{2}} \frac{1}{\Lambda^{2}}\left(p^{2} m^{2}+m^{4}\right)
\end{aligned}
$$

These would renormalise fields \& mass. Field we take of by $\phi=\sqrt{z} \phi_{R}$ with $Z=1+\frac{\# m^{2}}{(4 \pi)^{2} \Lambda^{2}}$ which mould affect x rowing at the sac order as the very first contribution ne confuted proportional to c_{6}.

For the running of the c_{i}
coefflcicuts themselves this however is a second order effect

$$
\frac{c}{n^{2}}\left(\phi^{*} \phi\right)^{2}=\frac{c}{\Lambda^{2}} z^{2}\left(\phi_{n}^{k} \phi_{n}\right)^{2}=\frac{c}{n^{2}}\left(\phi_{n}^{k} \phi_{n}\right)^{2}+\theta\left(n^{-4}\right)
$$

This leaves us with

$$
\left.\sim \sim \sim \frac{l^{2}+p^{2}}{\left(l^{2}+k^{2}\right)^{2}} \dot{\sim} d l\right]
$$

where now re cannot reflect external monentum in the denominator (called k to destrguish tron muerator p)

The lost point I wat to make is to do with tex contributions \& mixing.

The autcose of the loop cogitation read rot be in the form of the operation of our bases, in particular

$$
\frac{\#}{(4 \pi)^{2}} c_{s}\left(\phi^{*} \phi\right)\left(\phi^{*} \square \phi\right)+2 \cdot c .
$$

might show os \& then re have to use Eseld-redefuntions again!

These will, as before, produce C_{6} and "secretly" give us wore mixy

$$
\mu \frac{d}{d \mu}\left(\begin{array}{l}
c_{G} \\
c_{s} \\
c_{g}
\end{array}\right)=\left(\begin{array}{ccc}
\gamma_{6 G} & \bar{\gamma}_{G g}+\gamma_{G S}^{E G M} & 0+\gamma_{\sigma_{g}}^{E_{0} M} \\
0 & \gamma_{s S} & \gamma_{s g} \\
0 & \gamma_{g s} & \gamma_{g g}
\end{array}\right)\left(\begin{array}{l}
c_{G} \\
c_{s} \\
c_{g}
\end{array}\right)
$$

It is aby the final sum Nat is physical. One would expect any operators to mix unless there's a symmetry reason, egg. if ϕ is a true Golbotice, $m, x, c_{3}, c_{B} \rightarrow 0$
and the symnethy grurantees they wan't appear at loop order. Other fines lowered ore finds unexpected cancellations, see 1409.0868. These were explained with gritude methods \& halicily selection rules unveiling new properties af QFTS 1505.01844.

Let us summarise the procedure then to convect the UV (Ω) ad the IR (K) when $n \gg K$.

- We match at true level fle OV \& EFT to find the operators coellicuents @ $\Omega, \mathrm{C}^{\mathrm{OV}}$
- We solve the RGE with initial cordiran $C(\mu=\Lambda)=C^{U V}$ to evolve down to the scale of our experiment.

Precision can be improved systematically, next mould b matching at 1 loop (setting $\mu=\Lambda$ in our diagram) then avaluy the 2 -loop RGEE which com be computed in the EFT etc.
There is also the case of multiple Λ_{i} 's in the S.M. we hove $m_{w}, m b, m c$ to "cross" if were going to do kaon physics let's say; at each energy regive we repeat the procedure

Summary
The aim of these lectures was to give you problems to teach yourselves about key features al EFTS, so it is rot up to re to write the sommarg. Go ahead \& write here whatever you leaved that you diduit know

Final Problem
Compate the c_{s} column of the aronalues dimension matrix by integraty

Eitler with diagras or as sketcled Lev nith furctional nethods.

$$
\begin{aligned}
& i \mathrm{~F}_{\text {ele }} c-\frac{1}{2}\left(d^{4} x(\operatorname{l\rho })(-1) \operatorname{tr}\left(\left(-\delta^{2} S_{\beta}\right) \frac{1}{m^{2}-(l-i \Delta)^{2}}\left(-s^{2} S c_{s}\right) \frac{1}{m^{2}-(l-i)^{2}}\right)\right. \\
& \left.=+\frac{1}{2} \int i(d l] i d p_{1}\right]\left[d p_{2} \mid\left[d p_{3}-\left(d / q_{4}\right](2 \pi)^{4} S^{4}\left(p_{1}+p_{2}+p_{3}+\sigma_{4}\right)\right.\right. \\
& \operatorname{tr}\left(\left(\frac{-\lambda}{16}\right) 4\left(\pi \tilde{u}^{\top}\left(p_{1} \tilde{\varphi}_{(\Omega)}\right)+2 \tilde{\varphi}\left(P_{1}\right) \tilde{\varphi}^{\top}\left(\beta_{2}\right)\right) \frac{1}{\left(l-P_{3}-\rho_{q}\right)^{2}-m^{2}}\right. \\
& \text { - } \left.\left(-\frac{c g}{4 \Lambda^{2}}\right) \frac{\left(4\left[\left(\rho_{3}+l_{4}\right)^{2} \tilde{\varphi} \tilde{\varphi}\left(\rho_{3}\right) \tilde{\varphi}\left(\varphi_{4}\right)\right] \tilde{I}+8 \tilde{\varphi}\left(_{\beta_{3}}\right)\left(l+\rho_{4}\right)^{2} \tilde{\varphi}^{\top}\left(\rho_{4}\right)\right]}{l^{2}-m^{2}}\right]
\end{aligned}
$$

where now re cannot neglect the p^{\prime} ' in the deronizator A ne Lave gone to Fourier transformed fields.

The roadrap.

- Use Feynnar parameters to wrath the devoli-ator as

$$
\frac{1}{A B}=\int_{0}^{1} d x \frac{1}{(x A+(1-x) B)^{2}}
$$

- Shift the loop nonatum to leave a de nominal tor as

$$
\left.\int i d l^{\prime}\right] \frac{e^{\prime 2}, e^{\prime} p, p^{2}}{\left(e^{12}-\Delta\right)^{2}}
$$

- Do the loop integrals a keep only the $\frac{1}{\varepsilon}+y \mu^{2}$ terms
- Do the x integral
- Go back to $\int d^{k} x \mathcal{L}(y)$ representation
and identity the operators generated
- If $\varphi^{\top} \varphi \varphi^{\top}(0 \varphi)$ is produced use the EoM to rearm it in faroof S_{6}
- Collect all your results to extract sis

The End.

Unless you wat to do it again for $\mathrm{Sg}_{\mathrm{g} \text { ! }}$

