Machine-Learning the Landscape

YANG-HUI HE

London Institute of Mathematical Sciences, Royal Institution of Great Britain
Dept of Mathematics, City, University of London
Merton College, University of Oxford
School of Physics, NanKai University

Kavli Asian Winter School on Strings, Particles and Cosmology
Jan 2022

Further Reading

The Calabi-Yau Landscape

From ceometry, to Physion to Madine
leaming
YHH, The CY Landscape: from Geometry to Physics, to ML, 2021, Springer LNM 2293 (the 224pp version)

YHH, "Universes as Big Data" 2011.14442 (the 20pp version)

PLAN

Part I Introducing CY manifolds as a microcosm of the string/mathematics landscape
Part II Machine-Learning 101
Part III Having fun

A Classic Problem in Mathematics

- Euler, Gauss, Riemann $\Sigma: \operatorname{dim}_{\mathbb{R}}=2$, i.e., $\operatorname{dim}_{\mathbb{C}}=1$ (in fact Kähler)
- Trichtomy classification of (compact orientable) surfaces [Riemann surfaces/complex algebraic curves] Σ

0		
$g(\Sigma)=0$	$g(\Sigma)=1$	
$\chi(\Sigma)=2$	$\chi(\Sigma)=0$	$\chi(\Sigma)<0$
Spherical	Ricci-Flat	Hyperbolic
+ curvature	0 curvature	- curvature

Euler number $\chi(\Sigma), \quad$ genus $g(\Sigma)$

Classical Results for Riemann Surface Σ

$\chi(\Sigma)=2-2 g(\Sigma)=$	$=\left[c_{1}(\Sigma)\right] \cdot[\Sigma]=$	$=\frac{1}{2 \pi} \int_{\Sigma} R=$	$=\sum_{i=0}^{2}(-1)^{i} h^{i}(\Sigma)$
Topology	Algebraic Geometry	Differential Geometry	Index Theorem $(c o-)$ Homology
Invariants	Characteristic classes	Curvature	Betti Numbers

- First Chern Class $c_{1}(\Sigma)$
- Rank of (co-)homology group (Betti Number) $h^{i}(\Sigma)$
- Complexifies (Künneth) $h^{i}=\sum_{j+k=i} h^{j, k}$, Hodge Number $h^{j, k}$

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Prog)
- Luckily, for our class of Kähler complex manifolds:

```
Recall Defs
```

- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)
and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Prog)
- Luckily, for our class of Kähler complex manifolds:

```
Recall Defs
```

- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)
and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat

Calabi-Yau

- $\operatorname{dim}_{\mathbb{C}}>1$ extremely complicated (high-dim geometry hard: cf. Poincaré Conjecture/Perelman Thm/Thurston-Hamilton Prog)
- Luckily, for our class of Kähler complex manifolds:

```
Recall Defs
```

- CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)
and $\left([R]=\left[c_{1}(M)\right]\right)_{H^{1,1}(M)}$.
Then $\exists!(\tilde{g}, \tilde{\omega})$ such that $([\omega]=[\tilde{\omega}])_{H^{2}(M ; \mathbb{R})}$ and $\operatorname{Ricci}(\tilde{\omega})=R$.
Rmk: $c_{1}(M)=0 \Leftrightarrow$ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)
- THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof
- Calabi-Yau: Kähler and Ricci-flat

String Phenomenology

- Superstring: unifies $\mathrm{QM}+\mathrm{GR}$ in 10 dimensions: X^{10}
- We live in some M^{4} (assume maximally symmetric)

$$
R_{\mu \nu \rho \lambda}=\frac{R}{12}\left(g_{\mu \rho} g_{\nu \lambda}-g_{\mu \lambda} g_{\nu \rho}\right), \quad R \begin{cases}=0 & \text { Minkowski } \\ >0 & \text { de Sitter (dS) } \\ <0 & \text { anti-de Sitter (AdS) }\end{cases}
$$

- $10=4+6$: two scenarios
(1) SMALL: compactification $X^{10} \simeq M^{4} \times X^{6}$
(3) LARGE: brane-world trapped on a 3 -brane in 10-D
- supersymmetry at intermediate scale (between string and EW)
- want: classical vacuum of string theory on X^{10} preserves $\mathcal{N}=1$ SUSY in M^{4}

Heterotic Compactification

[Candelas-Horowitz-Strominger-Witten] (1986): $\delta_{S U S Y} S_{H e t}=0$

- $\left.S \sim \int d^{10} x \sqrt{g} e^{-2 \Phi}\left[R+4 \partial_{\mu} \Phi \partial^{\mu} \Phi-\frac{1}{2}\left|H_{3}^{\prime}\right|^{2}\right)-\frac{1}{g_{s}^{2}} \operatorname{Tr}\left|F_{2}\right|^{2}\right]+$ SUSY $)$

$$
\begin{array}{ll}
\text { gravitino } & \delta_{\epsilon} \Psi_{M=1, \ldots, 10}=\nabla_{M} \epsilon-\frac{1}{4} H_{M}^{(3)} \epsilon \\
\text { dilatino } & \delta_{\epsilon} \lambda=-\frac{1}{2} \Gamma^{M} \partial_{M} \Phi \epsilon+\frac{1}{4} H_{M}^{(3)} \epsilon \\
\text { adjoint YM } & \delta_{\epsilon} \chi=-\frac{1}{2} F^{(2)} \epsilon \\
\text { Bianchi } & d H^{(3)}=\frac{\alpha^{\prime}}{4}[\operatorname{Tr}(R \wedge R)-\operatorname{Tr}(F \wedge F)]
\end{array}
$$

- Assume $H^{(3)}=0($ can generalise $) \leadsto$ Killing spinor equation:

$$
\delta_{\epsilon} \Psi_{M=1, \ldots, 10}=\nabla_{M} \epsilon=0=\nabla_{M} \xi\left(x^{\mu=1, \ldots, 4}\right) \eta\left(y^{m=1, \ldots, 6}\right)
$$

- External 4D Space: $\left[\nabla_{\mu}, \nabla_{\nu}\right] \xi(x)=\frac{1}{4} R_{\mu \nu \rho \sigma} \Gamma^{\rho \sigma} \xi(x)=0 \leadsto R=0 \Rightarrow M$ is Minkowski (of course, should be looking for dS, but to 1st order)
- Internal 6D Space: $R_{m n}=0$ (but not necessarily max symmetric)

Mille Viæ ducunt homines Romam ...

- X^{6} as a spin 6-manifold: holonomy group is $S O(6) \simeq S U(4)$
- want covariant constant spinor: largest possible is $S U(4) \rightarrow S U(3)$ with $4 \rightarrow 3 \oplus 1 \Rightarrow X^{6}$ has $S U(3)$ holonomy
- Thus $\epsilon\left(x^{1, \ldots, 4}, y^{1, \ldots, 6}\right)=\xi_{+} \otimes \eta_{+}(y)+\xi_{-} \otimes \eta_{-}(y)$ with $\eta_{+}^{*}=\eta_{-}$and ξ constant
- Define $J_{m}^{n}=i \eta_{+}^{\dagger} \gamma_{m}^{n} \eta_{+}=-i \eta_{-}^{\dagger} \gamma_{m}^{n} \eta_{-}$, check: $J_{m}^{n} J_{n}^{p}=-\delta_{m}^{n}$
- Can show X^{6} is a Kähler manifold of $\operatorname{dim}_{\mathbb{C}}=3$, with $S U(3)$ holonomy
- Three other SUSY variation equations (recall $H^{(3)}=0$ by choice)
- choose constant dilation $\Phi \leadsto \delta_{\epsilon}=0$
- choose $R=F$ (spin connection for gauge field): Bianchi satisfied
- Also $R=0$ so $\delta_{\epsilon} \chi=0$

Special Holonomy

- For a Riemannian, spin manifold M of real dimension d, holonomy is $\operatorname{Spin}(d)$ as double cover of $S O(d)$ generically, but could have special holonomy

Holonomy $\mathcal{H} \subset$	Manifold Type (IFF)
$U(d / 2)$	Kähler
$S U(d / 2)$	Calabi-Yau
$S p(d / 4)$	Hyper-Kähler
$S p(d / 4) \times S p(1)$	Quaternionic-Kähler

- X^{6} is Calabi-Yau
- no-where vanishing holomorphic 3-form: $\Omega^{(3,0)}=\frac{1}{3!} \Omega_{m n p} d z^{m} \wedge d z^{n} \wedge d z^{p}$ with $\Omega_{m n p}:=\eta_{-}^{T} \gamma^{[m} \gamma^{n} \gamma^{p]} \eta_{-}$
check: $d \Omega=0$ but not exact; $\Omega \wedge \bar{\Omega} \sim$ Volume form

Summary

Some equivalent Definitions for X^{6} Calabi-Yau Threefold

- Kähler, $c_{1}(T X)=0$
- Kähler, vanishing Ricci curvature
- Kähler, holonomy $\subset S U(n)$
- Kähler, nowhere vanishing global holomorphic 3-form (volume)
- Covariant constant spinor
- Canonical bundle (sheaf) $K_{X}:=\bigwedge^{n} T_{X}^{*} \simeq \mathcal{O}_{X}$
- low-energy SUSY in 4D from string compactification

Some Topological Properties I

- Hodge Numbers $h^{p, q}(X)=\operatorname{dim} H_{\bar{\partial}}^{p, q}(X)$
- Hodge decomposition and Betti Numbers: $b_{k}=\sum_{p+q=k} h^{p, q}(X)$
- Complex conjugation $\leadsto h^{p, q}=h^{q, p}$
- Hodge star (Poincaré) $\leadsto h^{p, q}=h^{n-p, n-q}$

$$
h^{0,0}
$$

$$
h^{0,1} \quad h^{0,1}
$$

$$
h^{0,2} \quad h^{1,1} \quad h^{0,2}
$$

- Hodge Diamond: $h^{0,3}$

$$
h^{2,1}
$$

$$
h^{2,1}
$$

$$
h^{0,3}
$$

$$
\begin{array}{ccccc}
h^{0,2} & & h^{1,1} & & h^{0,2} \\
& h^{0,1} & & h^{0,1} & \\
& & h^{0,0} & &
\end{array}
$$

- Compact, connected, Kähler: $h^{0,0}=1$ (constant functions)
- If simply-connected:

$$
\pi_{1}(X)=0 \leadsto H_{1}(X)=\pi_{1}(X) /[,]=0 \leadsto h^{1,0}=h^{0,1}=0
$$

Some Topological Properties II

- Finally, CY3 has $h^{3,0}=h^{0,3}=1$ [unique holomorphic 3-form], also $h^{p, 0}=h^{3-p, 0}$ by contracting ($p, 0$)-form with $\bar{\Omega}$ to give ($p, 3$)-form, then use Poincaré duality to give $(3-p, 0)$-form
- 2-topological numbers for a (connected, simply connected) CY3:

- Moduli Space of CY3 locally: $\mathcal{M} \simeq \mathcal{M}^{2,1} \times \mathcal{M}^{1,1}$

Explicit Examples of Calabi-Yau Manifolds

- $d=1$ Torus $T^{2}=S^{1} \times S^{1}$

- $d=3$ CY3: Unclassified, billions known

Explicit Examples of Calabi-Yau Manifolds

- $d=1$ Torus $T^{2}=S^{1} \times S^{1}$

4-torus: $T^{4}=\left(S^{1}\right)^{4}$

- $d=3$ CY3: Unclassified, billions known

Explicit Examples of Calabi-Yau Manifolds

- $d=1$ Torus $T^{2}=S^{1} \times S^{1}$

4-torus: $T^{4}=\left(S^{1}\right)^{4}$

- $d=3$ CY3: Unclassified, billions known

As Projective Varieties

- Embed X into \mathbb{P}^{n} as complete intersection of K polynomials

$$
n=K+3
$$

- Canonical bundle $\mathcal{K}_{X} \simeq \wedge^{\operatorname{dim}(X)} T_{X}^{*}$; algebraic condition for Calabi-Yau: $K_{X} \simeq \mathcal{O}_{X}\left(\right.$ indeed $\left.c_{1}(T X)=0\right)$
- Adjunction formula for subvariety $X \subset A: \mathcal{K}_{X}=\left.\left(K_{A} \otimes N^{*}\right)\right|_{X}$
- Recall $K_{A=\mathbb{P}^{n}} \simeq \mathcal{O}_{\mathbb{P}^{n}}(-n-1)$ and $K_{X} \simeq \mathcal{O}_{X}$, thus:

$$
\operatorname{degree}(X)=n+1
$$

- Find only 5 solutions. These all have $h^{1,1}(X)=1$, inherited from the 1

Kähler class of \mathbb{P}^{n}; called cyclic Calabi-Yau threefolds

Cyclic Manifolds

Intersection	\mathcal{A}	Configuration	$\chi(X)$	$h^{1,1}(X)$	$h^{2,1}(X)$	$d(X)$	$\tilde{c}_{2}(T X)$
Quintic	\mathbb{P}^{4}	$[4 \mid 5]$	-200	1	101	5	10
Quadric and quartic	\mathbb{P}^{5}	$[5 \mid 24]$	-176	1	89	8	7
Two cubics	\mathbb{P}^{5}	$[5 \mid 33]$	-144	1	73	9	6
Cubic and 2 quadrics	\mathbb{P}^{6}	$\left[\begin{array}{lll}6 \mid 32\end{array}\right]$	-144	1	73	12	5
Four quadrics	\mathbb{P}^{7}	$[7 \mid 2222]$	-128	1	65	16	4

- Euler numbers quite large, $d(X)$ is volume normalisation
- used standard matrix configuration notation
- most famous example: Quintic 3-fold [4|5]

$$
\left\{\sum_{i=0}^{4} x_{i}^{5}=0\right\} \subset \mathbb{P}_{\left[x_{0} ; \ldots x_{4}\right]}^{4}
$$

written as Fermat quintic, also has $h^{2,1}(X)=101$ deformation parameters

Part I

Strings and the Compact Calabi-Yau Landscape

Triadophilia: A 40-year search

- A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)
- $E_{8} \supset S U(3) \times S U(2) \times U(1)$ Natural Gauge Unification
- Mathematically succinct
- Witten: "still the best hope for the real world"
- CY3 X, tangent bundle $S U(3) \Rightarrow E_{6}$ GUT: commutant $E_{8} \rightarrow S U(3) \times E_{6}$ (generalize later)
- Particle Spectrum:

$$
\begin{array}{ll}
\text { Generation } & n_{27}=h^{1}(X, T X)=h_{\bar{\partial}}^{2,1}(X) \\
\text { Anti-Generation } & n_{\overline{27}}=h^{1}\left(X, T X^{*}\right)=h_{\bar{\partial}}^{1,1}(X)
\end{array}
$$

- Net-generation: $\chi=2\left(h^{1,1}-h^{2,1}\right)$
- Question: Are there Calabi-Yau threefolds with Euler character ± 6 ?
- Strominger was visiting Yau at the IAS in 1986-7

Triadophilia: A 40-year search

- A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)
- $E_{8} \supset S U(3) \times S U(2) \times U(1)$ Natural Gauge Unification
- Mathematically succinct
- Witten: "still the best hope for the real world"
- CY3 X, tangent bundle $S U(3) \Rightarrow E_{6}$ GUT: commutant $E_{8} \rightarrow S U(3) \times E_{6}$ (generalize later)
- Particle Spectrum:

Generation
Anti-Generation $\quad n_{\overline{27}}=h^{1}\left(X, T X^{*}\right)=h_{\bar{\partial}}^{1,1}(X)$

- Net-generation: $\chi=2\left(h^{1,1}-h^{2,1}\right)$
- Question: Are there Calabi-Yau threefolds with Euler character ± 6 ?
- Strominger was visiting Yau at the IAS in 1986-7

Triadophilia: A 40-year search

- A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)
- $E_{8} \supset S U(3) \times S U(2) \times U(1)$ Natural Gauge Unification
- Mathematically succinct
- Witten: "still the best hope for the real world"
- CY3 X, tangent bundle $S U(3) \Rightarrow E_{6}$ GUT: commutant $E_{8} \rightarrow S U(3) \times E_{6}$ (generalize later)
- Particle Spectrum:

Generation $\quad n_{27}=h^{1}(X, T X)=h_{\bar{\partial}}^{2,1}(X)$
Anti-Generation $\quad n_{\overline{27}}=h^{1}\left(X, T X^{*}\right)=h_{\bar{\partial}}^{1,1}(X)$

- Net-generation: $\chi=2\left(h^{1,1}-h^{2,1}\right)$
- Question: Are there Calabi-Yau threefolds with Euler character ± 6 ?
- Strominger was visiting Yau at the IAS in 1986-7

Complete Intersection Calabi-Yau (CICY) 3-folds

- immediately: Quintic Q in \mathbb{P}^{4} is CY3, recall: $Q_{\chi}^{h^{1,1}, h^{2,1}}=Q_{-200}^{1,101}$ so too may generations (even with quotient $-200 \notin 3 \mathbb{Z}$)
- [Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)
- dim(Ambient space) - \#(defining Eq.) = 3 (complete intersection)

$$
M=\left[\begin{array}{c|cccc}
n_{1} & q_{1}^{1} & q_{1}^{2} & \ldots & q_{1}^{K} \\
n_{2} & q_{2}^{1} & q_{2}^{2} & \ldots & q_{2}^{K} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n_{m} & q_{m}^{1} & q_{m}^{2} & \ldots & q_{m}^{K}
\end{array}\right]_{m \times K} \quad \begin{aligned}
& \quad-K \text { eqns of multi-degree } q_{j}^{i} \in \mathbb{Z}_{\geq 0} \\
& \left.\quad \begin{array}{l}
\text { embedded in } \mathbb{P}^{n_{1}} \times \ldots \times \mathbb{P}^{n_{m}} \\
\\
\\
\quad M_{1}(X)=0 \sim \sum_{j=1}^{K} q_{r}^{j}=n_{r}+1
\end{array}\right] \text { also } \mathrm{CICY}
\end{aligned}
$$

```
Famous Examples
```


The First Data-sets in Mathematical Physics/Geometry I

- Problem: classify all configuration matrices; employed the best computers at the time (CERN supercomputer)
q.v. magnetic tape and dot-matrix printout in Philip's office
- 7890 matrices from 1×1 to $\max ($ row $)=12$, $\max (\mathrm{col})=15$; with $q_{j}^{i} \in[0,5]$
- 266 distinct Hodge pairs $\left(h^{1,1}, h^{2,1}\right)=(1,65), \ldots,(19,19)$
- 70 distinct Euler $\chi \in[-200,0]$ (all negative)
- [V. Braun, 1003.3235] : 195 have freely-acting symmetries (quotients), 37 different finite groups (from \mathbb{Z}_{2} to $\mathbb{Z}_{8} \rtimes H_{8}$)
- Rmk: Integration pulls back to ambient product of projective space A

$$
\int_{X} \cdot=\int_{A} \mu \wedge \cdot, \quad \mu:=\bigwedge_{j=1}^{K}\left(\sum_{r=1}^{m} q_{r}^{j} J_{r}\right)
$$

Topological Quantities

- Chern classes of CICY

$$
\begin{aligned}
c_{1}^{r}\left(T_{X}\right) & =0 \\
c_{2}^{r s}\left(T_{X}\right) & =\frac{1}{2}\left[-\delta^{r s}\left(n_{r}+1\right)+\sum_{j=1}^{K} q_{j}^{r} q_{j}^{s}\right] \\
c_{3}^{r s t}\left(T_{X}\right) & =\frac{1}{3}\left[\delta^{r s t}\left(n_{r}+1\right)-\sum_{j=1}^{K} q_{j}^{r} q_{j}^{s} q_{j}^{t}\right]
\end{aligned}
$$

- Triple intersection numbers: $d_{r s t}=\int_{X} \cdot=\int_{A} J_{r} \wedge J_{s} \wedge J_{t}$
- Euler number: $\chi(X)=\operatorname{Coefficient}\left(c_{3}^{r s t} J_{r} J_{s} J_{t} \cdot \mu, \quad \prod_{r=1}^{m} J_{r}^{n_{r}}\right)$
- As always, computing individual terms ($h^{1,1}, h^{2,1}$) hard even though $h^{1,1}-h^{2,1}=\frac{1}{2} \chi$ (index theorem)

Computing Hodge Numbers: Sketch

- Recall Hodge decomposition $H^{p, q}(X) \simeq H^{q}\left(X, \wedge^{p} T^{\star} X\right) \leadsto$

$$
H^{1,1}(X)=H^{1}\left(X, T_{X}^{\star}\right), \quad H^{2,1}(X) \simeq H^{1,2}=H^{2}\left(X, T_{X}^{\star}\right) \simeq H^{1}\left(X, T_{X}\right)
$$

- Euler Sequence for subvariety $X \subset A$ is short exact:

$$
\left.0 \rightarrow T_{X} \rightarrow T_{M}\right|_{X} \rightarrow N_{X} \rightarrow 0
$$

- Induces long exact sequence in cohomology:

$$
\begin{aligned}
& 0 \rightarrow H^{0}\left(X, T_{X}\right)^{0} \rightarrow H^{0}\left(X,\left.T_{A}\right|_{X}\right) \rightarrow H^{0}\left(X, N_{X}\right) \rightarrow \\
& \rightarrow H^{1}\left(X, T_{X}\right) \xrightarrow{d} H^{1}\left(X,\left.T_{A}\right|_{X}\right) \quad \rightarrow \quad H^{1}\left(X, N_{X}\right) \quad \rightarrow \\
& \rightarrow H^{2}\left(X, T_{X}\right) \quad \rightarrow \quad \ldots
\end{aligned}
$$

- Need to compute $\operatorname{Rk}(d)$, cohomology and $H^{i}\left(X, T_{A} \mid X\right)$

A Classic

T. Hübsch, CY Manifolds: a bestiary for physicists, 1992, WS
first book to introduce Algebraic Geometry to physicists

Distribution

The First Data-sets in Mathematical Physics/Geometry II

[Candelas-Lynker-Schimmrigk, 1990] Hypersurfaces in Weighted \mathbb{P}^{4}

- generic homog deg $=\sum_{i=0}^{4} w_{i}$ polynomial in $W \mathbb{P}_{\left[w_{0}: w_{1}: w_{2}: w_{3}: w_{4}\right]} \simeq$

$$
\left(\mathbb{C}^{5}-\{0\}\right) /\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right) \sim\left(\lambda^{w_{0}} x_{0}, \lambda^{w_{1}} x_{1}, \lambda^{w_{2}} x_{2}, \lambda^{w_{3}} x_{3}, \lambda^{w_{4}} x_{4}\right)
$$

- specified by a single integer 5-vector: w_{i}
- Rmk: ambient WP4 is singular (need to resolve)

7555 inequivalent 5 -vectors w_{i}
2780 Hodge pairs

$$
\chi \in[-960,960]
$$

Technically, Moses

was the first person with a tablet downloading data from the cloud

The age of data science in mathematical physics/string theory not as recent as you might think

Elliptically Fibered CY3: [Gross, Morrison-Vafa, 1994

- X elliptically fibered over some base B : as Weierstraß model in $\mathbb{P}_{[x: y: z]}^{2}$-bundle over $B\left(g_{2}, g_{3}\right.$ complex structure coeff $)$

$$
z y^{2}=4 x^{3}-g_{2} x z^{2}-g_{3} z^{3}
$$

x, y, z, g_{2}, g_{3} must be sections of powers of some line bundle \mathcal{L} over B

- Specifically $\left(x, y, z, g_{2}, g_{3}\right)$ are global sections of $\left(\mathcal{L}^{\oplus 2}, \mathcal{L}^{\oplus 3}, \mathcal{O}_{B}, \mathcal{L}^{\oplus 4}, \mathcal{L}^{\oplus 6}\right)$
- $c_{1}(T X)=0 \Rightarrow \mathcal{L} \simeq K_{B}^{-1} \Rightarrow B$ highly constrained:
(1) del Pezzo surface $d \mathbb{P}_{r=1, \ldots, 9}: \mathbb{P}^{2}$ blown up at r points
(2) Hirzebruch surface $\mathbb{F}_{r=0, \ldots 12}: \mathbb{P}^{1}$-bundle over \mathbb{P}^{1}
© Enriques surface \mathbb{E} : involution of K3
© Blowups of \mathbb{F}_{r}

Elliptically Fibered CYn

- Belief (Conjecture?): VAST majority of CYn are elliptic fibrations
- Kollar Conjecture: A CY n-fold \mathcal{M} is elliptic iff there exists a (1,1)-class $D \in H^{2}(\mathcal{M}, \mathbb{Q})$ s.t. for every algebraic curve C
- $D \cdot C \geq 0 ; \quad D^{n-1} \neq 0 ; \quad D^{n}=0$
- Oguiso, Wilson: True for $n=3$ if D is effective or $D \cdot c_{2}(\mathcal{M}) \neq 0$
- Anderson-Gao-Gray-Lee-Lukas: 99.33% (all but 53) of the 7, 868 CICY3; 99.95% (all but 462) of 905,684 CICY4
- Huang-Taylor: KS-dataset (see shortly)
- Quintic is not, Schön is

Tour de Force: The Kreuzer-Skarke Dataset

- Generalize WP4, take Toric Variety $A\left(\Delta_{n}\right)$ and consider hypersurface therein
- $A\left(\Delta_{n}\right)$ is special: it is constructed from a reflexive polytope Latice Polytopes
- THM [Batyrev-Borisov, '90s] anti-canonical divisor in $X\left(\Delta_{n}\right)$ gives a smooth Calabi-Yau ($n-1$)-fold as hypersurface:

$$
0=\sum_{\mathbf{m} \in \Delta} C_{\mathbf{m}} \prod_{\rho=1}^{k} x_{\rho}^{\left\langle\mathbf{m}, \mathbf{v}_{\rho}\right\rangle+1}, \quad \Delta^{\circ}=\left\{\mathbf{v} \in \mathbb{R}^{4} \mid\langle\mathbf{m}, \mathbf{v}\rangle \geq-1 \forall \mathbf{m} \in \Delta\right\}
$$

\mathbf{v}_{ρ} vertices of Δ.

- Simplest case: $A=\mathbb{P}^{4}$ and we have quintic [4|5] again.

$$
\begin{aligned}
\mathbf{m}_{1} & =(-1,-1,-1,-1), & \mathbf{v}_{1} & =(1,0,0,0) \\
\mathbf{m}_{2} & =(4,-1,-1,-1), & \mathbf{v}_{2} & =(0,1,0,0) \\
\Delta: \mathbf{m}_{3} & =(-1,4,-1,-1), & \Delta^{\circ}: \mathbf{v}_{3} & =(0,0,1,0), \\
\mathbf{m}_{4} & =(-1,-1,4,-1), & \mathbf{v}_{4} & =(0,0,0,1), \\
\mathbf{m}_{5} & =(-1,-1,-1,4), & \mathbf{v}_{5} & =(-1,-1,-1,-1) .
\end{aligned}
$$

Reflexive Polygons: 16 special elliptic curves

- THM (classical): All Δ_{2} are $G L(2 ; \mathbb{Z})$ equivalent to one of the 16
- \rightarrow \#vertices: $3, \ldots, 6$
- \uparrow \#lattice points: $4, \ldots, 10$
- 4 self-dual
- 5 smooth $X\left(\Delta_{2}\right)=$ toric del Pezzo surfaces:
$d P_{0,1,2,3}, \mathbb{P}^{1} \times \mathbb{P}^{1}$ (smooth toric Fano surfaces)

Known Classification Results

- $G L(n ; \mathbb{Z})$-equivalence classes of reflexive Δ_{n} finite for each n
- Kreuzer ${ }^{\dagger}$-Skarke (Using PALP) [1990s]: a fascinating sequence

dimension	1	2	3	4	\ldots
\# Reflexive Polytopes	1	16	4319	$473,800,776$	\ldots
\# Regular	1	5	18	124	\ldots

- $n \geq 5$ still not classified; generating function also not known
- Smooth ones known for a few more dimensions (Kreuzer-Nill, Øbro, Paffenholz): $\{1,5,18,124,866,7622,72256,749892,8229721 \ldots\}$
- $n=2,3$ built into SAGE

Kreuzer-Skarke

- Kreuzer ${ }^{\dagger}$-Skarke 1997-2002: 473,800,776 Δ_{4}
- AT LEAST this many CY3 hypersurfaces in $A\left(\Delta_{4}\right)$: CY3 depends on triangulation (resolution) of Δ, but Hodge numbers only depend on Δ_{4} (Batyrev-Borisov):

$$
\begin{aligned}
& h^{1,1}(X)=\ell\left(\Delta^{\circ}\right)-\sum_{\operatorname{codim} \theta^{\circ}=1} \ell^{\circ}\left(\theta^{\circ}\right)+\sum_{\operatorname{codim} \theta^{\circ}=2} \ell^{\circ}\left(\theta^{\circ}\right) \ell^{\circ}(\theta)-5 \\
& h^{1,2}(X)=\ell(\Delta)-\sum_{\operatorname{codim} \theta=1} \ell^{\circ}(\theta)+\sum_{\operatorname{codim} \theta=2} \ell^{\circ}(\theta) \ell^{\circ}\left(\theta^{\circ}\right)-5
\end{aligned}
$$

- Dual polytope $\Delta \leftrightarrow \Delta^{\circ}=$ mirror symmetry
- Vienna group (KS, Knapp,...), Oxford group (Candelas, Lukas, YHH, ...), MIT group (Taylor,Johnson, Wang, ...), Northeastern/Wits Collab (Nelson, Jejjala, YHH), Virginia Tech (Anderson, Gray, Lee, ...)

Tsinghua/London/Oxford Collab (Yau, Seong, YHH)

Georgia O'Keefe

30,108 distinct Hodge pairs, $\chi \in[-960,960]$;
$\left(h^{1,1}, h^{2,1}\right)=(27,27)$ dominates: 910113 instances

In Philip's Office

YHH (1308.0186)

Refined Structure in KS Data

- DATABASES:
http://hep.itp.tuwien.ac.at/~kreuzer/CY/ http://www.rossealtman.com/
- Altman-Gray-YHH-Jejjala-Nelson 2014-17 triangulate Δ_{4} (orders more than 1/2-billion): up to $h^{1,1}=7$
- Candelas-Constantin-Davies-Mishra 2011-17 special small Hodge numbers
- Taylor, Johnson, Wang et al. 2012-17 elliptic fibrations
- YHH-Jejjala-Pontiggia 2016 distribution of Hodge, χ, Pseudo-Voigt

KS stats

Pseudo-Voigt distribution

sum of Gaussian and Cauchy

$$
(1-\alpha) \frac{A}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}+\alpha \frac{A}{\pi}\left[\frac{\sigma^{2}}{(x-\mu)^{2}+\sigma^{2}}\right]
$$

Planck distribution

$$
\frac{A}{x^{n}} \frac{1}{e^{b /(x-c)}-1}
$$

He, VJ, Pontiggia (2015)

The Compact CY3 Landscape

40 years of research by mathematicians and physicists;
10^{10} data-points
(and growing)

- OPEN CONJECTURES:

Yau: Topological type of CY in any dim is FINITE
Reid's Fantasy: All CY3 are connected by conifold-like transitions

CY3 Compactification: Recent Development

- E_{6} GUTs less favourable, $S U(5)$ and $S O(10)$ GUTs: general embedding
- Instead of $T X$, use (poly-)stable holomorphic vector bundle V
- LE particles \sim massless modes of V-twisted Dirac Operator: $\nabla_{X, V} \Psi=0$
- massless modes of $\nabla_{X, V} \stackrel{1: 1}{\longleftrightarrow} V$-valued cohomology groups
- Gauge $\operatorname{group}(V)=G=S U(n), n=3,4,5$, gives $H=\operatorname{Commutant}\left(G, E_{8}\right)$:

$E_{8} \rightarrow G \times H$	Breaking Pattern		
$S U(3) \times E_{6}$	248	\rightarrow	$(1,78) \oplus(3,27) \oplus(\overline{3}, \overline{27}) \oplus(8,1)$
$S U(4) \times S O(10)$	248	\rightarrow	$(1,45) \oplus(4,16) \oplus(\overline{4}, \overline{16}) \oplus(6,10) \oplus(15,1)$
$S U(5) \times S U(5)$	248	\rightarrow	$(1,24) \oplus(5, \overline{10}) \oplus(\overline{5}, 10) \oplus(10,5) \oplus(\overline{10}, \overline{5}) \oplus(24,1)$

- Particle content

Decomposition	Cohomologies
$\mathrm{SU}(3) \times \mathrm{E}_{6}$	$n_{27}=h^{1}(V), n_{\overline{27}}=h^{1}\left(V^{*}\right)=h^{2}(V), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(4) \times \mathrm{SO}(10)$	$n_{16}=h^{1}(V), n_{\overline{16}}=h^{2}(V), n_{10}=h^{1}\left(\wedge^{2} V\right), n_{1}=h^{1}\left(V \otimes V^{*}\right)$
$\mathrm{SU}(5) \times \mathrm{SU}(5)$	$n_{10}=h^{1}\left(V^{*}\right), n_{\overline{10}}=h^{1}(V), n_{5}=h^{1}\left(\wedge^{2} V\right), n_{\overline{5}}=h^{1}\left(\wedge^{2} V^{*}\right), n_{1}=h^{1}\left(V \otimes V^{*}\right)$

- Further to SM: $H \xrightarrow{\text { Wilson Line }} S U(3) \times S U(2) \times U(1)$

Ubi Materia, Ibi Geometria

- Issues in low-energy physics \sim Precise questions in Alg Geo of (X, V)
- Particle Content \sim (tensor powers) V Equivariant Bundle Cohomology on X
- LE SUSY ~ Hermitian Yang-Mills connection ~ Bundle Stability
- Yukawa \sim Trilinear (Yoneda) composition
- Doublet-Triplet splitting \sim representation of fundamental group of X
- e.g., for $\pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ WL:

Cohomology	Representation	Multiplicity	Name
$\left[\alpha_{1}^{2} \alpha_{2} \otimes H^{1}(X, V)\right]^{\text {inv }}$	$(\mathbf{3}, \mathbf{2})_{1,1}$	3	left-handed quark
$\left[\alpha_{1}^{2} \otimes H^{1}(X, V)\right]^{\text {inv }}$	$(\mathbf{1}, \mathbf{1})_{6,3}$	3	left-handed anti-lepton
$\left[\alpha_{1}^{2} \alpha_{2}^{2} \otimes H^{1}(X, V)\right]^{\text {inv }}$	$(\overline{\mathbf{3}}, \mathbf{1})_{-4,-1}$	3	left-handed anti-up
$\left[\alpha_{2}^{2} \otimes H^{1}(X, V)\right]^{\text {inv }}$	$(\overline{\mathbf{3}}, \mathbf{1})_{2,-1}$	3	left-handed an ti-down
$\left[H^{1}(X, V)\right]^{\text {inv }}$	$(\mathbf{1}, \mathbf{2})_{-3,-3}$	3	left-handed lepton
$\left[\alpha_{1} \otimes H^{1}(X, V)\right]^{\text {inv }}$	$(\mathbf{1}, \mathbf{1})_{0,3}$	3	left-handed anti-neutrino
$\left[\alpha_{1} \otimes H^{1}\left(X, \wedge^{2} V\right)\right]^{\text {inv }}$	$(\mathbf{1}, \mathbf{2})_{3,0}$	1	up Higgs
$\left[\alpha_{1}^{2} \otimes H^{1}\left(X, \wedge^{2} V\right)\right]^{\text {inv }}$	$(\mathbf{1}, \mathbf{2})_{-3,0}$	1	down Higgs

A Heterotic Standard Model

- [Braun-YHH-Ovrut-Pantev] (hep-th/0512177, 0601204)

- $\quad X_{0}^{19,19}$ double-fibration over $d P_{9} \quad \pi_{1}(X)=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$
- V stable $S U(4)$ bundle: Generalised Serre Constrct
- Couple to $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Wilson Line
- Matter $=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$-Equivariant cohomology on $X_{0}^{3,3}$
- Exact $S U(3) \times S U(2) \times U(1) \times U(1)_{B-L}$ spectrum:

No exotics; no anti-generation; 1 pair of Higgs; RH Neutrino

- $S U(5) \rightarrow S U(3) \times S U(2) \times U(1)$ version [Bouchard-Cvetic-Donagi] same manifold
- $X_{0}^{19,19}$ is a CICY! Obvenatio curiona

Algorithmic Compactification

- Searching the MSSM, Sui Generis?
- $\sim 10^{7}$ Spectral Cover bundles [Donagi, Friedman-Morgan-Witten, 1996-8] over elliptically fibered CY3 (2005-9), [Donagi-YHH-Ovrut-Pantev-Reinbacher, Gabella-YHH-Lukas,...]
- $\sim 10^{5}$ (Monad) Bundles over all CICYs [Anderson-Gray-YHH-Lukas, 2007-9]
- Monad Bundles over KS YHH-Kreuzer-Lee-Lukas 2010-11: ~ 200 in 10^{5} 3-gens
- culminating in .. Stable Sum of Line Bundles over CICYs (Oxford-Penn-Virginia 2012-) Anderson-Gray-Lukas-Ovrut-Palti ~ 200 in 10^{10} MSSM
- meanwhile ... LANDSCAPE grew with D-branes Polchinski 1995, M-Theory/ G_{2}

Witten, 1995, F-Theory/4-folds Katz-Morrison-Vafa, 1996, AdS/CFT Maldacena 1998,
Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, ...

Digression

D-branes, Type II \& Non-Compact CY

- D-branes Dirichlet Boundary conditions for open strings;
- D-brane world-volumes: Dp has $p+1$-D w.v.

$D 1, D 3, \ldots, D 9$ of dimensions
$1+1, \ldots, 9+1 ;$
DYNAMICAL: Carry charges
$(2,4, \ldots, 10$ forms $) \int_{D p} Q^{(p+1)}$
- i.e., Open strings carry charges (Chan-Paton factors) \Rightarrow
$\underline{\text { D-branes }=\text { Supports of Sheafs }}$ (strictly: D-brane $=$ object in $\left.D^{b}(C o h)\right)$
- important property: GAUGE ENHANCEMENT
- i.e., world-volume sees a $U(1)$-bundle
- Bringing together (stack) n parallel D-branes $U(1)^{n} \rightarrow U(n)$

Another $10=4+6$

- SUMMARY Type IIB: 10D, Closed Strings, Open Strings/Dp-Branes, p odd
- $\mathbb{R}^{1,9} \simeq \mathbb{R}^{1,3}$ (world-volume of D3) $\times X^{6}$ (transverse non-compact CY3)
- SIMPLEST CASE: transverse CY3 $=\mathbb{C}^{3}$
- Original Maldacena's AdS/CFT (1997):
$\mathcal{N}=4 \mathrm{U}(\mathrm{n})$ SYM on 4D world-volume of n D3s
- R-symmetry $S U(4) \simeq S O(6)$ of S^{5} in $A d S_{5} \times S^{5}$
- Gauge Fields $A^{\mu}: \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$
- Matter Fields $\mathcal{R}=\mathbf{4 , 6}$: Adjoint (Weyl) fermions $\Psi_{I J}^{4}: \mathbf{4} \otimes \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$ Bosons $\Phi_{I J}^{6}: \mathbf{6} \otimes \operatorname{Hom}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$

A Geometer's AdS/CFT

- Rep. Variety(Quiver) ~ VMS(SUSY QFT) ~ affine/singular variety
e.g $\mathcal{N}=1$ Quiver variety $=$ vacuum of F - \& D-flatness $=$ non-compact CY3
- $\mathcal{N}=4 U(N)$ Yang-Mills
- 3 adjoint fields X, Y, Z with superpotential $W=\operatorname{Tr}(X Y Z-X Z Y)$

- N D3-branes (w.v. is $\mathcal{N}=4$ in $\left.\mathbb{R}^{3,1}\right) \perp \mathbb{R}^{6}$

$$
\simeq \mathbb{C}^{3}=\text { Vacuum Moduli Space }
$$

- VMS \simeq affine non-compact CY3 by construction
- QUIVER $=$ Finite graph (label $=$ rk(gauge factor) $)+$ relations from W
- Matter Content: Nodes + arrows
- Relations (F-Terms): $D_{i} W=0 \leadsto[X, Y]=[Y, Z]=[X, Z]=0$
- Here \mathbb{C}^{3} is real cone over S^{5} (simplest Sasaki-Einstein 5-manifold), others?

Orbifolds (V-manifolds)

- Orbifolds: next best thing to \mathbb{C}^{3} (Satake 60's);
- Transverse $\mathrm{CY} 3 \simeq \mathbb{C}^{3} /\{\Gamma \subset S U(k)\}$ that admit crepant resolution, i.e., resolve to Calabi-Yau; Γ discrete finite subgroup of holonomy $S U(k) ; k=2,3$
- Γ-Projection: $\gamma A^{\mu} \gamma^{-1}=A^{\mu}$ and $\Psi_{I J}=R(\gamma) \gamma \Psi_{I J} \gamma^{-1}$; i.e.,
- Gauge Group $U(n) \Rightarrow \prod_{i} U\left(N_{i}\right)$
- Matter fields decompose as

$$
\begin{aligned}
\left(\mathcal{R} \otimes \operatorname{hom}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)\right)^{\Gamma} & =\bigoplus_{i, j} \mathcal{R} \otimes\left(\mathbb{C}^{N_{i}} \otimes \mathbb{C}^{N_{j^{*}}} \otimes \mathbf{r}_{\mathbf{i}} \otimes \mathbf{r}_{\mathbf{j}}^{*}\right)^{\Gamma} \\
& =\bigoplus_{i, j} a_{i j}^{\mathcal{R}}\left(\mathbb{C}^{N_{i}} \otimes \mathbb{C}^{N_{j^{*}}}\right),
\end{aligned}
$$

where $\mathcal{R} \otimes \mathbf{r}_{i}=\underset{j}{\oplus} a_{i j}^{\mathcal{R}} \mathbf{r}_{j}$

- $a_{i j}^{4}$ bi-fundamental fermions: $\left(N_{i}, \bar{N}_{j}\right)$ of $S U\left(N_{i}\right) \times S U\left(N_{j}\right)$
- $a_{i j}^{6}$ bi-fundamental bosons: $\left(N_{i}, \bar{N}_{j}\right)$ of $S U\left(N_{i}\right) \times S U\left(N_{j}\right)$

Quivers

	Parent	$\xrightarrow{\Gamma}$	Orbifold Theory
SUSY	$\mathcal{N}=4$	\sim	$\begin{aligned} & \mathcal{N}=2, \text { for } \Gamma \subset S U(2) \\ & \mathcal{N}=1, \text { for } \Gamma \subset S U(3) \\ & \mathcal{N}=0, \text { for } \Gamma \subset\{S U(4) \simeq S O(6)\} \end{aligned}$
Gauge Group	$U(n)$	\sim	$\prod_{i} U\left(N_{i}\right), \quad \sum_{i} N_{i} \operatorname{dim} \mathbf{r}_{i}=n$
Fermion Boson	$\begin{aligned} & \Psi_{I J}^{4} \\ & \Phi_{I J}^{6} \end{aligned}$	\sim \sim	$\begin{array}{ll} \Psi_{f_{i j}}^{i j} & \\ \Phi_{f_{i j}}^{i j} & \mathcal{R} \otimes \mathbf{r}_{i}=\bigoplus_{j} a_{i j}^{\mathcal{R}} \mathbf{r}_{j} \end{array}$

$$
I, J=1, \ldots, n ; f_{i j}=1, \ldots, a_{i j}^{\mathcal{R}}=\mathbf{4 , 6}
$$

- In physics: Douglas \& Moore (9603167), $\mathbb{C}^{2} / \mathbb{Z}_{n}$; Johnson \& Meyers (9610140) Formalised in Lawrence, Nekrasov \& Vafa, (9803015);

Quivers: Finite Graphs with Representation

- A Graphical way to represent this data
- Node $i \sim$ gauge factor $U\left(N_{i}\right)$
- Arrow $i \rightarrow j \sim$ bi-fundamental $\left(N_{i}, \bar{N}_{j}\right)$

Adjacency Matrix

- e.g. $A_{i j}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$

- Gabriel: $1970 \mathrm{~s}: x_{1} \in \operatorname{Hom}\left(\mathbb{C}^{n_{1}}, \mathbb{C}^{n_{2}}\right)$, etc.

McKay Correspondence

- Take the $\mathbb{C}^{2} /(\Gamma \subset S U(2)) \times \mathbb{C}$ case: Discrete Finite Subgroups of $S U(2)$
- F. Klein (1884) (double covers of those of $S O(3)$, i.e., symmetry groups of the Platonic solids)

Group	Name	Order
$A_{n} \simeq \mathbb{Z}_{n+1}$	Cyclic	$n+1$
D_{n}	Binary Dihedral	$2 n$
E_{6}	Binary Tetrahedral	24
E_{7}	Binary Octahedral (Cube)	48
E_{8}	Binary Icosahedral (Dodecadedron)	120

- McKay (1980) Take the Clebsch-Gordan decomposition for $\mathcal{R}=$ fundamental

2 representation of $S U(2)$

ADE-ology

- $\mathbf{2} \otimes \mathbf{r}_{i}=\bigoplus_{j} a_{i j}^{2} \mathbf{r}_{j}$ and treat $a_{i j}^{2}$ as adjacency matrix
- McKay Quivers (rmk: Cartan matrix symmetric \sim graph unoriented)
- QUIVERS = DYNKIN DIAG. OF CORRESPONDING AFFINE LIE ALGEBRA!!

Geometrical McKay

- Geometrically: González-Springberg \& Verdier (1981)

Crepant Resolution $K 3 \rightarrow \mathbb{C}^{2} / \Gamma$

$$
\begin{array}{ll}
A_{n}: & x y+z^{n}=0 \\
D_{n}: & x^{2}+y^{2} z+z^{n-1}=0 \\
E_{6}: & x^{2}+y^{3}+z^{4}=0 \\
E_{7}: & x^{2}+y^{3}+y z^{3}=0 \\
E_{8}: & x^{2}+y^{3}+z^{5}=0
\end{array}
$$

- Intersection matrix of -2 exceptional curves in the blowup \leadsto Quiver
- Bridgeland-King-Reid (1999) Use Fourier-Mukai: McKay as an auto-equivalence in $\mathcal{D}^{b}(\operatorname{coh}(\widetilde{X / G}))=\mathcal{D}^{b}\left(\operatorname{coh}^{G}(X)\right)$

CY3 case: $\mathbb{C}^{3} /(\Gamma \subset S U(3))$

- McKay Quiver $\Rightarrow \mathcal{N}=2$ SUSY gauge theory on 4D world-volume
- $\mathcal{N}=1$ SUSY: Need discrete finite groups $\Gamma \subset S U(3)$
- Classification: Blichfeldt (1917)

Infinite Series	$\Delta\left(3 n^{2}\right), \Delta\left(6 n^{2}\right)$
Exceptionals	$\Sigma_{36 \times 3}, \Sigma_{60 \times 3}, \Sigma_{168 \times 3}, \Sigma_{216 \times 3}, \Sigma_{360 \times 3}$

- Gives chiral $\mathcal{N}=1$ gauge theories in 4D wv of D3-probe
- most phenomenologically interesting
- Hanany \& YHH hep-th/9811183
- Rmk: Crepant Resolutions to CY3 and Generalised McKay (Reid, Ito et al.) not as well established

$\mathrm{SU}(3)$ quivers and $\mathcal{N}=1$ gauge theories

$\Gamma \subset S U(3)$	Gauge Group
$\begin{gathered} \widehat{A_{n}} \cong \mathbb{Z}_{n+1} \\ \mathbb{Z}_{k} \times \mathbb{Z}_{k^{\prime}} \\ \widehat{D_{n}} \\ \widehat{E_{6}} \cong \mathcal{T} \\ \widehat{E_{7}} \cong \mathcal{O} \\ \widehat{E_{8}} \cong \mathcal{I} \\ E_{6} \cong T \\ E_{7} \cong O \\ E_{8} \cong I \\ \Delta_{3 n^{2}}(n=0 \bmod 3) \\ \Delta_{3 n^{2}}(n \neq 0 \bmod 3) \\ \Delta_{6 n^{2}}(n \neq 0 \bmod 3) \\ \Sigma_{168} \\ \Sigma_{216} \\ \Sigma_{36 \times 3} \\ \Sigma_{216 \times 3} \\ \Sigma_{360 \times 3} \\ \hline \end{gathered}$	$\begin{gathered} \left(1^{n+1}\right) \\ \left(1^{k k^{\prime}}\right) * \\ \left(1^{4}, 2^{n-3}\right) \\ \left(1^{3}, 2^{3}, 3\right) \\ \left(1^{2}, 2^{2}, 3^{2}, 4\right) \\ \left(1,2^{2}, 3^{2}, 4^{2}, 5,6\right) \\ \left(1^{3}, 3\right) \\ \left(1^{2}, 2,3^{2}\right) \\ \left(1,3^{2}, 4,5\right) \\ \left(1^{9}, 3^{\frac{n^{2}}{3}-1}\right) * \\ \left(1^{3}, 3^{\frac{n^{2}}{3}-1}\right) * \\ \left(1^{2}, 2,3^{2(n-1)}, 6^{\frac{n^{2}}{3}-3 n+2} 6\right. \\ \left(1,3^{2}, 6,7,8\right) * \\ \left(1^{3}, 2^{3}, 3,8^{3}\right) \\ \left(1^{4}, 3^{8}, 4^{2}\right) * \\ \left(1^{3}, 2^{3}, 3^{7}, 6^{6}, 8^{3}, 9^{2}\right) * \\ \left(1,3^{4}, 5^{2}, 6^{2}, 8^{2}, 9^{3}, 10,15^{2}\right) * \end{gathered}$

DICTIONARY: Quivers \& Gauge Theory

$$
S=\int d^{4} x\left[\int d^{2} \theta d^{2} \bar{\theta} \Phi_{i}^{\dagger} e^{V} \Phi_{i}+\left(\frac{1}{4 g^{2}} \int d^{2} \theta \operatorname{Tr} \mathcal{W}_{\alpha} \mathcal{W}^{\alpha}+\int d^{2} \theta W(\Phi)+\text { c.c. }\right)\right]
$$

$$
W=\text { superpotential } \quad V\left(\phi_{i}, \bar{\phi}_{i}\right)=\sum_{i}\left|\frac{\partial W}{\partial \phi_{i}}\right|^{2}+\frac{g^{2}}{4}\left(\sum_{i} q_{i}\left|\phi_{i}\right|^{2}\right)^{2}
$$

- Encode into QUIVER (rep of finite labelled graph with relations):
k nodes, dim vec $\left(N_{1}, \ldots, N_{k}\right) \quad \prod_{j=1}^{k} U\left(N_{j}\right)$ gauge group

$$
\begin{array}{cc}
\text { Arrow } i \rightarrow j & \text { bi-fund } \left.X_{i j} \text { field (} \square, \bar{\square}\right) \text { of } U\left(N_{i}\right) \times U\left(N_{j}\right) \\
\text { Loop } i \rightarrow i & \text { adjoint } \phi_{i} \text { field of } U\left(N_{i}\right) \\
\text { Cycles } & \text { Gauge Invariant Operator } \\
\text { 2-cycles } & \text { Mass-terms } \\
W=\sum c_{i} \text { cycles }_{i} & \text { Superpotenital } \\
\text { Relations } & \text { Jacobian of } W\left(\phi_{i}, X_{i j}\right) \\
\hline
\end{array}
$$

- VACUUM $\sim V\left(\phi_{i}, \bar{\phi}_{i}\right)=0 \Rightarrow\left\{\begin{array}{cc}\frac{\partial W}{\partial \phi_{i}, X_{i}}=0 & \text { F-TERMS } \\ \sum_{i} q_{i}\left|\phi_{i}\right|^{2}+q_{k}\left|X_{k}\right|=0 & \text { D-TERMS }\end{array}\right.$

Another Famous Example: Conifold

- $S U(N) \times S U(N)$ gauge theory with 4 bi-fundamental fields

QUIVER

- D3-branes transverse to the conifold singularity $=\left(\{u v=w z\} \subset \mathbb{C}^{4}\right)=$ VMS (Klebanov-Witten 1999] $\mathcal{N}=1$ "conifold" Theory)
- \# gauge factors $=N_{g}=2$; \# fields $=N_{f}=4 ; \#$ terms in $W=N_{w}=2$
- Observatio Curiosa: $N_{g}-N_{f}+N_{w}=0$, as with \mathbb{C}^{3}, true for almost all known cases in $A d S_{5} / C F T_{4}$

The Landscape of Affine (Singular) CY3

- 2 decade programme of the School of A. Hanany:

- Orbifolds: $\mathbb{C}^{3} /(\Gamma \subset S U(3))$ Generalized McKay Correspondence (Hanany-YHH, 98); Fano (del Pezzo): $d P_{0, \ldots, 8}$ ($\mathrm{w} /$ Hanany,Feng, Franco, et al. 98-00); LARGEST FAMILY by far Toric: e.g., conifold, $Y^{p, q}, L^{p, q} \ldots$

\mathcal{M} Toric CY3 \longleftrightarrow Bipartite Graph on T^{2}

Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks, Vafa, Vegh, Yamazaki, Zaffaroni ...

- $N_{g}-N_{f}+N_{w}=0$ is Euler relation for a tiling of torus
- $\operatorname{Jac}(W)=$ binomial ideal (toric): bipartite Notation for Toric Cones

$$
W=\operatorname{Tr}(X Y Z-X Z Y)
$$

$$
W=\operatorname{Tr}\left(\epsilon_{i l} \epsilon_{j k} A_{i} B_{j} A_{l} B_{k}\right)
$$

Toric CY3, Mirror Symmetry \& Bipartite Tilings

- Mirror Symmetry [Strominger-Yau-Zaslow; Hori-Vafa]

D3-brane on CY3 \sim D6-branes wrapping 3-cycles in mirror CY3

- [Feng-Kennaway-YHH-Vafa] torus T^{2} lives in T^{3} of mirror symmetry;

Tropical Geometry

- THEOREM: [R. Böckland, N. Broomhead, A. Craw, A. King, K. Ueda ...]

The (coherent component of) VMS as representation variety of a quiver is an affine (non-compact, possibly singular) toric Calabi-Yau variety of complex dimension $3 \Leftrightarrow$ the quiver + superpotential is graph dual to a bipartite graph drawn on T^{2}

- Rmk: Each \Rightarrow SCFT in 3+1-d

SUMMARY: \mathbb{C}^{3}, Hexagonal Tilings, SYM

$\mathcal{N}=1 \mathrm{SYM}=\mathrm{D} 3$-branes transverse to $\mathbb{C}^{3}=\mathcal{C}\left(S^{5}\right)=$ hexagonal bipartite tiling

SUMMARY: Conifold and Square Tilings

Quiver

$$
\mathrm{W}=\operatorname{Tr}(\mathrm{A} 1 \mathrm{~B} 1 \mathrm{~A} 2 \mathrm{~B} 2-\mathrm{A} 1 \mathrm{~B} 2 \mathrm{~A} 2 \mathrm{~B} 1)
$$

Draw on torus
\qquad
\rightarrow

Periodic Quiver
W encoded

Dimer Model

Period Tiling of Plane

Newton

Toric Diagram
(p,q)-Web

Graph Dual
Amoeba

Projection

The String Landscape

Vacuum Degeneracy

Perhaps the biggest theoretical challenge to string theory: selection criterion??? metric on the landscape???

- Douglas (2003): Statistics of String vacua
- Kachru-Kallosh-Linde-Trivedi (2003): type II/CY estimates of 10^{500}
- Taylor-YN Wang (2015-7): F-theory estimates 10^{3000} to $10^{10^{5}}$
- Basically: Combinatorial geometry usually tends exponentially e.g., Kreuzer-Skarke (2000s): Reflexive polytopes up to $S L(n ; \mathbb{Z})$:

1, 16, 4319, 473800776, ???
Altman-Carifio-Halverson-Nelson (2018): estimated $10^{10^{4}}$ triangulations Altman-Gray-YHH-Jejjala-Nelson (2014): brute-force: $\sim 10^{6}$ up to $h^{1,1}=6$

Searching the Standard Model

SM places some constraints but still not enough:

- Braun-YHH-Ovrut; Bouchard-Cvetic-Donagi (2005): exact MSSM particles
- Gmeiner-Blumenhagen-Honecker-Lüst-Weigand (2005):1 in 10^{9} in D-brane MSSM modles
- Candelas-de la Ossa-YHH-Szendroi (2007): Triadophilia \Rightarrow "des res"?
- Anderson-Gray-Lukas-Palti (2012-3): Het line bundle MSSM: 200 in 10^{10}

Recent estimates

- Constatin-YHH-Lukas; Deen-YHH-SJ Lee-Lukas (2018-9) MSSM from heterotic line bundles: 10^{23} from $\mathrm{CICYs} ; 10^{723}$ from KS
- Cvetic-Halverson-Lin-Liu-Tian (2019): 10^{15} F-theory MSSMs

WWJD

What Would JPython/AI Do?

YHH, 1706.02714, PLB 774, 2017
(Feature article, M. Hutchinson, Science, Vol 365, July, 2019)

SUMMARY: Algorithms and Datasets in String Theory

- Growing databases and computational algorithms motivated by string theory
- Archetypical Problems
- Classify configurations (typically integer matrices: polyotope, adjacency, ...)
- Compute geometrical quantity algorithmically
- toric \sim combinatorics;
- quotient singularities \leadsto rep. finite groups;
- generically \leadsto ideals in polynomial rings;
- Numerical geometry (homotopy continuation);
- Cohomolgy (spectral sequences, Adjunction, Euler sequences)
- Typical Problem in String Theory/Algebraic Geometry:

Where we stand . . .

The Good Last 10-15 years: several international groups have bitten the bullet Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, ... computed many geometrical/physical quantities and compiled them into various databases Landscape Data ($10^{9 \sim 10}$ entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential), triangulation (exponential), Gröbner basis (double-exponential)
...e.g., how to construct stable bundles over the $\gg 473$ million KS CY3? Sifting through for MSSM not possible ...

The ??? Borrow new techniques from "Big Data" revolution

A Wild Question

- Typical Problem in String Theory/Algebraic Geometry:

- Q: Can (classes of problems in computational) Algebraic Geometry be "learned" by AI ?, i.e., can we "machine-learn the landscape?"
- 1706.02714 Deep-Learning the Landscape, PLB 774, 2017:

Experimentally, it seems to be the case for many situations

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714);
Krefl-Seong (1706.03346);
Ruehle (1706.07024)
Carifio-Halverson-Krioukov-Nelson (1707.00655)

Sophia: Hanson Robotics, HongKong

- Beginning of String_Data
- How can ML and modern data-science help with the vacuum degeneracy problem??
- Meanwhile .. Sophia becomes a "human" citizen (in Saudi Arabia)

2017: String Theory enters the Machine-Learning Era

YHH (1706.02714);
Krefl-Seong (1706.03346);
Ruehle (1706.07024)
Carifio-Halverson-Krioukov-Nelson (1707.00655)

Sophia: Hanson Robotics, HongKong

- Beginning of String_Data

Progress in String Theory

- How can ML and modern data-science help with the vacuum degeneracy problem??
- Meanwhile ... Sophia becomes a "human" citizen (in Saudi Arabia)

A Prototypical Question

- Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

$$
1234567890
$$

- How to set up a bijection that takes these to $\{1,2, \ldots, 9,0\}$? Find a clever Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

- What does your iPhone/tablet do? What does Google do? Machine-Learn
- Take large sample, take a few hundred thousand (e.g. NIST database)

$$
\begin{aligned}
& 6 \rightarrow 6,8 \rightarrow 8,2 \rightarrow 2,4 \rightarrow 4,8 \rightarrow 8,7 \rightarrow 7,8 \rightarrow 8, \\
& 0 \rightarrow 0,4 \rightarrow 4,2+2,5+5,6 \rightarrow 6,3 \rightarrow 3,2+2,
\end{aligned}
$$

$$
28 \times 28 \times(R G B)
$$

Part II: Machine Learning

A Brief Introduction to the Novice

Back in Kindergarten．．．

－Given a set of data－points（now called point cloud $\vec{x}_{i} \in \mathbb{R}^{n}$ ），we were taught to do 2 types of things
（1）Plot them and see if there are any patterns（if n is small），known distribution？ components？
（2）Consider $n-1$ as independent variables and 1 as dependent，find best－fit function $x_{n}=f\left(x_{i=1, \ldots, n-1}\right)$ by regression（typically linear）（線性）回歸。
－Now，we have more sophisticated generalizations／names：
（1）Unsupervised machine－learning 非監督機器學習
（2）Supervised machine－learning 監督性機器學習

A Long History（contrary to what you might think）

（cf．Goodfellow，Bengio，Courville，＂Deep－Learning＂，2006，MIT Press［GBC］）
－1940－60：Cybernetics 控制論
The Perceptron 感知器 1957 （！！）in early AI（using CdS photo－cells）
－1980－90：Connectionism 聯合主義
（Artificial）Neural Networks（NN）（人工）神經網絡
－2006：Deep Learning 深度（機器）學習

（Fig 1.7 of
［GBC］；from
all texts on
Googlebooks）

A Key Mathematical Tool

－Gradient／Steepest Descent 梯度下降優化：Find the（local）minimum \vec{x}^{*} of a function $f(\vec{x})$［Cauchy，1847］

$$
\vec{x}_{n+1}:=\vec{x}_{n}-\epsilon \nabla f\left(\vec{x}_{n}\right), \quad \text { iterate } n=1,2,3, \ldots
$$

$f\left(\vec{x}_{n+1}\right) \leq \vec{x}_{n}$ ；learning rate ϵ and initial value \vec{x}_{0} are hyper－parametres
－Stochstatic Gradient Descent 隨機梯度下降：Typically f is a cost function
－of form $f=\sum_{\mathcal{D}} f_{i}$ summed over the data \mathcal{D} where $|\mathcal{D}|$ is huge
－Take random samples $\mathcal{D}^{\prime} \subset \mathcal{D}$ and sum over \mathcal{D}^{\prime} ：mini－batch size $|\mathcal{D}|$

Basic Types

- $\begin{cases}\text { Discrete } & \text { Classifier } \\ \text { Continuous } & \text { Regressor }\end{cases}$
- $\left\{\begin{array}{l}\text { Unsupervised }\left\{\begin{array}{l}\begin{array}{l}\text { Clustering (e.g., nearest neiboughrs, k-Means, ...) } \\ \text { Autoencoders } \\ \text { GAN (Generative Adversarial Networks) } \\ \text { PCA (Principal Component Analysis) PCA }\end{array} \ldots\end{array}\right. \\ \text { Supervised (labeled data) }\left\{\begin{array}{l}\text { Perceptron } \\ \text { SVM Support Vector Machine } \\ \text { Neural Network } \\ \text { Bayesian Classifiers, Decision Trees, ... }\end{array}\right.\end{array}\right.$

A Single Neuron：The Perceptron 神經元：感知器

－DEF：Imitates a neuron：activates upon certain inputs，so define
－Activation Function $f\left(z_{i}\right)$ for input tensor z_{i} for some multi－index i ；
－consider：$f\left(w_{i} z_{i}+b\right)$ with w_{i} weights and b bias／off－set；
－Given Training data： $\mathcal{D}=\left\{\left(x_{i}^{(j)}, d^{(j)}\right\}\right.$ with input x_{i} and known output $d^{(j)}$ ，minimize some cost／loss function to find optimal w_{i} and $b \leadsto$＂learning＂， then check against Validation Data
－Just（non－linear）regression
－supervision because of association（teaching）$x_{i} \rightarrow d$

Common Activation Functions 激活函數

－Logistic Sigmoid：$\left(1+e^{-x}\right)^{-1}$
－Hyperbolic tangent： $\tanh (x)=\frac{e^{x}+e^{-x}}{e^{x}-e^{-x}}$
－Softplus： $\log \left(1+e^{x}\right)$ ，a＂softened＂version of ReLu（Rectified Linear Unit）： $\max (0, x)$
－Softmax：$\quad x_{i} \rightarrow \frac{e^{x_{i}}}{\sum_{i} e^{x_{i}}}$
－Parametric ReLu：$R(x)= \begin{cases}x, & x \geq 0 \\ \alpha x, & x<0\end{cases}$
－Maxout：$x_{i} \rightarrow \max _{i} x_{i}$
－Linear／Identity：$x_{i} \rightarrow x_{i}$
（rmk：the weights and bias will make it $x_{i} \rightarrow w_{i j} x_{j}+b_{i}$ ）

Common Cost／Loss Functions 代價函數

（supervised）dataset $\mathcal{D}=\left\{x_{i}^{(j)} \longrightarrow d^{(j)}\right\}_{j=1,2, \ldots, N}$
Training set and validation set： $\mathcal{D}=\mathcal{T} \sqcup \mathcal{V},|\mathcal{T}|=n,|\mathcal{V}|=N-n$
Best－fit function／predictor $f(x)$ trained on \mathcal{T} ：
－When output is continuous（best－fit function），typically use SEL （squared－error－loss）

$$
S E L:=\sum_{j}\left[f\left(\sum_{i} w_{i} x_{i}^{(j)}+b\right)-d^{(j)}\right]^{2}
$$

－When output is discrete（categorical classification problem），typically use XC （cross－entropy）

$$
X C:=-\frac{1}{n} \sum_{j}\left[d^{(j)} \log f\left(x^{(j)}\right)+\left(1-d^{(j)}\right) \log \left(1-f\left(x^{(j)}\right)\right)\right]
$$

Measures for Goodness of Fit／Performance：Continuous

On validation dataset $\mathcal{V}=\left\{x_{i}^{(j)} \longrightarrow d^{(j)}\right\}_{j=1,2, \ldots, m=N-n}$ ；
Predicted values：$\left\{x_{i}^{(j)} \longrightarrow \hat{d}^{(j)}\right\}_{j}$
－Need to compare \hat{d} and d pairwise and have a measure of how good the predictor is 決定係數

$$
\text { Coefficient of Determination } \quad R^{2}:=1-\frac{S S_{\mathrm{res}}}{S S_{\mathrm{tot}}}
$$

$$
\begin{aligned}
& \text { Data Variance }=S S_{\text {tot }}:=\sum_{j}\left(d^{(j)}-\overline{d^{(j)}}\right)^{2}, \quad \overline{d^{(j)}}:=\text { mean } \\
& \text { Residual sum of squares }=S S_{\text {res }}:=\sum_{j}\left(d^{(j)}-\hat{d}^{(j)}\right)^{2},
\end{aligned}
$$

－bad fit $=0 \leq R^{2} \leq 1=$ perfect fit
－Also do a scatter－plot of $\left(d^{(j)}, \hat{d}^{(j)}\right)$ ，needs to be close to $y=x$ line

Measures for Performance: Discrete

- Categorial Classification (K classes)
- When $K=2$, called binary classification, denote $d_{i} \in\{0,1\}$
- confusion matrix: $C:=$

		Actual	
		True (1)	False (0)
Predicted	True (1)	True Positive (tp)	False Positive $(f p)$
Classification	False (0)	False Negative (fn)	True Negative $(t n)$

- True/False positive rate TPR/FPR:

$$
\begin{array}{cc}
\mathrm{TPR}:=\frac{t p}{t p+f n}, & \mathrm{FPR}:=\frac{f p}{f p+t n}, \\
\text { Accuracy } \frac{t p+t n}{t p+t n+f p+f n}, & \text { Precision }:=\frac{t p}{t p+f p} .
\end{array}
$$

- want accuracy (\% agreement) and precision to be close to 1 but these are not good enough in discounting fp and fn .

Further Performance Measure: Discrete

- F1-Score $F:=\frac{2}{\frac{1}{T P R}+\frac{1}{\text { Precision }}} \in[0,1]$
- Harmonic mean between true positives and precision
- closer to 1 the better the prediction
- Matthews' Correlation Coefficient
$\phi:=\sqrt{\frac{\chi^{2}}{m}}=\frac{t p \cdot t n-f p \cdot f n}{\sqrt{(t p+f p)(t p+f n)(t n+f p)(t n+f n)}} \in[-1,1]$
- - 1 anti-correlation; 0 random; 1 perfect correlation
- generalize to K-category classification (for $K \times K$ confusion matrix)

$$
\phi:=\frac{\sum_{k} \sum_{l} \sum_{m} C_{k k} C_{l m}-C_{k l} C_{m k}}{\sqrt{\sum_{k}\left(\sum_{l} C_{k l}\right)\left(\sum_{k^{\prime} \mid k^{\prime} \neq k} \sum_{l^{\prime}} C_{k^{\prime} l^{\prime}}\right)} \sqrt{\sum_{k}\left(\sum_{l} C_{l k}\right)\left(\sum_{k^{\prime} \mid k^{\prime} \neq k} \sum_{l^{\prime}} C_{l^{\prime} k^{\prime}}\right)}}
$$

- rmk: everything so far, perceptron included, is just old-fashioned regression

Support Vector Machines 向量支持器

－a classic example of supervised learning：find hyperplanes which separate labeled categories
－e．g．，binary classification：given $\left(\vec{x}_{i} \rightarrow y_{i}\right)_{i=1, \ldots, N}$ with $\vec{x}_{i} \in \mathbb{R}^{n}, y_{i}= \pm 1$

－find 2 hyperplanes so that

$$
\begin{aligned}
& \vec{x}_{i} \cdot \vec{w}+b \geq 1 \text { if } y_{i}=1 \\
& \vec{x}_{i} \cdot \vec{w}+b \leq-1 \text { if } y_{i}=-1
\end{aligned}
$$

－distance between 2 hyperplanes is
$2 /\|\vec{w}\|$ ，which we need to maximize
－i．e．，have optimization problem：（combining the 2 hyperplanes）

$$
\min _{\vec{w}, b} \frac{1}{2}\|\vec{w}\|^{2}, \quad \text { constraint: } y_{i}\left(\vec{x}_{i} \cdot \vec{w}+b\right) \geq 1
$$

Support Vector Machines

- Solution: $\vec{w}=\sum_{i} \alpha_{i} y_{i} \vec{x}_{i}$ for some $\alpha_{i} \in \mathbb{R}$ such that $\alpha_{i} \neq 0 \quad$ only for \vec{x}_{i} on the margins of hyperplane which are the support vectors
- Generalizations
- In case not separable, add slack:

$$
\min _{\vec{w}, b} \frac{1}{2}\|\vec{w}\|^{2}+c \sum_{i} \xi_{i}, \quad \text { constraint: } y_{i}\left(\vec{x}_{i} \cdot \vec{w}+b\right)+\xi_{i} \geq 1, \xi_{i} \geq 0
$$

- In case not linear/hyperplane, add kernel: SVM hyperplane replaced by

$$
\sum_{i} \alpha_{i} y_{i} K\left(\vec{x}, \vec{x}_{i}\right)+b=0
$$

common kernel, Gaussian $K(s, t)=\exp \left(-\gamma\|s-t\|^{2}\right)$

Multi－Layer Perceptron（MLP）多層感知器

－MAGIC：put many neurons together and let connectionism do the magic

Simplest case： forward directed only， called multilayer perceptron
or feedforward Neural Network
前饋神經網絡
－Typical layers（depth＝\＃layers（hence the name deep learning））：
－（fully－connected）linear layer from $m \rightarrow n$ nodes：$m \times n$ matrix of linear fnc
－node－wise activation function（from the list before）
－summation layer
－Width：～\＃neurons per layer

Universal Approximation Theorems

Large Depth Thm: (Cybenko-Hornik) For every continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$, every compact subset $K \subset \mathbb{R}^{d}$, and every $\epsilon>0$, there exists a continuous function $f_{\epsilon}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{D}$ such that $f_{\epsilon}=W_{2}\left(\sigma\left(W_{1}\right)\right)$, where σ is a fixed continuous function, $W_{1,2}$ affine transformations and composition appropriately defined, so that $\sup _{x \in K}\left|f(x)-f_{\epsilon}(x)\right|<\epsilon$.
Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output neuron and an arbitrary number of hidden layers each with $n+m+2$ neurons, such that every hidden neuron has activation function φ and every output neuron has activation function the identity. Then, given any vector-valued function f from a compact subset $K \subset \mathbb{R}^{m}$, and any $\epsilon>0$, one can find an F, a NN of the above type, so that $|F(x)-f(x)|<\epsilon$ for all $x \in K$.
ReLU Thm: (Hanin) For any Lebesgue-integral function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and any $\epsilon>0$, there exists a fully connected ReLU NN F with width of all layers less than $n+4$ such that $\int_{\mathbb{R}^{n}}|f(x)-F(x)| d x<\epsilon$.

Some Technicalities

（Implemented on Mathematica $11.1+$／TensorFlow－Keras on Python）
－Regularization 正規化
－if it performs well on \mathcal{T} but not so well on \mathcal{V} ，possible overfitting
－L1 or L2 Reg：add $\lambda\|w\|^{i=1,2}$ to cost function to ensure weight doesn＇t become too large
－Dropout：randomly delete neurons
－Data Enhancement：add equivalent representations of the training data （e．g．，Cayley table of finite group，add any row／column permutation）
－early stoppping：if validation error gets increasingly worse，stop training
－In computing gradient descent for layer i ，backward propagation 反向傳播： reduces computation for ∇f_{i} ，i．e．，chain rule $\nabla\left(f_{i}\left(g_{i-1}\right)\right)=\nabla f_{i}\left(\nabla g_{i-1}\right)$

Beyond MLP：Two important NN Types

－CNN（convulutional NN）卷積神經網絡
－perfect for image processing：
Convolution Layer \rightarrow Non－linear Layer \rightarrow Pooling Layer
－Convolution：$(L \star K)_{i, j}=\sum_{m, n} L_{i+m, j+n} K_{m, n}$
－Pooling：compare neighbours，e．g．， $\max _{i, j=m, n \pm 1} L_{i, j}$
－RNN（recurrence NN）循環神經網絡
－perfect for series prediction
－essentially MLP＋arrows going backwards so that outputs of one layer can be fed back \sim memory
－general NN a mixture of MLP，CNN，NN，and indeed any direct graph of neurons．

Deep-Learning the String Landscape

Warmup: Hypersurfaces in $W \mathbb{P}^{4}$

Simplest Data Structure $\quad\left[w_{1}: w_{2}: w_{3}: w_{4}: w_{5}\right] \longrightarrow h^{1,1}$
[YHH 1706.02714] Oftentimes, questions in pheno are qualitative, e.g.,

- large \# complex structure how many have, say, $h^{2,1}>50$?
[Candelas-Lynker-Schimmrigk] Landau-Ginzburg methods: many hours; using Euler sequence/Adjunction

```
Distributions
```

- Standard method: take partial training and validation data, s.t., $D=T \sqcup V$
- train NN with random 2000/7555 inputs ($\sim 1 / 4$ only)
- use the trained NN to predict value for the remaining UNSEEN 7555-2000
- Get $\sim 91.8 \%$ precision, Cosine Distance $d_{C}=0.91$, Matthew Coefficient

$$
\phi=0.84 \text { in less than } 20 \mathrm{sec} \text { on regular laptop! }
$$

Detailed Study: Berman-YHH-Hirst 2112.06350

- clustering shows that the most significant dependence is on w_{5}

- 5-fold cross-validation on predicting $h^{1,1}$ from w_{i} gets $R^{2}>0.95$
- Simple architecture of NN: e.g., 5-layer MLP

CICYs: a Colourful Example

- An image $=$ a matrix (pixels) with entries denoting shade/colour; NN really good at images (e.g. hand-writing) [RMK: not using a convolutional NN here]
- CICY is a (padded) 12×15 matrix with 6 colours $\leadsto \mathrm{CICY}$ is an image

(a) typical CICY ;
(b) average CICY
- Initial binary classifier e.g. in learning large number of Kahler parametres $h^{1,1}>5$: learns 4000 samples $(<50 \%)$ in $\sim 5 \mathrm{~min}$; validate against 7890-4000: 97% accuracy, $d_{C}=0.98, \phi=0.87$.

CICYs: Detailed Analysis

Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113)

- TensorFlow Python's implementation of NNs and DL
- Compare NNs with Decision Trees, Support Vector Machines, etc

Can one learn the FULL information on Hodge numbers?
$h^{1,1} \in[0,19]$ so can
set up 20-channel NN classifer, regressor, as
well as SVM

CICYs: Comparative Studies

$h^{1,1}$ for NN, Regressor, SVM at 20 and 80% training

Massive improvement: Krippendorf-Syvaeri [2003.13679] Erbin-Finotello (2007.13379; 2007.15706

Google Inception NN) YHH-Lukas [2009.02544] Larfors-Lukas-Ruehle-Schneider (2111.01436);
Erbin-Finotello-Schneider-Tamaazousti (2108.02221) > 99.96\% precision using more sophiscated NN (e.g., Google Inception CNN)

Distinguishing Elliptic Fibrations

- [YHH-SJ. Lee 1904.08530]: test in CICY which are elliptically fibred (bypass Oguiso-Kollar-Wilson Theorem/Conjecture)

Explicit computation by finding divisor D by Anderson et al. very expensive; Al achieves in seconds:

- A control test: let a random set have property " 1 " and complementary set, " 0 ", get 50% precision and $\phi \sim 0$ (complete guessing)

Take-Home Lesson

- GENERAL: ANY algebraic variety can be represented as a tensor and hence pixelated image
- much of computational algebraic geometry $=$ no different than an image-recognition problem
- all of (computational) algebraic geometry $=$ finding (co-)kernels of integer matrices: thus is perfectly adapt for ML

String/Algebraic Geometry: 2018-

- q.v., Bundle Cohomology (Ruehle, Brodie-Constantin-Lukas, Larfors-Schneider, Otsuka-Takemoto, Klaewer-Schlechter)
- q.v., Kreuzer-Skarke Dataset (Halverson, Long, Nelson; McCallister-Stillman, Berglund-Campbell-Jejjala)
- q.v., Calabi-Yau volumes in AdS/CFT (Krefl-Seong)
- q.v., MSSM from orbifold models (Parr-Vaudrevange-Wimmer)
- q.v. Particle Masses Gal-Jejjala-Pena-Mishra ...
- q.v. Knot invariants: Jejjala-Kar-Parrikar, Craven-Jejjala-Kar Gukov-Halverson-Ruehle-Sułkowski, using NLP

String/Algebraic Geometry: 2018-

- q.v. Ashmore-YHH-Ovrut+Calmon,

Douglas-Lakshminarasimhan-Qi,Jejjala-Pena-Mishra,
Anderson-Gerdes-Gray-Krippendorf-Raghuram Numerical CY Metrics

- Otsuka-Takemoto; Deen-YHH-Lee-Lukas Distinguishing Heterotic SMs
- q.v. DEEP CONNECTIONS
- K. Hashimoto: AdS/CFT = Boltzmann Machine;
- Halverson-Maiti-Stoner: QFT = NN;
- de Mello-Koch: $N N=R G$;
- Vanchurin 2008: Universe $=$ NN.
- What about the vacuum degeneracy problem?

One-Shot Learning

Fei-Fei Li et al. (2002-)

- Estimated that by 6, a child has learnt all $10 \sim 30 \times 10^{3}$ object categories NOT done by sampling \% of cases in each category
- could not have supervise learnt everything in the standard way!
- Knowledge Transfer: having seen lots of horses and a single bird, would recognize a chicken is closer to a bird than to a horse
- a SINGLE representative in a category suffices, or at most a handful \sim Few-Shot Learning

Siamese Neural Networks (SNN)

Features 1

Loss $=\mathcal{L}(w):=$

$$
\max \left\{d_{w}\left(x_{a}, x_{p}\right)-d_{w}\left(x_{a}, x_{n}\right)+1,0\right\}
$$

$$
d_{w}\left(x_{1}, x_{2}\right):=\left(\phi_{w}\left(x_{1}\right)-\phi_{w}\left(x_{2}\right)\right)^{2}
$$

ϕ representation by features network (FN)

FN: represents the data by mapping to \mathbb{R}^{3}, say: $\phi: \mathcal{D} \rightarrow \mathbb{R}^{3}$:

a anchor point for the class;
p close-by; n far-apart
FN some appropriately chosen NN SNN returns a similarity score $\in[0, \infty)$ where 0 means identical

CICYs as Representative Landscape

CICY3 - classified by Candelas, Dale, Green, Hubsch, Lutken (1988-9)

- 7890 configurations, $h^{1,1} \in[1,19] ; h^{2,1} \in[15,101]$ (m, K) ranges from $(1,1)$ to $(12,15)$

CICY4 - classified by Gray, Haupt, Lukas (2013-4)

- 905684 configurations, $h^{1,1} \in[1,24] ; h^{2,1} \in[1,33]$; $h^{3,1} \in[20,426] ; h^{2,2} \in[204,1752]$
(m, K) ranges from $(1,1)$ to $(16,20)$
Can we One-Shot learn the String Landscape?
q.v. 2111.04761, YHH, Shailesh Lal, M. Zaid Zas

Methodology

Labelled Data of the form $\left(q_{j}^{i}\right) \longrightarrow h^{1,1}$ where similarity is

$$
q^{(A)} \sim q^{(B)} \quad \text { iff } \quad h^{(A)}=h^{(B)}
$$

- Represent each CICY as pixelated image (after normalization), and use CNN as FN (tried other architectures like Inception and MLP):

- trained on 3% of CICY 3 and 0.6% of CICY4 (mostly just few per class of $h^{1,1}$): Few-Shot ML hundreds to extrapolate to hundreds of thousands
- Standard ADAM optimizer @ learning-rate of 0.01

Mean Similarity Scores on Pairs

Clustering of CICY by $h^{1,1}$? \ldots

CICY 3

CICY4

- Two-birds with one stone
(3) Few-shot ML of the landscape
(2) The similarity score gives a distance measure on the landscape
- This reduction + distance: a step toward a vacuum selection principle given the complexity of the landscape

from String Landscape to the Mathematical Landscape

Machine Learning Mathematics

Why stop at string/geometry?
q.v. Review YHH 2101.06317

A Zealot's Perspective

Q: We have seen that algebraic geometry (over \mathbb{C}) is a tensor manipulation / image recognition problem, how much of mathematics is not?

How does one *DO* mathematics, I ?

Russell-Whitehead Principia Mathematica [1910s] programme (since at least
Frege, even Leibniz) to axiomatize mathematics, but ...
Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability
Automated Theorem Proving (ATP) The practicing mathematician hardly ever worries about Gödel

- Newell-Simon-Shaw [1956] Logical Theory Machine: proved subset of Principia theorems
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq interactive proving system: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013)
- Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky We can call this Bottom-up Mathematics

How does one *DO* mathematics, I ?

Russell-Whitehead Principia Mathematica [1910s] programme (since at least
Frege, even Leibniz) to axiomatize mathematics, but ...
Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability
Automated Theorem Proving (ATP) The practicing mathematician hardly ever worries about Gödel

- Newell-Simon-Shaw [1956] Logical Theory Machine: proved subset of Principia theorems
- Type Theory [1970s] Martin-Löf, Coquand, ... Coq interactive proving system: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013)
- Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

We can call this Bottom-up Mathematics

How does one do mathematics, II ?

- Late C20th - increasing rôle of computers: 4-color [Appel-Haken-Koch 1976]; Classif. Finite Simple Groups [Galois 1832 - Gorenstein et al. 2008] ...
- Buzzard: "Future of Maths" 2019: already plenty of proofs unchecked (incorrect?) in the literature, MUST use computers for proof-checking; XenaProject, Lean establish database of mathematical statements
- Davenport: ICM 2018 "Computer Assisted Proofs".
- Hale \& Buzzard: Foresee within 10 years AI will help prove "early PhD" level lemmas, all of undergrad-level maths formalized;
- Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go (2018); © Proving theorems (2030)

How does one *DO* mathematics, III ?

- Historically, Maths perhaps more Top-Down: practice before foundation
- Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra
- A lot of mathematics starts with intuition experience, and exnerimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

- BSD computer experiment of Birch \& Swinnerton-Dyer [1960's] on plots of rank r \& N_{p} on clliptic curves

How does one *DO* mathematics, III ?

- Historically, Maths perhaps more Top-Down: practice before foundation
- Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra ...
- A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th?

- BSD computer experiment of Birch \& Swinnerton-Dyer [1960's] on plots of rank r \& N_{p} on elliptic curves

How does one *DO* mathematics, III ?

- Historically, Maths perhaps more Top-Down: practice before foundation
- Countless examples: calculus before analysis; algebraic geometry before Bourbaki, permutation groups / Galois theory before abstract algebra ...
- A lot of mathematics starts with intuition, experience, and experimentation
- The best neural network of C18-19th? brain of Gauß ; e.g., age 16

(w/o computer and before complex analysis [50 years before Hadamard-de la Vallée-

Poussin's proof]): PNT $\pi(x) \sim x / \log (x)$

- BSD computer experiment of Birch \& Swinnerton-Dyer [1960's] on plots of rank $r \& N_{p}$ on elliptic curves

Question

- To extend the analogy: AlphaGo is top-down (need to see human games); even AlphaZero is not bottom-up (need to generate samples of games)
- In tandem with the bottom-up approach of Coq, Lean, Xena ... how to put in a little intuition and human results? If I gave you 100,000 cases of

- Q: Is there a pattern? Can one conjecture \& then prove a formula?
- Q: What branch of mathematics does it come from?
- Perfect for (unsupervised \& supervised) machine-learning; focus on labeled case because it encodes WHAT is interesting to calculate (if not how)

Question

- To extend the analogy: AlphaGo is top-down (need to see human games); even AlphaZero is not bottom-up (need to generate samples of games)
- In tandem with the bottom-up approach of Coq, Lean, Xena ... how to put in a little intuition and human results? If I gave you 100,000 cases of

- Q: Is there a pattern? Can one conjecture \& then prove a formula?
- Q: What branch of mathematics does it come from?
- Perfect for (unsupervised \& supervised) machine-learning; focus on labeled case because it encodes WMIAT is interesting to calculate (if not how)

Question

- To extend the analogy: AlphaGo is top-down (need to see human games); even AlphaZero is not bottom-up (need to generate samples of games)
- In tandem with the bottom-up approach of Coq, Lean, Xena ... how to put in a little intuition and human results? If I gave you 100,000 cases of

- Q: Is there a pattern? Can one conjecture \& then prove a formula?
- Q: What branch of mathematics does it come from?
- Perfect for (unsupervised \& supervised) machine-learning; focus on labeled case because it encodes WHAT is interesting to calculate (if not how)

Question

- To extend the analogy: AlphaGo is top-down (need to see human games); even AlphaZero is not bottom-up (need to generate samples of games)
- In tandem with the bottom-up approach of Coq, Lean, Xena ... how to put in a little intuition and human results? If I gave you 100,000 cases of
- Q: Is there a pattern? Can one conjecture \& then prove a formula?
- Q: What branch of mathematics does it come from?
- Perfect for (unsupervised \& supervised) machine-learning; focus on labeled case because it encodes WHAT is interesting to calculate (if not how).

Mathematical Data: perfect for mining

- Mathematical Data is more structured than "real world" data, much less susceptible to noise; Outliers even more interesting, e.g. Sporadics, Exceptionals, ...
- Last 10-20 years: large collaborations of computational mathematicians, physicists, CS (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular, Pari, Wolfram, ...) computed and compiled vast data
- Generic computation HARD
- mining provides some level of "intuition" \& is based on "experience"

Methodology

Bag of Tricks Hilbert's Programme of Finitary Methods, Landau's theoretical minimum, Migdal's Mathmagics ...

IMO Grand Challenge (2020-) Good set of concrete problems to try on AI Standard ML Regressor \& Classifiers (w/ NO KNOWLEDGE of the maths)

- NN: MLPs; CNNs; RNNs, ... (gentle tuning of architecture and hyper-parameters)
- SVM, Bayes, Decision Trees, PCA, Clustering, ...
- ML: emergence of complexity via connectivity \leadsto Intution (?)
will give Status Report of Experiments in the last couple of years
- focus on supervised ML ("knows where to get to")
- all standard methods \simeq same performance
- $\sim 20-80$ split; training on 20 (precision, Matthews' ϕ or R^{2})

Representation/Group Theory

- ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263,]
- When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite group? Bypass quadrangle thm $(0.95,0.9)$
- Can one look at the Cayley table and recognize a finite simple group?
- bypass Sylow and Noether Thm; $(0.97,0.95)$ rmk: can do it via character-table T, but getting T not trivial
- SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a hypersurface separating simple/non-simple
- ML Lie Structure Chen-YHH-Lal-Majumder [2011.00871] Weight vector \rightarrow length of irrep decomp / tensor product: ($0.97,0.93$); (train on small dim, predict high dim: $(0.9,0.8)$)

Combinatorics, Graph/Quivers

- [YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB
- ML standard graph properties:
?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus $>,=,<0(0.8,0.7) ; ? \exists$
Hamilton cycles (0.8, 0.6); ?ヨ Euler cycles (0.8, 0.6)
(Rmk: NB. Only "solving" the likes of traveling salesman stochastically)
- spectral bounds ($R^{2} \sim 0.9$)...
- Recognition of Ricci-Flatness $(0.9,0.9)$ (todo: find new Ricci-flat graphs);
- [Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different quiver mutation (Seiberg-dual) classes (0.9-1.0, 0.9)

Number Theory: A Classical Reprobate?

Arithmetic (prime numbers are Difficult!)

- [YHH 1706.02714, 1812.02893:]
- Predicting primes $2 \rightarrow 3,2,3 \rightarrow 5,2,3,5 \rightarrow 7$; no way
- fixed (or $x / \log (x)$-scaled) window of (yes/no $)_{1,2, \ldots, k}$ to (yes/no) $)_{k+i}$ for some i (in binary); ML PRIMES problem ($0.7,0.8$) NOT random! (prehaps related to AKS algorithm [2002], PRIMES is in P)
- Sarnak's challenge: same window \rightarrow Liouville Lambda (0.5, 0.001) Truly random (no simple algorithm for Lambda)
- [Alessandretti-Baronchelli-YHH 1911.02008]

ML/TDA@Birch-Swinnerton-Dyer $Ш$ and Ω ok with regression \& decision trees: RMS <0.1; Weierstrass \rightarrow rank: random

Number Theory: A Modern Hope?

Arithmetic Geometry (Surprisingly Good)

- [Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin d'enfants (Grothendieck's Esquisse for $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$) ; predicting transcendental degree (0.92, 0.9)
- YHH-KH Lee-Oliver arithmetic of curves
- 2010.01213: Complex Multiplication, Sato-Tate ($0.99 \sim 1.0,0.99 \sim 1.0$)
- 2011.08958: Number Fields: rank and Galois group (0.97, 0.9)
- 2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9); Tate-Shafarevich Ш (0.6, 0.8) [Hardest quantity of BSD]

An Inherent Hierarchy?

- In decreasing precision/increasing difficulty:

numerical

string theory $\rightarrow \quad$ algebraic geometry over $\mathbb{C} \sim$ arithmetic geometry algebra
string theory $\rightarrow \quad$ combinatorics
analytic number theory

- Categorical Theory

- suggested by \& in prog. w/ B. Zilber, Merton Prof. of Logic, Oxford
- major part of Model Theory: Morley-Shelah Categoricity Thm
- Hart-Hrushovski-Laskowski Thm: 13 classes (levels) of iso-classes $I(T, k)$ of a theory T in first order logic over some cardinality k.

Meta-mathematics/physics?

[YHH-Jejjala-Nelson] "hep-th" 1807.00735

- Word2Vec: [Mikolov et al., '13] NN which maps words in sentences to a vector space by context (much better than word-frequency, quickly adopted by Google); maximize (partition function) over all words with sliding window ($W_{1,2}$ weights of 2 layers, C_{α} window size, D \# windows)

$$
Z\left(W_{1}, W_{2}\right):=\frac{1}{|D|} \sum_{\alpha=1}^{|D|} \log \prod_{c=1}^{C_{\alpha}} \frac{\exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}{\sum_{j=1}^{V} \exp \left(\left[\vec{x}_{c}\right]^{T} \cdot W_{1} \cdot W_{2}\right)}
$$

- We downloaded all $\sim 10^{6}$ titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat from ArXiv since the beginning (1989) till end of 2017 Word cloud (rmk: Ginzparg has been doing a version of linguistic ML on ArXiv) (rmk: abs and full texts in future)

Subfields on ArXiv has own linguistic particulars

- Linear Syntactical Identities
bosonic + string-theory $=$ open-string
holography + quantum + string + ads $=$ extremal-black-hole
string-theory + calabi-yau $=m$-theory + g2
space + black-hole $=$ geometry + gravity \ldots
- binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc) vs phenomenological (hep-ph, hep-lat) : 87.1\% accuracy (5-fold classification 65.1% accuracy).

ArXiv classifications

- Cf. Tshitoyan et al., "Unsupervised word embeddings capture latent knowledge from materials science literature", Nature July, 2019: 3.3. million materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new thermoelectric materials years in advance, and suggests as-yet unknown materials

Please submit

- Special Collection in AACA, Birkhäuser, Dechant, YHH, Kaspryzyk, Lukas, ed: https://www.springer.com/journal/6/updates/18581430
- Special Volume in JSC, Springer, Hauenstein, YHH, Kotsireas, Mehta, Tang, ed. https://www.journals.elsevier.com/journal-of-symbolic-computation/ call-for-papers/algebraic-geometry-and-machine-learning
- ML in theoretical physics \& pure maths, Book, WS, YHH, ed.
- Int. J. Data Science in the Mathematical Sciences, WS, YHH et al., ed.

THANK YOU

Go and try your favourite problem

Some Rudiments \& Nomenclature

A sequence of specializations:

- M Riemannian: positive-definite symmetric metric
- M Complex Riemannian: have (p, q)-forms with p-holomorphic and q-antiholomorphic indices: $d=\partial+\bar{\partial}$ (with $\partial^{2}=\bar{\partial}^{2}=\{\partial, \bar{\partial}\}=0$)
- M Hermitian: complex Riemannian and can tranform $g_{m n}=g_{\bar{m} \bar{n}}=0$
- M Kähler: Hermitian with Kähler form $\omega:=i g_{m \bar{n}} d z^{m} \wedge d z^{\bar{n}}$ such that $d \omega=0\left(\Rightarrow \partial_{m} g_{n \bar{p}}=\partial_{n} g_{m \bar{p}} ; g_{m \bar{n}}=\partial \bar{\partial} K(z, \bar{z})\right.$ for some scalar $\left.K\right)$

Cohomology:

- On Riemannian M : can define Laplacian on p-forms (Hodge star

$$
\begin{aligned}
& \star\left(d x^{\mu_{1}} \wedge \ldots \wedge d x^{\mu_{p}}\right):=\frac{\epsilon^{\mu_{1} \ldots \mu_{n}}}{(n-p)!\sqrt{|g|}} g_{\mu_{p+1} \nu_{p+1}}^{\left.\cdots g_{\mu_{n} \nu_{n}} d x^{\nu_{p+1}} \wedge \ldots \wedge d x^{\nu_{n}}\right)} \\
& \Delta_{p}=d d^{\dagger}+d^{\dagger} d=\left(d+d^{\dagger}\right)^{2}, \quad d^{\dagger}:=(-1)^{n p+n+1} \star d \star
\end{aligned}
$$

Harmonic p-Form $\Delta_{p} A^{p}=0 \stackrel{1: 1}{\longleftrightarrow} H_{\text {deRham }}^{p}(X)$

- On Hermitian M : Dolbeault Cohomology $H_{\bar{\partial}}^{p, q}(X)$: cohomology on $\bar{\partial}$ (similarly ∂) and $\Delta_{\partial}:=\partial \partial^{\dagger}+\partial^{\dagger} \partial$ and similarly $\Delta_{\bar{\partial}}$
- On Kähler M : $\Delta=2 \Delta_{\partial}=2 \Delta_{\bar{\partial}}$, Hodge decomposition:

$$
H^{i}(M) \simeq \bigoplus_{p+q=i} H^{p, q}(M)
$$

Back to Calabi-Yau

Covariant Constant Spinor

- Define $J_{m}^{n}=i \eta_{+}^{\dagger} \gamma_{m}^{n} \eta_{+}=-i \eta_{-}^{\dagger} \gamma_{m}^{n} \eta_{-}$, check: $J_{m}^{n} J_{n}^{p}=-\delta_{m}^{n}$
- $\left(X^{6}, J\right)$ is thus almost-complex
- But η covariant constant $\leadsto \nabla_{m} J_{n}^{p}=0 \leadsto \nabla N_{m n}^{p}=0$

Nijenhuis tensor $N_{m n}^{p}:=J_{m}^{q} \partial_{[q} J_{n]}^{p}-(m \leftrightarrow n)$

- $\left(X^{6}, J\right)$ is thus complex $\left(J_{m}^{n}=i \delta_{m}^{n}, J_{\bar{m}}^{\bar{n}}=i \delta_{\bar{m}}^{\bar{n}}, J_{\bar{m}}^{n}=J_{m}^{\bar{n}}=0\right.$ for some local coordinates (z, \bar{z}); transition functions holomorphic)
- Define $J=\frac{1}{2} J_{m n} d x^{m} \wedge d x^{n}\left(J_{m n}:=J_{m}^{k} g_{k n}\right)$ check: $d J=(\partial+\bar{\partial}) J=0$
- $\left(X^{6}, J\right)$ is thus Kähler
- summary X^{6} is a Kähler manifold of $\operatorname{dim}_{\mathbb{C}}=3$, with $S U(3)$ holonomy

Famous CICYs

- The Quintic $Q=[4 \mid 5]_{-200}^{1,101}$ (or simply [5]);
- Yau-Tian Manifold: $T Y=\left(\begin{array}{ccc}1 & 3 & 0 \\ 1 & 0 & 3\end{array}\right)_{-18}^{14,23}$
- no CICY has $\chi= \pm 6$
- TY has freely-acting $\mathbb{Z}_{3} \leadsto\left(T Y / \mathbb{Z}_{3}\right)_{-6}^{6,9}$;
- central to early string pheno [Distler, Greene, Ross, et al.]
- Schön Manifold: $S=\left(\begin{array}{ll}1 & 1 \\ 3 & 0 \\ 0 & 3\end{array}\right)_{0}^{19,19}$ has $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ freely acting symmetry
- explored more recently;
- The quotient is $M_{3,3}^{0}$.

Reflexive Polytopes: Rudiments

- Convex Lattice Polytope Δ (use Δ_{n} to emphasize dim n)
- DEF1 (Vertex Rep): Convex hull of set S of k lattice points $p_{i} \in \mathbb{Z}^{n} \subset \mathbb{R}^{n}$

$$
\operatorname{Conv}(S)=\left\{\sum_{i=1}^{k} \alpha_{i} p_{i} \mid \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1\right\}
$$

- DEF2 (Half-Plane Rep): intersection of integer inequalities $A \cdot \underline{x} \geq \underline{b}$
- $\{$ extremal pts $=$ vertices, edges, 2 -faces, 3 -faces, \ldots, (n - 1)-faces $=$ facets, $\Delta\}$
- $n=2$ polygons, $n=3$ polyhedra, \ldots
- Polar Dual: $\Delta^{\circ}=\left\{\underline{v} \in \mathbb{R}^{n} \mid \underline{m} \cdot \underline{v} \geq-1 \quad \forall \underline{m} \in \Delta\right\}$
- Reflexive Δ : if Δ° is also convex lattice polytope
- in general, vertices of Δ° are rational, not integer
- duality: $\left(\Delta^{\circ}\right)^{\circ}=\Delta$
- if further $\Delta=\Delta^{\circ}$, self-dual/self-reflexive

Reflexive Polytope: example

Δ_{2}		Vertices: $(1,0),(0,1),(-1,-1)$ Facets : $\left\{\begin{array}{l}-x-y \geq-1 \\ 2 x-y \geq-1 \\ -x+2 y \geq-1\end{array}\right.$
Δ_{2}°		Vertices : $(-1,2),(-1,-1),(2,-1)$ Facets : $\left\{\begin{array}{l}-x-y \geq-1 \\ x \geq-1 \\ y \geq-1\end{array}\right.$

THM: Reflexive \Leftrightarrow single interior lattice point
(set to origin; all facets $=$ hyperplanes of distance 1 away)

Toric Variety from Δ_{n}

- Face Fan $\Sigma(\Delta) \equiv\{\sigma=\operatorname{pos}(F) \mid F \in \operatorname{Faces}(\Delta)\}$ with

$$
\operatorname{pos}(F) \equiv\left\{\sum_{i} \lambda_{i} \underline{v}_{i} \mid \underline{v}_{i} \in F, \lambda_{i} \geq 0\right\}
$$

- e.g. $\Delta_{2}=\cdots \Rightarrow \Sigma\left(\Delta_{2}\right)=$

- $\Sigma\left(\Delta_{n}\right)$ then defines a compact Toric variety $X\left(\Delta_{n}\right)$ of $\operatorname{dim}_{\mathbb{C}}=n$
- $X(\Delta)$ called Gorenstein Fano, i.e., $-K_{X}$ is Cartier and ample, i.e., $\mathcal{O}\left(-K_{X}\right)$ is line bundle and X is positive curvature
- THM: $X(\Delta)$ smooth \Leftrightarrow generators of every cone σ is part of \mathbb{Z}-basis, i.e., $\operatorname{det}(\operatorname{gens}(\sigma))= \pm 1$ Back to Ks cys

Observatio Curiosa

- Penn group purely abstract, but $X_{0}^{19,19}=\left(\begin{array}{ll}1 & 1 \\ 3 & 0 \\ 0 & 3\end{array}\right)$, Tian-Yau: $\left(\begin{array}{lll}1 & 3 & 0 \\ 1 & 0 & 3\end{array}\right)$
- TRANSPOSES!!
- Why should the best manifold from 80 's be so-simply related to the best manifold from completely different data-set and construction 20 years later ??
- Two manifolds are conifold transitions and vector bundles thereon transgress to one another ([Candelas-de la Ossa-YHH-Szendroi, 2008])
- Connectedness of the Heterotic Landscape
- All CICY's are related by conifold transitions
- Reid Conjecture: All CY3 are connected
- Proposal: All (stable) vector bundles on all CY3 transgress

A Computational Approach

- Northeastern/Witts/Notre Dame/Cornell Collaboration: Programme to study the computational algebraic geometry of \mathcal{M} : joint with M. Stillman, D. Grayson, H. Schenck (Macaulay 2), J. Hauenstein (Bertini), B. Nelson, V. Jejjala
(1) n-fields: start with polynomial ring $\mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right]$
(2) $D=$ set of k GIO's: a ring map $\mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right] \xrightarrow{D} \mathbb{C}\left[D_{1}, \ldots, D_{k}\right]$
(3) Now incorporate superpotential: F-flatness

$$
\left\langle f_{i=1, \ldots, n}=\frac{\partial W\left(\phi_{i}\right)}{\partial \phi_{i}}=0\right\rangle \simeq \text { ideal of } \mathbb{C}\left[\phi_{1}, \ldots, \phi_{k}\right]
$$

(1) Moduli space $=$ image of the ring map

$$
\frac{\mathbb{C}\left[\phi_{1}, \ldots, \phi_{n}\right]}{\left\{F=\left\langle f_{1}, \ldots, f_{n}\right\rangle\right\}} \xrightarrow{D=G I O} \mathbb{C}\left[D_{1}, \ldots, D_{k}\right], \quad \mathcal{M} \simeq \operatorname{Im}(D)
$$

- Image is an ideal of $\mathbb{C}\left[D_{1}, \ldots, D_{k}\right]$, i.e.,
\mathcal{M} explicitly realised as an affine variety in \mathbb{C}^{k}

Abelian Quotient: $\mathcal{M}=\mathbb{C}^{3} / \Gamma$

- All abelian orbifolds are toric.
- Archetypal example: $\mathbb{C}^{3} / \mathbb{Z}_{3}$ with action $(1,1,1) \leadsto U(1)^{3}$ quiver theory

$$
W=\epsilon_{\alpha \beta \gamma} X_{12}^{(\alpha)} X_{23}^{(\beta)} X_{31}^{(\gamma)}, \quad X_{12}^{(\alpha)}, X_{23}^{(\beta)}, X_{31}^{(\gamma)}, \alpha, \beta, \gamma=1,2,3
$$

Adjacency Matrix: $A=\left(\begin{array}{lll}0 & 3 & 0 \\ 0 & 0 & 3 \\ 3 & 0 & 0\end{array}\right)$
Incidence Matrix: $d=\left(\begin{array}{lllllllll}-1 & -1 & -1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & -1 & -1 & -1\end{array}\right.$

- loops: $3^{3}=27$ GIOs; arrows: 3×3 fields
- Moduli space: 27 quadrics in \mathbb{C}^{10}, explicit equations for
$\mathbb{C}^{3} / \mathbb{Z}_{3} \leftarrow \operatorname{Tot}\left(\mathcal{O}_{\mathbb{P}^{2}}(-3)\right)$

Def		Example (Conifold)
Comb	Convex Cone $\sigma \in \mathbb{Z}^{d} \leadsto$ Dual Cone $\sigma^{\vee} \leadsto X=$ Spec $_{M a x} \mathbb{C}\left[S_{\sigma}=x_{i}^{\operatorname{gen}\left(\sigma^{\vee}\right) \cap \mathbb{Z}^{d}}\right]$ Toric Diagram $=S_{\sigma}$	$\begin{aligned} & S_{\sigma}=\langle a=z, c=y z, b=x y z, d=x z\rangle \\ & a b=c d \text { in } \mathbb{C}^{4}[a, b, c, d] \end{aligned}$
Symp:	Generalise \mathbb{P}^{n} : a $\left(\mathbb{C}^{*}\right)^{q-d}$ action on $\mathbb{C}_{\left[x_{i}\right]}^{q}$ $x_{i} \mapsto \lambda_{a}^{Q_{i=1 \ldots q}^{a=1 \ldots q-d}} x_{i}$ with Relations: $\sum_{i=1}^{d} Q_{i}^{a} v_{i}=0$ Toric Diagram $=v_{i}$	$Q=[-1,-1,1,1]$ \mathbb{C}^{*} on $\mathbb{C}^{4} \leadsto$ $\begin{aligned} & \operatorname{ker} Q=G_{t}= \\ & \left(\begin{array}{llll} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{array}\right) \end{aligned}$
Comp:	Binomial Ideal $\left\langle\prod p_{i}=\Pi q_{j}\right\rangle$	$a b=c d$ in \mathbb{C}^{4}

Progress in String Theory beatomm tumtare

Major International Annual Conference Series
1986- First "Strings" Conference
2002- First "StringPheno" Conference
2006-2010 String Vacuum Project (NSF)
2011- First "String-Math" Conference2014- First String/Theoretical Physics Session in SIAM Conference2017- First "String-Data" Conference

Principle Component Analysis 主成分分析

－INPUT：$\vec{x}^{(i)} \in \mathbb{R}^{n}, n$ large，$i=1, \ldots, m$ ；
－OUTPUT：$\vec{c}^{(i)}=f(\vec{x}) \in \mathbb{R}^{\ell}$ ，and $g: \vec{x} \simeq g(f(\vec{x}))$
－$\ell \ll n$ to help with the curse of dimension
－try linear encoding：$g(\vec{c})=D_{n \times \ell} \cdot \vec{c}$ ，with $D^{T} D=\mathbb{I}$ thus $\vec{c}=D^{T} \vec{x}$
－Cost Function：$\|\vec{x}-g(\vec{c})\|$ ；Need to find $D_{n \times \ell}$ s．t．，minimize

$$
\sqrt{\sum_{i}\left|\vec{x}^{(i)}-D D^{T} \vec{x}^{(i)}\right|^{2}}, \quad \text { s.t. } D^{T} D=\mathbb{I}_{\ell} .
$$

－ℓ gives the ℓ－th Principal Component

Some Jargon

- Epoch：（training round）訓練輪 1 complete cycle where the NN has seen \mathcal{T}
- Batch：批量
\mathcal{T}（since $|\mathcal{T}|$ is often too large）is divided into batches（mini－batches）to be passed through the NN
－iterations：need to iterate in order to pass all through all of \mathcal{T}
－Hence $|\mathcal{T}|=$ Batch size \times \＃Iterations
－Often need to sample \mathcal{T} from \mathcal{D} and pass through multiple epochs

Hodge Plots for WP4

(a)Mirror plot of

$$
\left(\chi, h^{1,1}+h^{2,1}\right)
$$

(b)Distribution of $h^{2,1}$

Learning Curve：Deciding Large $h^{2,1}$ WP4

Training Curve: Deciding Large $h^{2,1}$ WP4

ArXiv Word-Clouds

 newpotentialstring-theory dical spectrum yang-mils-theory symmetry quantum-gravity effectapproach generalizedString cosmology action generalizedSTIIG equation action gravitational qft geometry , cn field $0 \mid$ space spacentoraluanalgebrasin
 quantization \bigcap itrop sugra ${ }^{\substack{\text { general } \\ \text { corcection } \\ \text { SUS }}}$ yravity Solution
field-theory inflationgauge-theory topologhic
classical duality spacetime represerntation
vacuum spacetime reperesentition
remamaleaton universe nommutative interaction

hep-th

$$
\begin{aligned}
& \text { structure evolution constraint stability potimntial } \\
& \text { manna gravitational conmologicat-constant aniowtopio } \\
& \text { cosmic relativistic } \mathrm{MOO} \text { el inflation scalat } \\
& \text { motha } \text { Solutionmoo elinfiation scalar } \\
& \text { nolographic genera-relationg generalized } \\
& \text { malysis gravitationa-wave chenger } \\
& \text { timespace SOACetime approach } \\
& \text { =bläck -hole- }
\end{aligned}
$$

perturbation COSmOlOG /dynamics
dark-energy quantumgeometry
singularity , Cosmological effect
singularity UniVErSE gimadmamu field
vacuum rotating dark-matter Scalar-fieldictins
gr-qc
fieldhadronicelectroweak chiral collision interaction structure parameter gravity spectrum affect high-eneryy scale gravity spectrum attect high-energy sacale large physics production particle
 smhiggs vacuum processas suark theory
meson decavsusy ${ }_{\text {sump system }}^{\text {light }}$ spin approach \sim scattering gluon correction CO scattering givon study mass neutrino nucleon
probing inflationconstraint dynamics data trotan heavy-quars phenomenology latice-qcd tharmal latice nuiunino-mass cosmologiasal scalar propent

hep-ph

 simulationpotential willon-temion method landmu-gugo scalar action operator gauge-theory chiral stion shmelurye
 attice =lattice-"qcd \%attice=qcdew scaling
study
quark
pion theory targe yang-mils-theory
new $\mathrm{mOdel}^{2 \mathrm{~d}} \mathrm{l}_{\text {baryon }}^{\text {banamics }}$ order spectrum lattice-gauge-theory quantum state wigorthm cumpling phase-transition meson magnetic chirat-symmetry fermion
renormalzation
confinement
strong-couping tivection affectivenucleon themical-potential determination effectivenucieon simulations transition expansion
hadronic quenched
tpoplogical
hep-lat
math-ph

Back to Word2Vec

Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India

