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ScienceDirect
The all-atom molecular dynamics method can characterize the

molecular-level interactions in DNA and DNA–protein systems

with unprecedented resolution. Recent advances in

computational technologies have allowed the method to reveal

the unbiased behavior of such systems at the microseconds

time scale, whereas enhanced sampling approaches have

matured enough to characterize the interaction free energy with

quantitative precision. Here, we describe recent progress

toward increasing the realism of such simulations by refining

the accuracy of the molecular dynamics force field, and we

highlight recent application of the method to systems of

outstanding biological interest.
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Introduction
The very utility of DNA as the carrier of hereditary

information is derived from its ability to undergo hybrid-

ization, whereby two DNA strands or a DNA and an RNA

strand form a double-stranded (ds) DNA helix or a DNA/

RNA duplex in accordance with the pattern of comple-

mentary interactions between the strands’ bases,

Figure 1. RNA is also known to form higher-order struc-

tures, such as riboswitches in mRNA and ribozymes,

driven by both canonical base pairing and higher-order

non-canonical interactions. Other types of DNA–DNA

interactions, such as polycation-mediated interactions
Current Opinion in Structural Biology 2020, 64:88–96 
between dsDNA molecules and end-to-end base stacking

interactions are central to the processes of DNA conden-

sation [1] and the repair of double-stranded DNA

breaks [2].

Protein–DNA interactions largely dominate the organi-

zation of DNA into higher-order structures. Thus, histone

or histone-like proteins (in eukaryotes and prokaryotes,

respectively) organize dsDNA at several scales, from

individual protein–DNA complexes to higher-order clus-

ters and fibers, and, ultimately, into entire chromosomes.

The molecular mechanisms driving such multiscale orga-

nization are not yet fully understood, but they are known

to play a central role in gene expression. Both transcrip-

tion and translation require the concerted action of sev-

eral protein and RNA species organized into massive

supramolecular complexes [3]. Similarly, replication of

genomic DNA requires the action of numerous DNA-

binding proteins to synthesize DNA without losing the

genome’s integrity [4]. Protein–RNA interactions [5] play

essential roles in emerging fields, such as gene editing by

CRISPR–Cas [6] and in the formation of membraneless

organelles in the nucleus and cytoplasm through phase

separation [7]. The biological function of all the above

systems critically depends on the strength of nucleic acid

(NA)-protein interactions, as those should be strong

enough to ensure stable binding of interaction partners

that specifically recognize one another [8��] but also weak

enough to enable partner seeking by diffusion [9].

Matching their biological importance, NA–NA and

protein–NA interactions have been studied extensively

using the all-atom molecular dynamics (MD) approach.

Paramount to the success of such studies is the precision

of the molecular force field that prescribes the interaction

strength between the chemical groups. However, recent

long time-scale, quantitative characterization of NA–NA

and NA–protein interactions revealed considerable

imperfections of the existing molecular mechanics mod-

els [10,11��,12,13�]. Here, we describe recent advances in

characterizing NA–NA and protein–NA interactions

using all-atom MD simulation and increasing the realism

of such simulations. Readers interested in a more com-

prehensive description of computational studies of DNA–

protein systems are directed to a recent review [14��].

Molecular force fields
All-atom MD simulations of nucleic acids systems are

typically performed using the AMBER or CHARMM

force fields, which have been validated and improved
www.sciencedirect.com
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through multiple cycles of revisions. Presently, AMBER

bsc0 [15], bsc1 [16], OL15 [17] and CHARMM36 param-

eters for RNA [18] and DNA [19] are the most up-to-date

choices. A potential alternative is the OPLS force field

[20] with the recently developed NA parameters [21],

though it requires further validation by the community.

For MD simulations of protein-NA systems, AMBER

ff99SB [22] or ff14SB [23] or CHARMM36m [24] param-

eter sets for proteins contain the latest updates.

Historically, the improvement of NA force fields has been

focused on the refinements of backbone and glycosidic

torsion parameters [15,22,25]. Presently, both AMBER and

CHARMM-based simulations can maintain the experi-

mental double helical structure in tens of microseconds

simulations [26], although some artifacts with the

CHARMM36 simulations of longer dsDNA fragments

have been reported recently [27]. It has long been recog-

nized that MD simulations of unfolded proteins exhibit

overly collapsed protein conformations [28–30,31�,32–34],
in part, because the TIP3P water model (used by both

AMBER and CHARMM) energetically favors water–water

interactions over water–protein interactions. Conversely,

overly strong NA–NA and protein–NA interactions can be

potential artifacts of standard AMBER and CHARMM

simulations, which, in the case of peptide-mediated

DNA–DNA interactions, leads to qualitatively incorrect
www.sciencedirect.com 
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mulation outcomes [12]. Ion-specific effects are another

area of concern, in particular, to simulations of dense NA

systems [35].

Recognizing the problem, several approaches have been

developed to increase the realism of long time-scale

simulations of NA systems, which we describe in the

subsequent sections.

NA–NA interactions
Hybridization is the most fundamental type of DNA and

RNA self-assembly, a process in which hydrogen bonds

and base stacking interactions stabilize the double helical

structure in a nucleotide sequence-specific manner,

Figure 2a. Because of its complexity and biological sig-

nificance, the hybridization process has become a test

ground for advanced simulation methods and force field

refinement.

A typical problem encountered in the simulations of short

oligomers hybridization or small RNA hairpin folding is

the emergence of an intercalated base conformation [10].

Recognizing that the intercalation occurs because of the

overestimated base–base stacking and base–backbone

interactions, in comparison to base pairing, Chen and

Garcia refined the Lennard-Jones (LJ) parameters of

nucleobase atoms to weaken the stacking and strengthen

PCNA–DNA 
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Cation-mediated DNA–
DNA interactions
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ybridization process. (b) Root mean squared deviation of a CACAG RNA

 MD simulation. Panel (b) adapted from Ref. [11��]. (c) Condensation of

e energy of TA and CG repeat DNA duplexes. Panels (c) and (d) adapted
base pairing [10]. Following that, several revisions of the

LJ parameters have been suggested by several groups

[36–38].

The above-mentioned intercalation artifact is another

manifestation of the imbalance between water–water

and water–solute interactions. To remedy the problem,

the Shaw group introduced the TIP4P-D water model

and revised the AMBER ff14 RNA force field by

optimizing the partial charges, the LJ and torsional

parameters [11��]. Note that a similar strategy was used

previously by the Shaw group to refine the protein force

field [31�]. Using the revised force field, the Shaw group

demonstrated dramatic improvements in the simulations

of reversible hybridization of RNA duplexes, Figure 2b,

as well as in the simulations of unfolded long ssRNAs,

tetraloops, and riboswitches [11��]. Although it has not

been explicitly shown in the original study, one can

expect to observe similar improvements for MD simula-

tions of DNA hybridization.

The behavior of densely packed DNA systems, such as in

a fully packed viral capsid, a folded chromosome or a

Figure 2

(a) (

(c)

Hybridization of RNA and condensation of DNA. (a) Illustration of the h

duplex from its folded configuration observed in a simulated tempering

DNA duplexes mediated by poly-lysine peptides. (d) Condensation fre

from Ref. [40��]. (e) End-to-end stacking of two DNA duplexes [47].
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synthetic DNA nanostructure, sensitively depends on its

ionic environment. When submerged in a monovalent

cation solution, dsDNA molecules do not aggregate,

regardless of the cation concentration. However, in the

presence of tetravalent (or longer) basic peptides, for

example, Lys4, dsDNA can spontaneously form a

condensate (equivalently coacervate), in which dsDNA

helices form a solvated, ordered phase [1,39]. This self-

assembly process is driven by the Coulombic attractions

between the basic groups of the peptide and the phos-

phate groups of DNA.

All-atom MD simulations of dsDNA molecules in aqueous

solution of monovalent basic amino acids (e.g. Lys) showed

pronounced aggregation of dsDNA for both standard

AMBER and CHARMM parameter sets [12], a simulation

artifact. The underlying cause of the aggregation was con-

siderable overestimation of the Coulombic attractions

between lysine sidechains and DNA [12]. Yoo and Aksimen-

tiev refined the interaction strength using the experimental

osmotic pressure of ammonium sulfate as a reference [12].

Briefly, ammonium sulfate solutions of various concentra-

tions were simulated in a semi-permeable membrane setup,
www.sciencedirect.com
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Figure 3a, measuring the effect of the force field corrections

on the osmotic pressure. The experimental osmotic pressure

was recovered by increasing the LJ Rmin parameter for the

amine nitrogen–sulfate oxygen pairs by about 0.16 Å,

Figure 3b [12]. The simulations carried out using this non-

bonded correction matched semi-quantitatively the experi-

mental data on the magnitude of the DNA–DNA forces [12].

Readers interested in the development of the so-called

CUFIX corrections are referred to a recent review [13�].

The improved realism of MD characterization of DNA–

DNA interactions enabled the prediction of previously

unknown phenomena. MD simulations with the updated

force field predicted that AT-rich dsDNA molecules

would attract each other more strongly than GC-rich ones
igure 3

(a)

(c)

efinement of non-bonded interactions for MD simulation of a protein/DNA co

smotic pressure data for aqueous solution of ammonium sulfate. Here, amm

NA’s phosphate groups, respectively. (c) All-atom model of a PCNA/DNA co

sidues that form contacts with the DNA phosphates are highlighted in blue.

ur force field models and measured from experiment. Figures in panels (a)–(
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when poly-lysine peptides mediate the inter-DNA inter-

actions, Figure 2c,d [40��]. This prediction immediately

suggests that dsDNA molecules can undergo phase sepa-

ration in a manner that depends on the DNA sequence.

Both predictions were validated by single-molecule

experiment [40��,41] and bulk liquid–liquid phase sepa-

ration assays [42]. Given that basic residues are critical

functional groups of intrinsically disordered peptides that

interact with DNA or RNA [43], the CUFIX corrections

may improve MD description of such systems. A potential

alternative approach to realizing accurate simulations of

peptide-mediated DNA condensation could be the com-

bination of the protein and nucleic acid force fields with

improved water models [31�,44�], though this approach

has not yet been validated.
(b)

(d)

Current Opinion in Structural Biology

mplex. (a,b) Calibration of charge-charge interactions against

onium and sulfate are used as analogs of the protein’s amine and

mplex based on a crystal structure [51]. Lysine and arginine

 (d) Mean squared displacement of PCNA on DNA simulated using

d) are adapted from Refs. [12] and [52], respectively.
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In addition to its role in non-homologous double-strand

DNA break repair, end-to-end stacking of dsDNA mole-

cules, Figure 2e, has come to light as a possible mecha-

nism driving the origin of life [45] and as a method of

assembling complex synthetic DNA nanostructures [46].

MD simulations of the end-to-end stacking were found to

overestimate the absolute magnitude of such interactions

but correctly account for the effect of the termination

chemistry [47]. Recent characterization of nucleotide

type-specific base-stacking interactions [48] has set the

stage for future refinement of the MD base-stacking

models.

Protein–NA interactions
Because of the enormous size of the genome, diffusion

along DNA is essential for most DNA-binding proteins to

find their targets [9,49]. An outstanding example is the

DNA clamp, a ring-shaped protein complex that encircles

dsDNA to ensure processive DNA replication in both

eukaryotes and prokaryotes, Figure 3c. Because the dif-

fusion coefficient of the eukaryotic clamp, proliferating

cell nuclear antigen (PCNA), is greater than 1 nm2/ms
[50], a noticeable displacement of PCNA should be

observed in a microsecond-long MD simulation. Contrary

to that expectation, when a PCNA-dsDNA system is

simulated using standard AMBER and CHARMM force

fields, the mean-squared displacement (MSD) of the

protein relative to dsDNA is orders of magnitude smaller

than in experiment, Figure 3d [51,52]. Such a dramatic

underestimation of MSD occurs because the lysine and

arginine residues at the PCNA–DNA interface form long-

lasting contact pairs with DNA phosphates, Figure 3c. In

contrast, MSDs obtained from simulations carried out

using the CUFIX corrections quantitatively match the

experimental value, Figure 3d [52].

The natural outcome of a diffusive search is stable

binding of the protein to a DNA fragment carrying a

specific nucleotide sequence. Transcription factors (TFs)

are one class of such sequence recognition proteins [9,49]

that have been studied extensively through all-atom MD

approaches [53,54�,55,56�,57��,58�]. An outstanding ques-

tion in this area is the microscopic mechanism(s) enabling

the recognition of the target DNA sequence. Extensive

analysis of a large collection of protein-DNA complexes

[8��] has recently identified the sequence-specific defor-

mation of a DNA fragment as a critical factor enabling the

target recognition by a DNA binding protein, Figure 4a.

The free energy of TF binding has been determined

using advanced MD sampling methods such as alchemy

perturbation [53] and umbrella sampling [54�,55]. One

study [52], however, implied that either standard

AMBER or standard CHARMM force field systematically

overestimates the binding free energy because the DNA–

protein interactions typically involve direct charge-charge

contacts at the protein-DNA interface [56�], which stan-

dard MD force fields are known to overestimate. In spite
Current Opinion in Structural Biology 2020, 64:88–96 
of such strong binding, TFs were observed to slide along

dsDNA, albeit by a small amount, in a recent MD study

[59]. Using the CUFIX corrections to charge–charge

interactions is expected to reduce the strength of TF–

DNA binding and to accelerate TF sliding along DNA.

In between stable binding and free diffusion lies a situation

where a protein-DNA complex forms with a high affinity

but remains amenable to rearrangement in response to

external factors. In vivo, ssDNA is almost always seques-

tered by single-stranded DNA binding (SSB) proteins that

bind ssDNA with high affinity. Despite the strong binding,

SSBs can diffuse along ssDNA. The elementary steps of

such a diffusion process — formation and diffusion of a

small DNA bulge, Figure 4b — was recently observed in

MD simulations [60]. Another example is the binding of

dsDNA to histone proteins. The resulting assembly, the

nucleosome, sequesters 147 bases of dsDNA, and many

such nucleosomes can form higher-order structures guided

by the interactions between DNA and intrinsically disor-

dered histone tails or chromatin remodeling factors. Recent

MD studies investigated DNA unwrapping from a protein

core [61,62,63�], and interactions between intrinsically

disordered histone tails and the surrounding DNA

[62,64,65,66,67�]. Spontaneous and reversible nucleosome

unravelling, Figure 4c, was observed in MD simulations

carried out at elevated magnesium concentration [63�].
Combined with NMR measurements, MD simulations

uncovered how histone tails, and their chemical modifica-

tions, impede a zinc finger domain from binding to a

nucleosome [64,67�], Figure 4d. Other simulations charac-

terized the electrostatic environment at the histone-DNA

interface [68�], and the effect of a centromere-specific

histone variant on nucleosome elasticity [69�]. Several

recent all-atom simulations of multi-nucleosome systems

investigated histone tail bridging interactions between two

separate nucleosomes [65], and, combined with experi-

ment and coarse-grained simulation, determined how a

chaperone protein binds to a di-nucleosome [70]. All-atom

MD simulations have also examined how relatively small

histone-like proteins can strongly bend [71�] or bridge [72]

regions of bacterial DNA.

RNA–protein interactions feature prominently in both

CRISPR-Cas9 and ribosomes. The CRISPR-Cas9 system

has received significant attention because of its ability to

edit genetic information in live cells [73,74]. Several

recent all-atom MD studies have investigated the source

of CRISPR-Cas9’s unintended interaction with off-target

DNA sequences [75��,76,77], one of which [75��] identi-

fied a conformational ‘locking mechanism’, Figure 4e,

which could be enhanced further through mutagenesis.

Lastly, we highlight a simulation study of ssRNA’s inter-

action with the protein and RNA components of a

ribosome, Figure 4f [78�], which found diffusion of ami-

noacyl-tRNA to be significantly impeded by relatively

few direct contacts with the ribosome.
www.sciencedirect.com
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All-atom simulations of protein–nucleic acid systems. (a) Binding of a protein (white) bends a segment of dsDNA (blue). Red shows a

�7.4 kcal mol�1 interaction potential isosurface. Adapted from Ref. [8��]. (b) Ensemble of conformations explored by ssDNA bound to a single-

stranded binding protein (white) within 10 ms. The DNA is depicted as a tube that is colored from green to blue every 10 nt. Adapted from Ref.

[60]. (c) Left, partial unwrapping of 601L DNA (green) from a histone core (white). Right, spontaneous unwrapping for three DNA sequences.

Adapted from Ref. [63�]. (d) Non-specific binding of histone tails (gold) to nucleosomal DNA (blue). Adapted from Ref. [67�]. (e) MD simulation of a

CRISPR-Cas9 system. The inset illustrates the interactions between the target strand of an RNA:DNA hybrid (TS, cyan) with loop 2 (L2, pink) of

the protein catalytic domain. Adapted from Ref. [75��]. (f) An ‘elbow’ of aminoacyl-tRNA (yellow) interacts with the RNA (white tubes) and protein

(blue tubes) components of a ribosome. The black circle highlights a prominent contact between rRNA and tRNA. Adapted from Ref. [78�].
Conclusions
As the scope of all-atom MD simulations evolves from

individual proteins or NAs to systems containing hun-

dreds of such biomolecules, so too will the need to refine

the underlying computational models to accurately

describe non-bonded interactions between those mole-

cules. An outstanding challenge for the field lies in

describing intrinsically disordered regions (IDRs) of

the DNA-binding proteins, which are omnipresent and

play important roles in the recruitment and formation of

transient biomolecular complexes. One particularly excit-

ing and challenging class of systems are NA-IDR con-

densates [40��,79], the biological roles of which we are

just beginning to grasp. Here, in addition to further

refinement of the all-atom molecular force field, methods

that permit adequate sampling of the conformational

space in an entangled polymer melt environment will

be needed [80,81]. In general, the field would greatly

benefit from a closer integration of coarse-grained models,

such as Martini [82], oxDNA [83], 3SPN.2 [84] and

ABSINTH [85], with all-atom approaches, allowing for
www.sciencedirect.com 
mixed-resolution, accuracy-when-needed types of

description of very large protein-NA systems.
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17. Zgarbová M, Sponer J, Otyepka M, Cheatham TE, Galindo-
Murillo R, Jure9cka P: Refinement of the sugar-phosphate
backbone torsion beta for AMBER force fields improves the
description of Z- and B-DNA. J Chem Theory Comput 2015,
11:5723-5736.

18. Denning EJ, Priyakumar UD, Nilsson L, Mackerell AD: Impact of
2’-hydroxyl sampling on the conformational properties of
RNA: update of the CHARMM all-atom additive force field for
RNA. J Comput Chem 2011, 32:1929-1943.

19. Hart K, Foloppe N, Baker CM, Denning EJ, Nilsson L,
Mackerell AD: Optimization of the CHARMM additive force field
for DNA: improved treatment of the BI/BII conformational
equilibrium. J Chem Theory Comput 2012, 8:348-362.
Current Opinion in Structural Biology 2020, 64:88–96 
20. Jorgensen WL, Tirado-Rives J: The OPLS potential functions for
proteins, energy minimizations for crystals of cyclic peptides
and crambin. J Am Chem Soc 1988, 110:1657-1666.

21. Robertson MJ, Tirado-Rives J, Jorgensen WL: Improved
treatment of nucleosides and nucleotides in the OPLS-AA
force field. Chem Phys Lett 2017, 683:276-280.

22. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM,
Spellmeyer DC, Fox T, Caldwell JW, Kollman PA: A second
generation force field for the simulation of proteins, nucleic
acids, and organic molecules. J Am Chem Soc 1995, 117:5179-
5197.

23. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE,
Simmerling C: ff14SB: improving the accuracy of protein side
chain and backbone parameters from ff99SB. J Chem Theory
Comput 2015, 11:3696-3713.

24. Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL,
Grubmuller H, MacKerell AD Jr: CHARMM36m: an improved
force field for folded and intrinsically disordered proteins. Nat
Methods 2017, 14:71-73.

25. Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham
TE III, Jurecka P: Refinement of the Cornell et al. nucleic acids
force field based on reference quantum chemical calculations
of glycosidic torsion profiles. J Chem Theory Comput 2011,
7:2886-2902.

26. Galindo-Murillo R, Robertson JC, Zgarbová M, Sponer J,
Otyepka M, Jure9cka P, Cheatham TE: Assessing the current
state of amber force field modifications for DNA. J Chem
Theory Comput 2016, 12:4114-4127.

27. Minhas V, Sun T, Mirzoev A, Korolev N, Lyubartsev AP,
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Otyepka M, Sponer J, Banáš P: Improving the performance of
the amber RNA Force field by tuning the hydrogen-bonding
interactions. J Chem Theory Comput 2019, 15:3288-3305.

39. DeRouchey J, Hoover B, Rau DC: A comparison of DNA
compaction by arginine and lysine peptides: a physical basis
for arginine rich protamines. Biochemistry 2013, 52:3000-3009.

40.
��

Kang H, Yoo J, Sohn B-K, Lee S-W, Lee HS, Ma W, Kee J-M,
Aksimentiev A, Kim H: Sequence-dependent DNA condensation
as a driving force of DNA phase separation. Nucleic Acids Res
2018, 128:787

Combined computational and experimental study that demonstrated
phase-separation regulated by DNA sequence and methylation.

41. Yoo J, Kim H, Aksimentiev A, Ha T: Direct evidence for
sequence-dependent attraction between double-stranded
DNA controlled by methylation. Nat Commun 2016, 7:11045.

42. Shakya A, King JT: DNA local-flexibility-dependent assembly of
phase-separated liquid droplets. Biophys J 2018, 115:1840-
1847.

43. van der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW,
Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT et al.:
Classification of intrinsically disordered regions and proteins.
Chem Rev 2014, 114:6589-6631.

44.
�

Shabane PS, Izadi S, Onufriev AV: General purpose water model
can improve atomistic simulations of intrinsically disordered
proteins. J Chem Theory Comput 2019, 15:2620-2634

Describes a 4-point explicit water model (OPC) that improves description
of disordered proteins in comparison to the TIP3P water model.

45. Smith GP, Fraccia TP, Todisco M, Zanchetta G, Zhu C, Hayden E,
Bellini T, Clark NA: Backbone-free duplex-stacked monomer
nucleic acids exhibiting Watson-Crick selectivity. Proc Natl
Acad Sci U S A 2018, 115:E7658-E7664.

46. Dietz H, Douglas SM, Shih WM: Folding DNA into twisted and
curved nanoscale shapes. Science 2009, 325:725-730.

47. Maffeo C, Luan B, Aksimentiev A: End-to-end attraction of
duplex DNA. Nucleic Acids Res 2012, 40:3812-3821.

48. Kilchherr F, Wachauf C, Pelz B, Rief M, Zacharias M, Dietz H:
Single-molecule dissection of stacking forces in DNA. Science
2016, 353 aaf5508–aaf5508.

49. Elf J, Li G-W, Xie XS: Probing transcription factor dynamics at
the single-molecule level in a living cell. Science 2007,
316:1191-1194.

50. Kochaniak AB, Habuchi S, Loparo JJ, Chang DJ, Cimprich KA,
Walter JC, van Oijen AM: Proliferating cell nuclear antigen uses
two distinct modes to move along DNA. J Biol Chem 2009,
284:17700-17710.

51. De March M, Merino N, Barrera-Vilarmau S, Crehuet R, Onesti S,
Blanco FJ, De Biasio A: Structural basis of human PCNA sliding
on DNA. Nat Commun 2017, 8:13935.

52. You S, Lee H, Kim K, Yoo J: Improved parameterization of
protein–DNA interactions for molecular dynamics simulations
of PCNA diffusion on DNA. J Chem Theory Comput 2020 http://
dx.doi.org/10.1021/acs.jctc.0c00241.

53. Gapsys V, de Groot BL: Alchemical free energy calculations for
nucleotide mutations in protein-DNA complexes. J Chem
Theory Comput 2017, 13:6275-6289.

54.
�
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