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Further Reading
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PLAN

Part I Introducing CY manifolds as a microcosm of the

string/mathematics landscape

Part II Machine-Learning 101

Part III Having fun
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A Classic Problem in Mathematics

Euler, Gauss, Riemann Σ: dimR = 2, i.e.,dimC = 1 (in fact Kähler)

Trichtomy classification of (compact orientable) surfaces [Riemann

surfaces/complex algebraic curves] Σ

. . .

g(Σ) = 0 g(Σ) = 1 g(Σ) > 1

χ(Σ) = 2 χ(Σ) = 0 χ(Σ) < 0

Spherical Ricci-Flat Hyperbolic

+ curvature 0 curvature − curvature

Euler number χ(Σ), genus g(Σ)
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Classical Results for Riemann Surface Σ

χ(Σ) = 2− 2g(Σ) = = [c1(Σ)] · [Σ] = = 1
2π

∫
Σ
R = =

2∑
i=0

(−1)ihi(Σ)

Topology Algebraic

Geometry

Differential

Geometry

Index Theorem

(co-)Homology

Invariants
Characteristic

classes
Curvature Betti Numbers

First Chern Class c1(Σ)

Rank of (co-)homology group (Betti Number) hi(Σ)

Complexifies (Künneth) hi =
∑

j+k=i

hj,k, Hodge Number hj,k
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Calabi-Yau

dimC > 1 extremely complicated (high-dim geometry hard: cf. Poincaré

Conjecture/Perelman Thm/Thurston-Hamilton Prog)

Luckily, for our class of Kähler complex manifolds: Recall Defs

CONJECTURE [E. Calabi, 1954, 1957]: M compact Kähler manifold (g, ω)

and ([R] = [c1(M)])H1,1(M).

Then ∃!(g̃, ω̃) such that ([ω] = [ω̃])H2(M ;R) and Ricci(ω̃) = R.

Rmk: c1(M) = 0⇔ Ricci-flat (rmk: Ricci-flat familiar in GR long before strings)

THEOREM [S-T Yau, 1977-8; Fields 1982] Existence Proof

Calabi-Yau: Kähler and Ricci-flat
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String Phenomenology

Superstring: unifies QM + GR in 10 dimensions: X10

We live in some M4 (assume maximally symmetric)

Rµνρλ =
R

12
(gµρgνλ − gµλgνρ), R


= 0 Minkowski

> 0 de Sitter (dS)

< 0 anti-de Sitter (AdS)

10 = 4 + 6: two scenarios

1 SMALL: compactification X10 'M4 ×X6

2 LARGE: brane-world trapped on a 3-brane in 10-D

supersymmetry at intermediate scale (between string and EW)

want: classical vacuum of string theory on X10 preserves N = 1 SUSY in M4
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Heterotic Compactification

[Candelas-Horowitz-Strominger-Witten] (1986): δSUSY SHet = 0

S ∼
∫
d10x
√
ge−2Φ

[
R+ 4∂µΦ∂µΦ− 1

2 |H
′
3|2)− 1

g2
s
Tr |F2|2

]
+SUSY)

gravitino δεΨM=1,...,10 = ∇M ε− 1
4H

(3)
M ε

dilatino δελ = − 1
2ΓM∂MΦ ε+ 1

4H
(3)
M ε

adjoint YM δεχ = − 1
2F

(2)ε

Bianchi dH(3) = α′

4 [Tr(R ∧R)− Tr(F ∧ F )]

Assume H(3) = 0 (can generalise) ; Killing spinor equation:

δεΨM=1,...,10 = ∇M ε = 0 = ∇Mξ(xµ=1,...,4)η(ym=1,...,6)

External 4D Space: [∇µ,∇ν ]ξ(x) = 1
4RµνρσΓρσξ(x) = 0 ; R = 0⇒ M is

Minkowski (of course, should be looking for dS, but to 1st order)

Internal 6D Space: Rmn = 0 (but not necessarily max symmetric)
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Mille Viæ ducunt homines Romam . . .

X6 as a spin 6-manifold: holonomy group is SO(6) ' SU(4)

want covariant constant spinor: largest possible is SU(4)→ SU(3) with

4→ 3⊕ 1⇒ X6 has SU(3) holonomy

Thus ε(x1,...,4, y1,...,6) = ξ+ ⊗ η+(y) + ξ− ⊗ η−(y)

with η∗+ = η− and ξ constant

Define Jnm = iη†+γ
n
mη+ = −iη†−γnmη−, check: JnmJpn = −δnm

Can show X6 is a Kähler manifold of dimC = 3, with SU(3) holonomy

Three other SUSY variation equations (recall H(3) = 0 by choice)

choose constant dilation Φ ; δε = 0

choose R = F (spin connection for gauge field): Bianchi satisfied

Also R = 0 so δεχ = 0
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Special Holonomy

For a Riemannian, spin manifold M of real dimension d, holonomy is Spin(d)

as double cover of SO(d) generically, but could have special holonomy

Holonomy H ⊂ Manifold Type (IFF)

U(d/2) Kähler

SU(d/2) Calabi-Yau

Sp(d/4) Hyper-Kähler

Sp(d/4)× Sp(1) Quaternionic-Kähler

X6 is Calabi-Yau

no-where vanishing holomorphic 3-form: Ω(3,0) = 1
3!Ωmnpdz

m ∧ dzn ∧ dzp

with Ωmnp := ηT− γ
[mγnγp] η−

check: dΩ = 0 but not exact; Ω ∧ Ω̄ ∼ Volume form
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Summary

Some equivalent Definitions for X6 Calabi-Yau Threefold

Kähler, c1(TX) = 0

Kähler, vanishing Ricci curvature

Kähler, holonomy ⊂ SU(n)

Kähler, nowhere vanishing global holomorphic 3-form (volume)

Covariant constant spinor

Canonical bundle (sheaf) KX :=
∧n

T ∗X ' OX

low-energy SUSY in 4D from string compactification
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Some Topological Properties I

Hodge Numbers hp,q(X) = dimHp,q

∂̄
(X)

Hodge decomposition and Betti Numbers: bk =
∑

p+q=k

hp,q(X)

Complex conjugation ; hp,q = hq,p

Hodge star (Poincaré) ; hp,q = hn−p,n−q

Hodge Diamond:

h0,0

h0,1 h0,1

h0,2 h1,1 h0,2

h0,3 h2,1 h2,1 h0,3

h0,2 h1,1 h0,2

h0,1 h0,1

h0,0

Compact, connected, Kähler: h0,0 = 1 (constant functions)

If simply-connected:

π1(X) = 0 ; H1(X) = π1(X)/[ , ] = 0 ; h1,0 = h0,1 = 0
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Some Topological Properties II

Finally, CY3 has h3,0 = h0,3 = 1 [unique holomorphic 3-form], also

hp,0 = h3−p,0 by contracting (p, 0)-form with Ω̄ to give (p, 3)-form, then use

Poincaré duality to give (3− p, 0)-form

2-topological numbers for a (connected, simply connected) CY3:
1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(Kähler, Complex-Structure) : (h1,1, h2,1)

χ(X) = 2(h1,1 − h2,1)

Moduli Space of CY3 locally: M'M2,1 ×M1,1
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Explicit Examples of Calabi-Yau Manifolds

d = 1 Torus T 2 = S1 × S1

d = 2 K3 ; 4-torus: T 4 =
(
S1
)4

d = 3 CY3: Unclassified, billions known
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As Projective Varieties

Embed X into Pn as complete intersection of K polynomials

n = K + 3

Canonical bundle KX ' ∧dim(X)T ∗X ; algebraic condition for Calabi-Yau:

KX ' OX (indeed c1(TX) = 0)

Adjunction formula for subvariety X ⊂ A: KX = (KA ⊗N∗)|X

Recall KA=Pn ' OPn(−n− 1) and KX ' OX , thus:

degree(X) = n+ 1

Find only 5 solutions. These all have h1,1(X) = 1, inherited from the 1

Kähler class of Pn; called cyclic Calabi-Yau threefolds
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Cyclic Manifolds

Intersection A Configuration χ(X) h1,1(X) h2,1(X) d(X) c̃2(TX)

Quintic P4 [4|5] −200 1 101 5 10

Quadric and quartic P5 [5|2 4] −176 1 89 8 7

Two cubics P5 [5|3 3] −144 1 73 9 6

Cubic and 2 quadrics P6 [6|3 2 2] −144 1 73 12 5

Four quadrics P7 [7|2 2 2 2] −128 1 65 16 4

Euler numbers quite large, d(X) is volume normalisation

used standard matrix configuration notation

most famous example: Quintic 3-fold [4|5]

{
4∑
i=0

x5
i = 0} ⊂ P4

[x0:...x4]

written as Fermat quintic, also has h2,1(X) = 101 deformation parameters
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Part I

Strings and the Compact Calabi-Yau Landscape
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Triadophilia: A 40-year search

A 2-decade Problem: [Candelas-Horowitz-Strominger-Witten] (1986)

E8 ⊃ SU(3)× SU(2)× U(1) Natural Gauge Unification

Mathematically succinct

Witten: “still the best hope for the real world”

CY3 X, tangent bundle SU(3)⇒ E6 GUT: commutant E8 → SU(3)× E6

(generalize later)

Particle Spectrum:
Generation n27 = h1(X,TX) = h2,1

∂
(X)

Anti-Generation n27 = h1(X,TX∗) = h1,1

∂
(X)

Net-generation: χ = 2(h1,1 − h2,1)

Question: Are there Calabi-Yau threefolds with Euler character ±6?

Strominger was visiting Yau at the IAS in 1986-7
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Complete Intersection Calabi-Yau (CICY) 3-folds

immediately: Quintic Q in P4 is CY3, recall: Qh
1,1,h2,1

χ = Q1,101
−200 so too may

generations (even with quotient −200 6∈ 3Z)

[Candelas-A. He-Hübsch-Lutken-Schimmrigk-Berglund] (1986-1990)

dim(Ambient space) - #(defining Eq.) = 3 (complete intersection)

M =


n1 q1

1 q2
1 . . . qK1

n2 q1
2 q2

2 . . . qK2
...

...
...

. . .
...

nm q1
m q2

m . . . qKm


m×K

− K eqns of multi-degree qij ∈ Z≥0

embedded in Pn1 × . . .× Pnm

− c1(X) = 0 ;
K∑
j=1

qjr = nr + 1

− MT also CICY

Famous Examples
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The First Data-sets in Mathematical Physics/Geometry I

Problem: classify all configuration matrices; employed the best computers at

the time (CERN supercomputer)

q.v. magnetic tape and dot-matrix printout in Philip’s office

7890 matrices from 1× 1 to max(row) = 12, max(col) = 15; with qij ∈ [0, 5]

266 distinct Hodge pairs (h1,1, h2,1) = (1, 65), . . . , (19, 19)

70 distinct Euler χ ∈ [−200, 0] (all negative)

[V. Braun, 1003.3235] : 195 have freely-acting symmetries (quotients), 37

different finite groups (from Z2 to Z8 oH8)

Rmk: Integration pulls back to ambient product of projective space A∫
X

· =
∫
A

µ ∧ · , µ :=
K∧
j=1

(
m∑
r=1

qjrJr

)
.
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Topological Quantities

Chern classes of CICY

cr1(TX) = 0

crs2 (TX) = 1
2

[
−δrs(nr + 1) +

K∑
j=1

qrj q
s
j

]

crst3 (TX) = 1
3

[
δrst(nr + 1)−

K∑
j=1

qrj q
s
jq
t
j

]

Triple intersection numbers: drst =
∫
X
· =

∫
A
Jr ∧ Js ∧ Jt

Euler number: χ(X) = Coefficient(crst3 JrJsJt · µ,
∏m
r=1 J

nr
r )

As always, computing individual terms (h1,1, h2,1) hard even though

h1,1 − h2,1 = 1
2χ (index theorem)
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Computing Hodge Numbers: Sketch

Recall Hodge decomposition Hp,q(X) ' Hq(X,∧pT ?X) ;

H1,1(X) = H1(X,T ?X), H2,1(X) ' H1,2 = H2(X,T ?X) ' H1(X,TX)

Euler Sequence for subvariety X ⊂ A is short exact:

0→ TX → TM |X → NX → 0

Induces long exact sequence in cohomology:

0 → ��
���

�: 0

H0(X,TX) → H0(X,TA|X) → H0(X,NX) →

→ H1(X,TX)
d→ H1(X,TA|X) → H1(X,NX) →

→ H2(X,TX) → . . .

Need to compute Rk(d), cohomology and Hi(X,TA|X)
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A Classic

T. Hübsch, CY Manifolds: a bestiary for physi-

cists, 1992, WS

first book to introduce Algebraic Geometry to

physicists
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Distribution

h1,1 h2,1
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The First Data-sets in Mathematical Physics/Geometry II

[Candelas-Lynker-Schimmrigk, 1990] Hypersurfaces in Weighted P4

generic homog deg =
4∑
i=0

wi polynomial in WP4
[w0:w1:w2:w3:w4] '

(C5 − {0})/(x0, x1, x2, x3, x4) ∼ (λw0x0, λ
w1x1, λ

w2x2, λ
w3x3, λ

w4x4)

specified by a single integer 5-vector: wi

Rmk: ambient WP4 is singular (need to resolve)

7555 inequivalent 5-vectors wi

2780 Hodge pairs

χ ∈ [−960, 960]
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The age of data science in mathe-

matical physics/string theory not

as recent as you might think

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 26 / 136



Elliptically Fibered CY3: [Gross, Morrison-Vafa, 1994]

X elliptically fibered over some base B: as Weierstraß model in

P2
[x:y:z]-bundle over B (g2, g3 complex structure coeff)

zy2 = 4x3 − g2xz
2 − g3z

3

x, y, z, g2, g3 must be sections of powers of some line bundle L over B

Specifically (x, y, z, g2, g3) are global sections of (L⊕2,L⊕3,OB ,L⊕4,L⊕6)

c1(TX) = 0⇒ L ' K−1
B ⇒ B highly constrained :

1 del Pezzo surface dPr=1,...,9: P2 blown up at r points

2 Hirzebruch surface Fr=0,...12: P1-bundle over P1

3 Enriques surface E: involution of K3

4 Blowups of Fr
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Elliptically Fibered CYn

Belief (Conjecture?): VAST majority of CYn are elliptic fibrations

Kollar Conjecture: A CY n-foldM is elliptic iff there exists a (1, 1)-class

D ∈ H2(M,Q) s.t. for every algebraic curve C

D · C ≥ 0; Dn−1 6= 0; Dn = 0

Oguiso, Wilson: True for n = 3 if D is effective or D · c2(M) 6= 0

Anderson-Gao-Gray-Lee-Lukas: 99.33% (all but 53) of the 7, 868 CICY3;

99.95% (all but 462) of 905, 684 CICY4

Huang-Taylor: KS-dataset (see shortly)

Quintic is not, Schön is
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Tour de Force: The Kreuzer-Skarke Dataset

Generalize WP4, take Toric Variety A(∆n) and consider hypersurface therein

A(∆n) is special: it is constructed from a reflexive polytope Lattice Polytopes

THM [Batyrev-Borisov, ’90s] anti-canonical divisor in X(∆n) gives a smooth

Calabi-Yau (n− 1)-fold as hypersurface:

0 =
∑
m∈∆

Cm

k∏
ρ=1

x〈m,vρ〉+1
ρ , ∆◦ = {v ∈ R4 | 〈m,v〉 ≥ −1 ∀m ∈ ∆}

vρ vertices of ∆.
Simplest case: A = P4 and we have quintic [4|5] again.

∆ :

m1 = (−1,−1,−1,−1),

m2 = ( 4,−1,−1,−1),

m3 = (−1, 4,−1,−1),

m4 = (−1,−1, 4,−1),

m5 = (−1,−1,−1, 4) ,

∆◦ :

v1 = (1, 0, 0, 0),

v2 = (0, 1, 0, 0),

v3 = (0, 0, 1, 0),

v4 = (0, 0, 0, 1),

v5 = (−1,−1,−1,−1) .
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Reflexive Polygons: 16 special elliptic curves

THM (classical): All ∆2 are

GL(2;Z) equivalent to one

of the 16

→ #vertices: 3, . . . , 6

↑ #lattice points: 4, . . . , 10

4 self-dual

5 smooth X(∆2) = toric

del Pezzo surfaces:

dP0,1,2,3, P1 × P1 (smooth

toric Fano surfaces)
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Known Classification Results

GL(n;Z)-equivalence classes of reflexive ∆n finite for each n

Kreuzer†-Skarke (Using PALP) [1990s]: a fascinating sequence

dimension 1 2 3 4 . . .

# Reflexive Polytopes 1 16 4319 473,800,776 . . .

# Regular 1 5 18 124 . . .

n ≥ 5 still not classified; generating function also not known

Smooth ones known for a few more dimensions (Kreuzer-Nill, Øbro,

Paffenholz): {1, 5, 18, 124, 866, 7622, 72256, 749892, 8229721 . . .}

n = 2, 3 built into SAGE
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Kreuzer-Skarke

Kreuzer†-Skarke 1997-2002: 473,800,776 ∆4

AT LEAST this many CY3 hypersurfaces in A(∆4): CY3 depends on

triangulation (resolution) of ∆, but Hodge numbers only depend on ∆4

(Batyrev-Borisov):

h1,1(X) = `(∆◦)−
∑

codimθ◦=1

`◦(θ◦) +
∑

codimθ◦=2

`◦(θ◦)`◦(θ)− 5;

h1,2(X) = `(∆)−
∑

codimθ=1

`◦(θ) +
∑

codimθ=2

`◦(θ)`◦(θ◦)− 5 .

Dual polytope ∆↔ ∆◦ = mirror symmetry

Vienna group (KS, Knapp,. . . ), Oxford group (Candelas, Lukas, YHH, . . . ),

MIT group (Taylor,Johnson, Wang, . . . ), Northeastern/Wits Collab (Nelson,

Jejjala, YHH), Virginia Tech (Anderson, Gray, Lee, . . . )

Tsinghua/London/Oxford Collab (Yau, Seong, YHH)
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Georgia O’Keefe

30,108 distinct Hodge pairs, χ ∈ [−960, 960];

(h1,1, h2,1) = (27, 27) dominates: 910113 instances

-960 -480 0 480 960

100

200

300

400

500

-960 -480 0 480 960

100

200

300

400

500

In Philip’s Office YHH (1308.0186)
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Refined Structure in KS Data

DATABASES:

http://hep.itp.tuwien.ac.at/~kreuzer/CY/

http://www.rossealtman.com/

Altman-Gray-YHH-Jejjala-Nelson 2014-17 triangulate ∆4 (orders more than

1/2-billion): up to h1,1 = 7

Candelas-Constantin-Davies-Mishra 2011-17 special small Hodge numbers

Taylor, Johnson, Wang et al. 2012-17 elliptic fibrations

YHH-Jejjala-Pontiggia 2016 distribution of Hodge, χ, Pseudo-Voigt

http://hep.itp.tuwien.ac.at/~kreuzer/CY/
http://www.rossealtman.com/


KS stats
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The Compact CY3 Landscape

 S

Calabi−Yau Threefolds

KS
Toric Hypersurface

Elliptic Fibration

CICY
 Q
.

.

40 years of

research by

mathematicians

and physicists;

1010 data-points

(and growing)

OPEN CONJECTURES:

Yau: Topological type of CY in any dim is FINITE

Reid’s Fantasy: All CY3 are connected by conifold-like transitions
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CY3 Compactification: Recent Development

E6 GUTs less favourable, SU(5) and SO(10) GUTs: general embedding

Instead of TX, use (poly-)stable holomorphic vector bundle V

LE particles ∼ massless modes of V -twisted Dirac Operator: /∇X,V Ψ = 0

massless modes of /∇X,V
1:1←→ V -valued cohomology groups

Gauge group(V ) = G = SU(n), n = 3, 4, 5, gives H = Commutant(G,E8):

E8 → G ×H Breaking Pattern

SU(3) × E6 248 → (1, 78) ⊕ (3, 27) ⊕ (3, 27) ⊕ (8, 1)

SU(4) × SO(10) 248 → (1, 45) ⊕ (4, 16) ⊕ (4, 16) ⊕ (6, 10) ⊕ (15, 1)

SU(5) × SU(5) 248 → (1, 24) ⊕ (5, 10) ⊕ (5, 10) ⊕ (10, 5) ⊕ (10, 5̄) ⊕ (24, 1)

Particle content
Decomposition Cohomologies

SU(3) × E6 n27 = h1(V ), n
27

= h1(V ∗) = h2(V ), n1 = h1(V ⊗ V ∗)

SU(4) × SO(10) n16 = h1(V ), n
16

= h2(V ), n10 = h1(∧2V ), n1 = h1(V ⊗ V ∗)

SU(5) × SU(5) n10 = h1(V ∗), n
10

= h1(V ), n5 = h1(∧2V ), n
5

= h1(∧2V ∗), n1 = h1(V ⊗ V ∗)

Further to SM: H Wilson Line−→ SU(3)× SU(2)× U(1)
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Ubi Materia, Ibi Geometria

Issues in low-energy physics ∼ Precise questions in Alg Geo of (X,V )

Particle Content ∼ (tensor powers) V Equivariant Bundle Cohomology on X

LE SUSY ∼ Hermitian Yang-Mills connection ∼ Bundle Stability

Yukawa ∼ Trilinear (Yoneda) composition

Doublet-Triplet splitting ∼ representation of fundamental group of X

e.g., for π1(X) = Z3 × Z3 WL:
Cohomology Representation Multiplicity Name

[α2
1α2 ⊗H1(X,V )]inv (3, 2)1,1 3 left-handed quark

[α2
1 ⊗H

1(X,V )]inv (1, 1)6,3 3 left-handed anti-lepton

[α2
1α

2
2 ⊗H

1(X,V )]inv (3, 1)−4,−1 3 left-handed anti-up

[α2
2 ⊗H

1(X,V )]inv (3, 1)2,−1 3 left-handed an ti-down

[H1(X,V )]inv (1, 2)−3,−3 3 left-handed lepton

[α1 ⊗H1(X,V )]inv (1, 1)0,3 3 left-handed anti-neutrino

[α1 ⊗H1(X,∧2V )]inv (1, 2)3,0 1 up Higgs

[α2
1 ⊗H

1(X,∧2V )]inv (1, 2)−3,0 1 down Higgs
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A Heterotic Standard Model

[Braun-YHH-Ovrut-Pantev] (hep-th/0512177, 0601204)

- X19,19
0 double-fibration over dP9 π1(X) = Z3 × Z3

- V stable SU(4) bundle: Generalised Serre Constrct

- Couple to Z3 × Z3 Wilson Line

- Matter = Z3 × Z3-Equivariant cohomology on X3,3
0

Exact SU(3)× SU(2)× U(1)× U(1)B−L spectrum:

No exotics; no anti-generation; 1 pair of Higgs; RH Neutrino

SU(5)→ SU(3)× SU(2)× U(1) version [Bouchard-Cvetic-Donagi]

same manifold

X19,19
0 is a CICY! Obvervatio Curiosa
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Algorithmic Compactification

Searching the MSSM, Sui Generis?

∼ 107 Spectral Cover bundles [Donagi, Friedman-Morgan-Witten, 1996-8] over

elliptically fibered CY3 (2005-9), [Donagi-YHH-Ovrut-Pantev-Reinbacher,

Gabella-YHH-Lukas,. . . ]

∼ 105 (Monad) Bundles over all CICYs [Anderson-Gray-YHH-Lukas, 2007-9]

Monad Bundles over KS YHH-Kreuzer-Lee-Lukas 2010-11: ∼ 200 in 105 3-gens

culminating in .. Stable Sum of Line Bundles over CICYs

(Oxford-Penn-Virginia 2012-) Anderson-Gray-Lukas-Ovrut-Palti ∼ 200 in 1010

MSSM

meanwhile . . . LANDSCAPE grew with D-branes Polchinski 1995, M-Theory/G2

Witten, 1995, F-Theory/4-folds Katz-Morrison-Vafa, 1996, AdS/CFT Maldacena 1998,

Flux-compactification Kachru-Kallosh-Linde-Trivedi, 2003, . . .
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Digression

D-branes, Type II & Non-Compact CY
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D-branes Dirichlet Boundary conditions for open strings;

D-brane world-volumes: Dp has p+ 1-D w.v.

D1, D3, . . . , D9 of dimensions

1 + 1, . . . , 9 + 1;

DYNAMICAL: Carry charges

(2, 4, . . . , 10 forms)
∫
Dp

Q(p+1)

i.e., Open strings carry charges (Chan-Paton factors) ⇒

D-branes = Supports of Sheafs (strictly: D-brane = object in Db(Coh))

important property: GAUGE ENHANCEMENT

i.e., world-volume sees a U(1)-bundle

Bringing together (stack) n parallel D-branes U(1)n → U(n)
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Another 10 = 4 + 6

SUMMARY Type IIB: 10D, Closed Strings, Open Strings/Dp-Branes, p odd

R1,9 ' R1,3(world-volume of D3)×X6(transverse non-compact CY3)

SIMPLEST CASE: transverse CY3 = C3

Original Maldacena’s AdS/CFT (1997):

N = 4 U(n) SYM on 4D world-volume of n D3s

R-symmetry SU(4) ' SO(6) of S5 in AdS5 × S5

Gauge Fields Aµ: Hom(Cn,Cn)

Matter Fields R = 4,6: Adjoint (Weyl) fermions Ψ4
IJ : 4⊗Hom(Cn,Cn)

Bosons Φ6
IJ : 6⊗Hom(Cn,Cn)
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A Geometer’s AdS/CFT

Rep. Variety(Quiver) ∼ VMS(SUSY QFT) ∼ affine/singular variety

e.g N = 1 Quiver variety = vacuum of F- & D-flatness = non-compact CY3

N = 4 U(N) Yang-Mills

3 adjoint fields X,Y, Z with superpotential W = Tr(XY Z −XZY )

X

YZ

N D3-branes (w.v. is N = 4 in R3,1) ⊥ R6

' C3 = Vacuum Moduli Space

VMS ' affine non-compact CY3 by construction

QUIVER = Finite graph (label = rk(gauge factor)) + relations from W

Matter Content: Nodes + arrows

Relations (F-Terms): DiW = 0 ; [X,Y ] = [Y, Z] = [X,Z] = 0

Here C3 is real cone over S5 (simplest Sasaki-Einstein 5-manifold), others?
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Orbifolds (V-manifolds)

Orbifolds: next best thing to C3 (Satake 60’s);

Transverse CY3 ' C3/{Γ ⊂ SU(k)} that admit crepant resolution, i.e.,

resolve to Calabi-Yau; Γ discrete finite subgroup of holonomy SU(k); k = 2, 3

Γ-Projection: γAµγ−1 = Aµ and ΨIJ = R(γ)γΨIJγ
−1; i.e.,

Gauge Group U(n)⇒
∏
i U(Ni)

Matter fields decompose as

(R⊗ hom (Cn,Cn))Γ =
⊕

i,j R⊗
(
CNi ⊗ CNj∗ ⊗ ri ⊗ r∗j

)Γ
=

⊕
i,j a

R
ij

(
CNi ⊗ CNj∗

)
,

where R⊗ ri =
⊕
j

aRijrj

a4ij bi-fundamental fermions: (Ni, N̄j) of SU(Ni)× SU(Nj)

a6ij bi-fundamental bosons: (Ni, N̄j) of SU(Ni)× SU(Nj)
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Quivers

Parent Γ−→ Orbifold Theory

SUSY N = 4 ;

N = 2, for Γ ⊂ SU(2)

N = 1, for Γ ⊂ SU(3)

N = 0, for Γ ⊂ {SU(4) ' SO(6)}

Gauge

Group
U(n) ;

∏
i

U(Ni),
∑
i

Ni dim ri = n

Fermion Ψ4
IJ ; Ψij

fij

Boson Φ6
IJ ; Φijfij R⊗ ri =

⊕
j

aRijrj

I, J = 1, ..., n; fij = 1, ..., a
R=4,6
ij

In physics: Douglas & Moore (9603167), C2/Zn; Johnson & Meyers

(9610140) Formalised in Lawrence, Nekrasov & Vafa, (9803015);
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Quivers: Finite Graphs with Representation

A Graphical way to represent this data

Node i ∼ gauge factor U(Ni)

Arrow i→ j ∼ bi-fundamental (Ni, N̄j)

e.g.

Adjacency Matrix

Aij =


0 1 0

0 0 1

1 0 0



Gabriel: 1970s: x1 ∈ Hom(Cn1 ,Cn2), etc.
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McKay Correspondence

Take the C2/(Γ ⊂ SU(2))× C case: Discrete Finite Subgroups of SU(2)

F. Klein (1884) (double covers of those of SO(3), i.e., symmetry groups of

the Platonic solids)

Group Name Order

An ' Zn+1 Cyclic n+ 1

Dn Binary Dihedral 2n

E6 Binary Tetrahedral 24

E7 Binary Octahedral (Cube) 48

E8 Binary Icosahedral (Dodecadedron) 120

McKay (1980) Take the Clebsch-Gordan decomposition for R = fundamental

2 representation of SU(2)
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ADE-ology

2⊗ ri =
⊕
j

a2ijrj and treat a2ij as adjacency matrix

McKay Quivers (rmk: Cartan matrix symmetric ; graph unoriented)

QUIVERS = DYNKIN DIAG. OF CORRESPONDING AFFINE LIE

ALGEBRA!!

2

.
.
.
.

A
n

1

1

1

1
1

1

7

2

2 11 3 34 2

E

8
E

3

1 2 2453 64

1

1 1

2

2 23

6
E

. . . . .

D
n

1

1

1

1

2 2
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Geometrical McKay

Geometrically: González-Springberg & Verdier (1981)

Crepant Resolution K3→ C2/Γ

An : xy + zn = 0

Dn : x2 + y2z + zn−1 = 0

E6 : x2 + y3 + z4 = 0

E7 : x2 + y3 + yz3 = 0

E8 : x2 + y3 + z5 = 0

Intersection matrix of −2 exceptional curves in the blowup ; Quiver

Bridgeland-King-Reid (1999) Use Fourier-Mukai: McKay as an

auto-equivalence in Db(coh(X̃/G)) = Db(cohG(X))

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 50 / 136



CY3 case: C3/(Γ ⊂ SU(3))

McKay Quiver ⇒ N = 2 SUSY gauge theory on 4D world-volume

N = 1 SUSY: Need discrete finite groups Γ ⊂ SU(3)

Classification: Blichfeldt (1917)

Infinite Series ∆(3n2),∆(6n2)

Exceptionals Σ36×3,Σ60×3,Σ168×3,Σ216×3,Σ360×3

Gives chiral N = 1 gauge theories in 4D wv of D3-probe

most phenomenologically interesting

Hanany & YHH hep-th/9811183

Rmk: Crepant Resolutions to CY3 and Generalised McKay (Reid, Ito et al.)

not as well established
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SU(3) quivers and N = 1 gauge theories

Γ ⊂ SU(3) Gauge Group

Ân ∼= Zn+1 (1n+1)

Zk × Z
k′ (1kk

′
)∗

D̂n (14, 2n−3)

Ê6 ∼= T (13, 23, 3)

Ê7 ∼= O (12, 22, 32, 4)

Ê8 ∼= I (1, 22, 32, 42, 5, 6)

E6 ∼= T (13, 3)

E7 ∼= O (12, 2, 32)

E8 ∼= I (1, 32, 4, 5)

∆
3n2 (n = 0 mod 3) (19, 3

n2

3
−1

)∗

∆
3n2 (n 6= 0 mod 3) (13, 3

n2−1
3 )∗

∆
6n2 (n 6= 0 mod 3) (12, 2, 32(n−1), 6

n2−3n+2
6 )∗

Σ168 (1, 32, 6, 7, 8)∗

Σ216 (13, 23, 3, 83)

Σ36×3 (14, 38, 42)∗

Σ216×3 (13, 23, 37, 66, 83, 92)∗

Σ360×3 (1, 34, 52, 62, 82, 93, 10, 152)∗
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DICTIONARY: Quivers & Gauge Theory

S =
∫
d4x [

∫
d2θd2θ̄ Φ†ie

V Φi +
(

1
4g2

∫
d2θ TrWαWα +

∫
d2θ W (Φ) + c.c.

)
]

W = superpotential V (φi, φ̄i) =
∑
i

∣∣∣∂W∂φi ∣∣∣2 + g2

4 (
∑
i qi|φi|2)2

Encode into QUIVER (rep of finite labelled graph with relations):

k nodes, dim vec (N1, . . . , Nk)
∏k
j=1 U(Nj) gauge group

Arrow i→ j bi-fund Xij field ( , ) of U(Ni)× U(Nj)

Loop i→ i adjoint φi field of U(Ni)

Cycles Gauge Invariant Operator

2-cycles Mass-terms

W =
∑
ci cyclesi Superpotenital

Relations Jacobian of W (φi, Xij)

VACUUM ∼ V (φi, φ̄i) = 0⇒


∂W

∂φi,Xi
= 0 F-TERMS∑

i

qi|φi|2 + qk|Xk| = 0 D-TERMS
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Another Famous Example: Conifold

SU(N)× SU(N) gauge theory with 4 bi-fundamental fields

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVER

SU(N) SU(N)

Ai=1,2

Bj=1,2

W = Tr(εilεjkAiBjAlBk)

D3-branes transverse to the conifold singularity = ({uv = wz} ⊂ C4) =

VMS (Klebanov-Witten 1999] N = 1 “conifold” Theory)

# gauge factors = Ng = 2; # fields = Nf = 4; # terms in W = Nw = 2

Observatio Curiosa: Ng −Nf +Nw = 0, as with C3, true for almost all

known cases in AdS5/CFT4
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The Landscape of Affine (Singular) CY3

2 decade programme of the School of A. Hanany:

U(N)

N D3−Branes

World−Volume = 

Quiver Gauge Theory

CY3 Cone

Sasaki−Einstein 5−fold

Toric

Singularities

Generic

Orbifolds

del Pezzo

Abelian

Orbifolds

Local CY3

C

C
3.

.

Orbifolds: C3/(Γ ⊂ SU(3)) Generalized McKay Correspondence

(Hanany-YHH, 98); Fano (del Pezzo): dP0,...,8 (w/ Hanany,Feng, Franco, et

al. 98 - 00); LARGEST FAMILY by far Toric: e.g., conifold, Y p,q, Lp,q . . .

Computational Algebraic Geometry
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M Toric CY3 ←→ Bipartite Graph on T 2

Feng, Franco, Hanany, YHH, Kennaway, Martelli, Mekareeya, Seong, Sparks,

Vafa, Vegh, Yamazaki, Zaffaroni . . .

Ng −Nf +Nw = 0 is Euler relation for a tiling of torus

Jac(W ) = binomial ideal (toric): bipartite Notation for Toric Cones

X

YZ

W = Tr(XY Z −XZY )

→

1 1 1 1

1 1 1

1 1 1 1

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVERW = Tr(εilεjkAiBjAlBk)

→
Graph Dual

>>

>>

B
1,2

A
1,2

1 2

Dimer Model on Torus

2 2

2 2

A1

A2

B1

B2

2 2

22

2

2 2

2

1

1

1

1

1

1

11

1

1

1

1

1
QUIVER

DIMER
Fundamental Region

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 56 / 136



Toric CY3, Mirror Symmetry & Bipartite Tilings

Mirror Symmetry [Strominger-Yau-Zaslow; Hori-Vafa]

D3-brane on CY3 ; D6-branes wrapping 3-cycles in mirror CY3

[Feng-Kennaway-YHH-Vafa] torus T 2 lives in T 3 of mirror symmetry;

Tropical Geometry

THEOREM: [R. Böckland, N. Broomhead, A. Craw, A. King, K. Ueda . . . ]

The (coherent component of) VMS as representation variety of a quiver is an

affine (non-compact, possibly singular) toric Calabi-Yau variety of complex

dimension 3 ⇔ the quiver + superpotential is graph dual to a bipartite graph

drawn on T 2

Rmk: Each ⇒ SCFT in 3+1-d
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SUMMARY: C3, Hexagonal Tilings, SYM

N = 1 SYM = D3-branes transverse to C3 = C(S5) = hexagonal bipartite tiling
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SUMMARY: Conifold and Square Tilings

Alga

1 2

12

2 1

A

B

1

1

A 2

B2

A 2

B 2B 1

Periodic Quiver
W encoded

>>

>>

B
1,2

A
1,2

Quiver

W = Tr(A1B1A2B2 − A1B2A2B1)

1 2

(1,0)(0,0)

(0,1) (1,1)

Toric Diagram

Dimer Model

−Z

−W

− Z W

det K(Z,W)       = 1 − Z − W − W Z
1 x 1

−π

π

π

−π

0

(p,q)−Web

Draw on torus

Geometric

Engineering

Graph Dual

Graph Dual

Period Tiling

of Plane

Kastelyn Matrix

Projection

Newton

Polynomial

Projection

Amoeba
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The String Landscape
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Vacuum Degeneracy

Perhaps the biggest theoretical challenge to string theory:

selection criterion??? metric on the landscape???

Douglas (2003): Statistics of String vacua

Kachru-Kallosh-Linde-Trivedi (2003): type II/CY estimates of 10500

Taylor-YN Wang (2015-7): F-theory estimates 103000 to 10105

Basically: Combinatorial geometry usually tends exponentially

e.g., Kreuzer-Skarke (2000s): Reflexive polytopes up to SL(n;Z):

1, 16, 4319, 473800776, ???

Altman-Carifio-Halverson-Nelson (2018): estimated 10104

triangulations

Altman-Gray-YHH-Jejjala-Nelson (2014): brute-force: ∼ 106 up to h1,1 = 6
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Searching the Standard Model

SM places some constraints but still not enough:

Braun-YHH-Ovrut; Bouchard-Cvetic-Donagi (2005): exact MSSM particles

Gmeiner-Blumenhagen-Honecker-Lüst-Weigand (2005):1 in 109 in D-brane

MSSM modles

Candelas-de la Ossa-YHH-Szendroi (2007): Triadophilia ⇒ “des res”?

Anderson-Gray-Lukas-Palti (2012-3): Het line bundle MSSM: 200 in 1010

Recent estimates

Constatin-YHH-Lukas; Deen-YHH-SJ Lee-Lukas (2018-9) MSSM from

heterotic line bundles: 1023 from CICYs; 10723 from KS

Cvetic-Halverson-Lin-Liu-Tian (2019): 1015 F-theory MSSMs

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 62 / 136



WWJD

What Would JPython/AI Do?

YHH, 1706.02714, PLB 774, 2017

(Feature article, M. Hutchinson, Science, Vol 365, July, 2019)
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SUMMARY: Algorithms and Datasets in String Theory

Growing databases and computational algorithms motivated by string theory

Archetypical Problems

Classify configurations (typically integer matrices: polyotope, adjacency, . . . )

Compute geometrical quantity algorithmically

toric ; combinatorics;

quotient singularities ; rep. finite groups;

generically ; ideals in polynomial rings;

Numerical geometry (homotopy continuation);

Cohomolgy (spectral sequences, Adjunction, Euler sequences)

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer
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Where we stand . . .

The Good Last 10-15 years: several international groups have bitten the bullet

Oxford, London, Vienna, Blacksburg, Boston, Johannesburg, Munich, . . .

computed many geometrical/physical quantities and compiled them

into various databases Landscape Data (109∼10 entries typically)

The Bad Generic computation HARD: dual cone algorithm (exponential),

triangulation (exponential), Gröbner basis (double-exponential)

. . . e.g., how to construct stable bundles over the � 473 million KS

CY3? Sifting through for MSSM not possible . . .

The ??? Borrow new techniques from “Big Data” revolution
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A Wild Question

Typical Problem in String Theory/Algebraic Geometry:

INPUT

integer tensor −→
OUTPUT

integer

Q: Can (classes of problems in computational) Algebraic Geometry be

“learned” by AI ? , i.e., can we “machine-learn the landscape?"

1706.02714 Deep-Learning the Landscape, PLB 774, 2017:

Experimentally, it seems to be the case for many situations
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2017: String Theory enters the Machine-Learning Era

YHH (1706.02714);

Krefl-Seong (1706.03346);

Ruehle (1706.07024)

Carifio-Halverson-Krioukov-Nelson (1707.00655)
Sophia: Hanson Robotics,

HongKong

Beginning of String_Data Progress in String Theory

How can ML and modern data-science help with the vacuum degeneracy

problem??

Meanwhile . . . Sophia becomes a “human” citizen (in Saudi Arabia)
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2017: String Theory enters the Machine-Learning Era

YHH (1706.02714);

Krefl-Seong (1706.03346);

Ruehle (1706.07024)

Carifio-Halverson-Krioukov-Nelson (1707.00655)
Sophia: Hanson Robotics,

HongKong

Beginning of String_Data Progress in String Theory

How can ML and modern data-science help with the vacuum degeneracy

problem??

Meanwhile . . . Sophia becomes a “human” citizen (in Saudi Arabia)
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A Prototypical Question

Hand-writing Recognition, e.g., my 0 to 9 is different from yours:

How to set up a bijection that takes these to {1, 2, . . . , 9, 0}? Find a clever

Morse function? Compute persistent homology? Find topological invariants?

ALL are inefficient and too sensitive to variation.

What does your iPhone/tablet do? What does Google do? Machine-Learn

Take large sample, take a few hundred thousand (e.g. NIST database)

. . . 28× 28× (RGB)
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Part II: Machine Learning

A Brief Introduction to the Novice
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Back in Kindergarten. . .

Given a set of data-points (now called point cloud ~xi ∈ Rn), we were taught

to do 2 types of things

1 Plot them and see if there are any patterns (if n is small), known distribution?

components?

2 Consider n− 1 as independent variables and 1 as dependent, find best-fit

function xn = f(xi=1,...,n−1) by regression (typically linear) （線性）回歸 .

Now, we have more sophisticated generalizations/names:

1 Unsupervised machine-learning 非監督機器學習

2 Supervised machine-learning 監督性機器學習
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A Long History (contrary to what you might think)

(cf. Goodfellow, Bengio, Courville, “Deep-Learning”, 2006, MIT Press [GBC])

1940 - 60: Cybernetics 控制論

The Perceptron 感知器 1957 (!!) in early AI (using CdS photo-cells)

1980 - 90: Connectionism 聯合主義

(Artificial) Neural Networks (NN) （人工）神經網絡

2006: Deep Learning 深度（機器）學習

(Fig 1.7 of

[GBC]; from

all texts on

Googlebooks)
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A Key Mathematical Tool

Gradient/Steepest Descent 梯度下降優化 : Find the (local) minimum ~x∗ of

a function f(~x) [Cauchy, 1847]

~xn+1 := ~xn − ε∇f(~xn) , iterate n = 1, 2, 3, . . .

f(~xn+1) ≤ ~xn; learning rate ε and initial value ~x0 are hyper-parametres

Stochstatic Gradient Descent 隨機梯度下降 : Typically f is a cost function

of form f =
∑
D
fi summed over the data D where |D| is huge

Take random samples D′ ⊂ D and sum over D′: mini- batch size |D|
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Basic Types

 Discrete Classifier

Continuous Regressor

Unsupervised



Clustering (e.g., nearest neiboughrs, k-Means, . . . )

Autoencoders

GAN (Generative Adversarial Networks)

PCA (Principal Component Analysis) PCA . . .

Supervised (labeled data)



Perceptron

SVM Support Vector Machine

Neural Network

Bayesian Classifiers, Decision Trees, . . .
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A Single Neuron: The Perceptron 神經元：感知器

DEF: Imitates a neuron: activates upon certain inputs, so define

Activation Function f(zi) for input tensor zi for some multi-index i;

consider: f(wizi + b) with wi weights and b bias/off-set;

Given Training data: D = {(x(j)
i , d(j)} with input xi and known output

d(j), minimize some cost/loss function to find optimal wi and b ; “learning”,

then check against Validation Data

Just (non-linear) regression

supervision because of association (teaching) xi → d
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Common Activation Functions 激活函數

Logistic Sigmoid: (1 + e−x)
−1

Hyperbolic tangent: tanh(x) = ex+e−x

ex−e−x

Softplus: log (1 + ex), a “softened” version of ReLu (Rectified Linear Unit):

max(0, x)

Softmax: xi → exi∑
i e
xi

Parametric ReLu: R(x) =

 x , x ≥ 0

αx , x < 0

Maxout: xi → maxi xi

Linear/Identity: xi → xi

(rmk: the weights and bias will make it xi → wijxj + bi)
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Common Cost/Loss Functions 代價函數

(supervised) dataset D = {x(j)
i −→ d(j)}j=1,2,...,N

Training set and validation set: D = T t V, |T | = n, |V| = N − n

Best-fit function/predictor f(x) trained on T :

When output is continuous (best-fit function), typically use SEL

(squared-error-loss)

SEL :=
∑
j

[
f

(∑
i

wix
(j)
i + b

)
− d(j)

]2

When output is discrete (categorical classification problem), typically use XC

(cross-entropy)

XC := − 1

n

∑
j

[
d(j) log f(x(j)) + (1− d(j)) log(1− f(x(j)))

]
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Measures for Goodness of Fit/Performance: Continuous

On validation dataset V = {x(j)
i −→ d(j)}j=1,2,...,m=N−n;

Predicted values: {x(j)
i −→ d̂(j)}j

Need to compare d̂ and d pairwise and have a measure of how good the

predictor is 決定係數

Coefficient of Determination R2 := 1− SSres
SStot

Data Variance = SStot :=
∑
j(d

(j) − d(j))2, d(j) := mean

Residual sum of squares = SSres :=
∑
j(d

(j) − d̂(j))2,

bad fit = 0 ≤ R2 ≤ 1 = perfect fit

Also do a scatter-plot of (d(j), d̂(j)), needs to be close to y = x line
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Measures for Performance: Discrete

Categorial Classification (K classes)

When K = 2, called binary classification, denote di ∈ {0, 1}

confusion matrix: C :=

Actual

True (1) False (0)

Predicted True (1) True Positive (tp) False Positive (fp)

Classification False (0) False Negative (fn) True Negative (tn)
True/False positive rate TPR/FPR:

TPR := tp
tp+fn

, FPR := fp
fp+tn

,

Accuracy tp+tn
tp+tn+fp+fn

, Precision := tp
tp+fp

.

want accuracy (% agreement) and precision to be close to 1 but these are

not good enough in discounting fp and fn.
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Further Performance Measure: Discrete

F1-Score F := 2
1

TPR+ 1
Precision

∈ [0, 1]

Harmonic mean between true positives and precision

closer to 1 the better the prediction

Matthews’ Correlation Coefficient

φ :=
√

χ2

m = tp·tn−fp·fn√
(tp+fp)(tp+fn)(tn+fp)(tn+fn)

∈ [−1, 1]

−1 anti-correlation; 0 random; 1 perfect correlation

generalize to K-category classification (for K ×K confusion matrix)

φ :=

∑
k

∑
l

∑
m

CkkClm − CklCmk√∑
k

(
∑
l

Ckl)(
∑

k′|k′ 6=k

∑
l′
Ck′l′)

√∑
k

(
∑
l

Clk)(
∑

k′|k′ 6=k

∑
l′
Cl′k′)

rmk: everything so far, perceptron included, is just old-fashioned regression
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Support Vector Machines 向量支持器

a classic example of supervised learning: find hyperplanes which separate

labeled categories

e.g., binary classification: given (~xi → yi)i=1,...,N with ~xi ∈ Rn, yi = ±1
find 2 hyperplanes so that

~xi · ~w + b ≥ 1 if yi = 1;

~xi · ~w + b ≤ −1 if yi = −1

distance between 2 hyperplanes is

2/ ‖~w‖, which we need to maximize
i.e., have optimization problem: (combining the 2 hyperplanes)

min
~w,b

1

2
‖~w‖2 , constraint: yi(~xi · ~w + b) ≥ 1
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Support Vector Machines

Solution: ~w =
∑
i

αiyi~xi for some αi ∈ R such that

αi 6= 0 only for ~xi on the margins of hyperplane

which are the support vectors

Generalizations

In case not separable, add slack:

min
~w,b

1
2
‖~w‖2 + c

∑
i ξi, constraint: yi(~xi · ~w + b) + ξi ≥ 1, ξi ≥ 0;

In case not linear/hyperplane, add kernel: SVM hyperplane replaced by∑
i

αiyiK(~x, ~xi) + b = 0 ,

common kernel, Gaussian K(s, t) = exp(−γ ‖s− t‖2)
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Multi-Layer Perceptron (MLP) 多層感知器

MAGIC: put many neurons together and let connectionism do the magic

Simplest case:

forward directed only,

called multilayer perceptron

or feedforward Neural Network

前饋神經網絡

Typical layers (depth = # layers (hence the name deep learning)):

(fully-connected) linear layer from m→ n nodes: m× n matrix of linear fnc

node-wise activation function (from the list before)

summation layer

Width: ∼ # neurons per layer
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Universal Approximation Theorems

Large Depth Thm: (Cybenko-Hornik) For every continuous function f : Rd → RD , every
compact subset K ⊂ Rd, and every ε > 0, there exists a continuous function
fε : Rd → RD such that fε = W2(σ(W1)), where σ is a fixed continuous function,
W1,2 affine transformations and composition appropriately defined, so that
sup
x∈K

|f(x)− fε(x)| < ε.

Large Width Thm: (Kidger-Lyons) Consider a feed-forward NN with n input neurons, m output
neuron and an arbitrary number of hidden layers each with n+m+ 2 neurons, such
that every hidden neuron has activation function ϕ and every output neuron has
activation function the identity. Then, given any vector-valued function f from a
compact subset K ⊂ Rm, and any ε > 0, one can find an F , a NN of the above type,
so that |F (x)− f(x)| < ε for all x ∈ K.

ReLU Thm: (Hanin) For any Lebesgue-integral function f : Rn → R and any ε > 0, there exists
a fully connected ReLU NN F with width of all layers less than n+ 4 such that∫
Rn |f(x)− F (x)|dx < ε.

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 83 / 136



Some Technicalities

(Implemented on Mathematica 11.1 + / TensorFlow-Keras on Python)

Regularization 正規化

if it performs well on T but not so well on V, possible overfitting

L1 or L2 Reg: add λ ‖w‖i=1,2 to cost function to ensure weight doesn’t

become too large

Dropout: randomly delete neurons

Data Enhancement: add equivalent representations of the training data

(e.g., Cayley table of finite group, add any row/column permutation)

early stoppping: if validation error gets increasingly worse, stop training

In computing gradient descent for layer i, backward propagation 反向傳播:

reduces computation for ∇fi, i.e., chain rule ∇(fi(gi−1)) = ∇fi(∇gi−1)

Some Jargon
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Beyond MLP: Two important NN Types

CNN (convulutional NN) 卷積神經網絡

perfect for image processing:

Convolution Layer → Non-linear Layer → Pooling Layer

Convolution: (L ? K)i,j =
∑
m,n

Li+m,j+nKm,n

Pooling: compare neighbours, e.g., maxi,j=m,n±1 Li,j

RNN (recurrence NN) 循環神經網絡

perfect for series prediction

essentially MLP + arrows going backwards so that outputs of one layer can be

fed back ; memory

general NN a mixture of MLP, CNN, NN, and indeed any direct graph of

neurons.
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Deep-Learning the String Landscape
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Warmup: Hypersurfaces in WP4

Simplest Data Structure [w1 : w2 : w3 : w4 : w5] −→ h1,1

[YHH 1706.02714] Oftentimes, questions in pheno are qualitative, e.g.,

large # complex structure how many have, say, h2,1 > 50?

[Candelas-Lynker-Schimmrigk] Landau-Ginzburg methods: many hours; using

Euler sequence/Adjunction Distributions

Standard method: take partial training and validation data, s.t., D = T t V

train NN with random 2000/7555 inputs (∼ 1/4 only)

use the trained NN to predict value for the remaining UNSEEN 7555 - 2000

Get ∼ 91.8% precision, Cosine Distance dC = 0.91, Matthew Coefficient

φ = 0.84 in less than 20 sec on regular laptop! Learning Curve Training Curve
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Detailed Study: Berman-YHH-Hirst 2112.06350

clustering shows that the most significant dependence is on w5

5-fold cross-validation on predicting h1,1 from wi gets R2 > 0.95

Simple architecture of NN: e.g., 5-layer MLP
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CICYs: a Colourful Example

An image = a matrix (pixels) with entries denoting shade/colour; NN really

good at images (e.g. hand-writing) [RMK: not using a convolutional NN here]

CICY is a (padded) 12× 15 matrix with 6 colours ; CICY is an image

(a) (b)
(a) typical CICY;

(b) average CICY

Initial binary classifier e.g. in learning large number of Kahler parametres

h1,1 > 5: learns 4000 samples (< 50%) in ∼ 5 min; validate against

7890-4000: 97% accuracy, dC = 0.98, φ = 0.87.
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CICYs: Detailed Analysis

Bull-YHH-Jejjala-Mishra (1806.03121, 1903.03113)

TensorFlow Python’s implementation of NNs and DL

Compare NNs with Decision Trees, Support Vector Machines, etc

0.2 0.4 0.6 0.8
Fraction of data used for training

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Hodge Number - Validation Learning Curves

SVM Classifier Validation Accuracy
Neural Net Regressor, Validation Accuracy
Neural Net Classifier, Validation Accuracy

Can one learn the

FULL information on

Hodge numbers?

h1,1 ∈ [0, 19] so can

set up 20-channel NN

classifer, regressor, as

well as SVM
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CICYs: Comparative Studies

h1,1 for NN, Regressor, SVM at 20 and 80% training
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Massive improvement: Krippendorf-Syvaeri [2003.13679] Erbin-Finotello (2007.13379; 2007.15706

Google Inception NN) YHH-Lukas [2009.02544] Larfors-Lukas-Ruehle-Schneider (2111.01436);

Erbin-Finotello-Schneider-Tamaazousti (2108.02221) > 99.96% precision using more

sophiscated NN (e.g., Google Inception CNN)
YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 91 / 136



Distinguishing Elliptic Fibrations

[YHH-SJ. Lee 1904.08530]: test in CICY which are elliptically fibred (bypass

Oguiso-Kollar-Wilson Theorem/Conjecture)

Explicit computation by

finding divisor D by An-

derson et al. very expen-

sive; AI achieves in sec-

onds:
20 40 60 80 100

Training %0.5

0.6

0.7

0.8

0.9

1.0
Accuracy

Matthews ϕ

Precision

A control test: let a random set have property “1” and complementary set,

“0”, get 50% precision and φ ∼ 0 (complete guessing)
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Take-Home Lesson

GENERAL: ANY algebraic variety can be represented as a tensor and hence

pixelated image

much of computational algebraic geometry = no different than an

image-recognition problem

all of (computational) algebraic geometry = finding (co-)kernels of integer

matrices: thus is perfectly adapt for ML
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String/Algebraic Geometry: 2018-

q.v., Bundle Cohomology (Ruehle, Brodie-Constantin-Lukas,

Larfors-Schneider, Otsuka-Takemoto, Klaewer-Schlechter)

q.v., Kreuzer-Skarke Dataset (Halverson, Long, Nelson; McCallister-Stillman,

Berglund-Campbell-Jejjala)

q.v., Calabi-Yau volumes in AdS/CFT (Krefl-Seong)

q.v., MSSM from orbifold models (Parr-Vaudrevange-Wimmer)

q.v. Particle Masses Gal-Jejjala-Pena-Mishra . . .

q.v. Knot invariants: Jejjala-Kar-Parrikar, Craven-Jejjala-Kar

Gukov-Halverson-Ruehle-Sułkowski, using NLP
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String/Algebraic Geometry: 2018-

q.v. Ashmore-YHH-Ovrut+Calmon,

Douglas-Lakshminarasimhan-Qi,Jejjala-Pena-Mishra,

Anderson-Gerdes-Gray-Krippendorf-Raghuram Numerical CY Metrics

Otsuka-Takemoto; Deen-YHH-Lee-Lukas Distinguishing Heterotic SMs

q.v. DEEP CONNECTIONS

K. Hashimoto: AdS/CFT = Boltzmann Machine;

Halverson-Maiti-Stoner: QFT = NN;

de Mello-Koch: NN = RG;

Vanchurin 2008: Universe = NN.

What about the vacuum degeneracy problem?

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 95 / 136



One-Shot Learning

Fei-Fei Li et al. (2002 - )

Estimated that by 6, a child has learnt all 10 ∼ 30× 103 object categories

NOT done by sampling % of cases in each category

could not have supervise learnt everything in the standard way!

Knowledge Transfer: having seen lots of horses and a single bird, would

recognize a chicken is closer to a bird than to a horse

a SINGLE representative in a category suffices, or at most a handful ;

Few-Shot Learning
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Siamese Neural Networks (SNN)

Loss = L (w) :=

max {dw(xa, xp)− dw(xa, xn) + 1, 0}

dw (x1, x2) := (φw (x1)− φw (x2))
2

φ representation by features network (FN)

FN: represents the data by mapping to R3, say: φ : D → R3:
a anchor point for the class;

p close-by; n far-apart

FN some appropriately chosen NN

SNN returns a similarity score ∈ [0,∞)

where 0 means identical
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CICYs as Representative Landscape

CICY3 classified by Candelas, Dale, Green, Hubsch, Lutken (1988-9)

7890 configurations, h1,1 ∈ [1, 19]; h2,1 ∈ [15, 101]

(m,K) ranges from (1, 1) to (12, 15)

CICY4 classified by Gray, Haupt, Lukas (2013-4)

905684 configurations, h1,1 ∈ [1, 24]; h2,1 ∈ [1, 33];

h3,1 ∈ [20, 426];h2,2 ∈ [204, 1752]

(m,K) ranges from (1, 1) to (16, 20)

Can we One-Shot learn the String Landscape?

q.v. 2111.04761, YHH, Shailesh Lal, M. Zaid Zas

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 98 / 136



Methodology

Labelled Data of the form (qij) −→ h1,1 where similarity is

q(A) ∼ q(B) iff h(A) = h(B)

Represent each CICY as pixelated image (after normalization), and use CNN

as FN (tried other architectures like Inception and MLP):

trained on 3% of CICY3 and 0.6% of CICY4 (mostly just few per class of

h1,1): Few-Shot ML hundreds to extrapolate to hundreds of thousands

Standard ADAM optimizer @ learning-rate of 0.01
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Mean Similarity Scores on Pairs

CICY 3 CICY 4

Clustering of CICY by h1,1? . . .
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CICY 3 CICY 4

Two-birds with one stone

1 Few-shot ML of the landscape

2 The similarity score gives a distance measure on the landscape

This reduction + distance: a step toward a vacuum selection principle given

the complexity of the landscape
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from String Landscape to the Mathematical Landscape

Machine Learning Mathematics

Why stop at string/geometry?

q.v. Review YHH 2101.06317
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A Zealot’s Perspective

Q: We have seen that algebraic geometry (over C) is a tensor manipulation /

image recognition problem,

how much of mathematics is not?
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How does one *DO* mathematics, I ?

Russell-Whitehead Principia Mathematica [1910s] programme (since at least

Frege, even Leibniz) to axiomatize mathematics, but . . .

Gödel [1931] Incompleteness ; Church-Turing [1930s] Undecidability

Automated Theorem Proving (ATP) The practicing mathematician hardly ever

worries about Gödel

Newell-Simon-Shaw [1956] Logical Theory Machine:

proved subset of Principia theorems

Type Theory [1970s] Martin-Löf, Coquand, . . . Coq interactive proving

system: 4-color (2005); Feit-Thompson Thm (2012); Lean (2013)

Univalent Foundation / Homotopy Type Theory [2006-] Voevodsky

We can call this Bottom-up Mathematics
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How does one do mathematics, II ?

Late C20th - increasing rôle of computers: 4-color [Appel-Haken-Koch 1976];

Classif. Finite Simple Groups [ Galois 1832 - Gorenstein et al. 2008] . . .

Buzzard: “Future of Maths” 2019: already plenty of proofs unchecked

(incorrect?) in the literature, MUST use computers for proof-checking;

XenaProject, Lean establish database of mathematical statements

Davenport: ICM 2018 “Computer Assisted Proofs”.

Hale & Buzzard: Foresee within 10 years AI will help prove “early PhD” level

lemmas, all of undergrad-level maths formalized;

Szegedy: more extreme view, computers > humans @ chess (1990s); @ Go

(2018); @ Proving theorems (2030)
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How does one *DO* mathematics, III ?

Historically, Maths perhaps more Top-Down: practice before foundation

Countless examples: calculus before analysis; algebraic geometry before

Bourbaki, permutation groups / Galois theory before abstract algebra . . .

A lot of mathematics starts with intuition, experience, and experimentation

The best neural network of C18-19th? brain of Gauß ; e.g., age 16

Out[ ]=

20 40 60 80 100
x

5

10

15

20

25

π(x):=#{p≤x}

(w/o computer and before complex analy-

sis [50 years before Hadamard-de la Vallée-

Poussin’s proof]): PNT π(x) ∼ x/ log(x)

BSD computer experiment of Birch & Swinnerton-Dyer [1960’s] on plots of

rank r & Np on elliptic curves
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Question

To extend the analogy: AlphaGo is top-down (need to see human games);

even AlphaZero is not bottom-up (need to generate samples of games)

In tandem with the bottom-up approach of Coq, Lean, Xena . . . how to put

in a little intuition and human results? If I gave you 100,000 cases of

e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 , or, labeled data e.g.

5 3 4 3 5 1 4 4 1 2
5 0 4 5 2 4 4 2 2 4
1 1 2 2 0 4 1 4 5 0
5 0 1 1 0 2 0 5 0 1
2 5 0 1 1 3 2 3 0 3
3 2 2 3 0 0 2 2 1 0
2 2 5 1 4 4 0 0 1 2
5 0 0 0 4 5 0 4 1 1
4 3 4 3 3 1 0 0 2 5
2 0 5 0 3 0 4 4 1 5

 −→ 3

Q: Is there a pattern? Can one conjecture & then prove a formula?

Q: What branch of mathematics does it come from?

Perfect for (unsupervised & supervised) machine-learning; focus on labeled

case because it encodes WHAT is interesting to calculate (if not how).
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Mathematical Data: perfect for mining

Mathematical Data is more structured than “real world” data, much less

susceptible to noise; Outliers even more interesting, e.g. Sporadics,

Exceptionals, . . .

Last 10-20 years: large collaborations of computational mathematicians,

physicists, CS (cf. SageMATH, GAP, Bertini, MAGMA, Macaulay2, Singular,

Pari, Wolfram, . . . ) computed and compiled vast data

Generic computation HARD

mining provides some level of “intuition” & is based on “experience”
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Methodology

Bag of Tricks Hilbert’s Programme of Finitary Methods, Landau’s theoretical

minimum, Migdal’s Mathmagics . . .

IMO Grand Challenge (2020-) Good set of concrete problems to try on AI

Standard ML Regressor & Classifiers (w/ NO KNOWLEDGE of the maths)

NN: MLPs; CNNs; RNNs, . . . (gentle tuning of architecture and hyper-parameters)

SVM, Bayes, Decision Trees, PCA, Clustering, . . .

ML: emergence of complexity via connectivity ; Intution (?)

will give Status Report of Experiments in the last couple of years

focus on supervised ML (“knows where to get to”)

all standard methods ' same performance

∼ 20-80 split; training on 20
(
precision, Matthews’ φ or R2

)
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Representation/Group Theory

ML Algebraic Structures (GAP DB) [YHH-MH. Kim 1905.02263, ]

When is a Latin Square (Sudoku) the Cayley (multiplication) table of a finite

group? Bypass quadrangle thm (0.95, 0.9)

Can one look at the Cayley table and recognize a finite simple group?

bypass Sylow and Noether Thm; (0.97, 0.95) rmk: can do it via character-table

T , but getting T not trivial

SVM: space of finite-groups (point-cloud of Cayley tables) seems to exist a

hypersurface separating simple/non-simple

ML Lie Structure Chen-YHH-Lal-Majumder [2011.00871] Weight vector → length

of irrep decomp / tensor product: (0.97, 0.93); (train on small dim, predict high dim: (0.9, 0.8))
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Combinatorics, Graph/Quivers

[YHH-ST. Yau 2006.16619] Wolfram Finite simple graphs DB

ML standard graph properties:

?acyclic (0.95, 0.96); ?planar (0.8, 0.6); ?genus >,=, < 0 (0.8, 0.7); ?∃

Hamilton cycles (0.8, 0.6); ?∃ Euler cycles (0.8, 0.6)

(Rmk: NB. Only “solving” the likes of traveling salesman stochastically)

spectral bounds (R2 ∼ 0.9) . . .

Recognition of Ricci-Flatness (0.9, 0.9) (todo: find new Ricci-flat graphs);

[Bao-Franco-YHH-Hirst-Musiker-Xiao 2006.10783]: categorizing different

quiver mutation (Seiberg-dual) classes (0.9 - 1.0, 0.9)

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 111 / 136



Number Theory: A Classical Reprobate?

Arithmetic (prime numbers are Difficult!)

[YHH 1706.02714, 1812.02893:]

Predicting primes 2→ 3, 2, 3→ 5, 2, 3, 5→ 7; no way

fixed (or x/ log(x)-scaled) window of (yes/no)1,2,...,k to (yes/no)k+i for some

i (in binary); ML PRIMES problem (0.7, 0.8) NOT random! (prehaps related

to AKS algorithm [2002], PRIMES is in P)

Sarnak’s challenge: same window → Liouville Lambda (0.5, 0.001) Truly

random (no simple algorithm for Lambda)

[Alessandretti-Baronchelli-YHH 1911.02008]

ML/TDA@Birch-Swinnerton-Dyer X and Ω ok with regression & decision

trees: RMS < 0.1; Weierstrass → rank: random
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Number Theory: A Modern Hope?

Arithmetic Geometry (Surprisingly Good)

[Hirst-YHH-Peterken 2004.05218]: adjacency+permutation triple of dessin

d’enfants (Grothendieck’s Esquisse for Gal(Q/Q)) ; predicting transcendental

degree (0.92, 0.9)

YHH-KH Lee-Oliver arithmetic of curves

2010.01213: Complex Multiplication, Sato-Tate (0.99 ∼ 1.0, 0.99 ∼ 1.0)

2011.08958: Number Fields: rank and Galois group (0.97, 0.9)

2012.04084: BSD from Euler coeffs, integer points, torsion (0.99, 0.9);

Tate-Shafarevich X (0.6, 0.8) [Hardest quantity of BSD]
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An Inherent Hierarchy?

In decreasing precision/increasing difficulty:y
numerical

string theory → algebraic geometry over C ∼ arithmetic geometry

algebra

string theory → combinatorics

analytic number theory

Categorical Theory

suggested by & in prog. w/ B. Zilber, Merton Prof. of Logic, Oxford

major part of Model Theory: Morley-Shelah Categoricity Thm

Hart-Hrushovski-Laskowski Thm: 13 classes (levels) of iso-classes I(T, k) of a

theory T in first order logic over some cardinality k.
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Meta-mathematics/physics?

[YHH-Jejjala-Nelson ] “hep-th” 1807.00735

Word2Vec: [Mikolov et al., ’13] NN which maps words in sentences to a

vector space by context (much better than word-frequency, quickly adopted

by Google); maximize (partition function) over all words with sliding window

(W1,2 weights of 2 layers, Cα window size, D # windows )

Z(W1,W2) :=
1

|D|

|D|∑
α=1

log

Cα∏
c=1

exp([~xc]
T ·W1 ·W2)

V∑
j=1

exp([~xc]T ·W1 ·W2)

We downloaded all ∼ 106 titles of hep-th, hep-ph, gr-qc, math-ph, hep-lat

from ArXiv since the beginning (1989) till end of 2017 Word Cloud

(rmk: Ginzparg has been doing a version of linguistic ML on ArXiv)

(rmk: abs and full texts in future)
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Subfields on ArXiv has own linguistic particulars

Linear Syntactical Identities

bosonic + string-theory = open-string

holography + quantum + string + ads = extremal-black-hole

string-theory + calabi-yau = m-theory + g2

space + black-hole = geometry + gravity . . .

binary classification (Word2Vec + SVM) of formal (hep-th, math-ph, gr-qc)

vs phenomenological (hep-ph, hep-lat) : 87.1% accuracy (5-fold classification

65.1% accuracy). ArXiv classifications

Cf. Tshitoyan et al., “Unsupervised word embeddings capture latent

knowledge from materials science literature”, Nature July, 2019: 3.3. million

materials-science abstracts; uncovers structure of periodic table, predicts discoveries of new

thermoelectric materials years in advance, and suggests as-yet unknown materials
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Please submit

Special Collection in AACA, Birkhäuser, Dechant, YHH, Kaspryzyk, Lukas, ed:

https://www.springer.com/journal/6/updates/18581430

Special Volume in JSC, Springer, Hauenstein, YHH, Kotsireas, Mehta, Tang, ed.

https://www.journals.elsevier.com/journal-of-symbolic-computation/

call-for-papers/algebraic-geometry-and-machine-learning

ML in theoretical physics & pure maths, Book, WS, YHH, ed.

Int. J. Data Science in the Mathematical Sciences, WS, YHH et al., ed.
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THANK YOU

Go and try your favourite problem
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Some Rudiments & Nomenclature

A sequence of specializations:

M Riemannian: positive-definite symmetric metric

M Complex Riemannian: have (p, q)-forms with p-holomorphic and

q-antiholomorphic indices: d = ∂ + ∂̄ (with ∂2 = ∂̄2 = {∂, ∂̄} = 0)

M Hermitian: complex Riemannian and can tranform gmn = gm̄n̄ = 0

M Kähler: Hermitian with Kähler form ω := igmn̄dz
m ∧ dzn̄ such that

dω = 0 (⇒ ∂mgnp̄ = ∂ngmp̄; gmn̄ = ∂∂̄K(z, z̄) for some scalar K)



Cohomology:

On Riemannian M : can define Laplacian on p-forms (Hodge star

?(dxµ1 ∧ . . . ∧ dxµp ) := εµ1...µn

(n−p)!
√
|g|

gµp+1νp+1
. . . gµnνndx

νp+1 ∧ . . . ∧ dxνn)

∆p = dd† + d†d = (d+ d†)2, d† := (−1)np+n+1 ? d?

Harmonic p-Form ∆pA
p = 0

1:1←→ Hp
deRham(X)

On Hermitian M : Dolbeault Cohomology Hp,q

∂̄
(X): cohomology on ∂̄

(similarly ∂) and ∆∂ := ∂∂† + ∂†∂ and similarly ∆∂̄

On Kähler M : ∆ = 2∆∂ = 2∆∂̄ , Hodge decomposition:

Hi(M) '
⊕
p+q=i

Hp,q(M)

Back to Calabi-Yau
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Covariant Constant Spinor

Define Jnm = iη†+γ
n
mη+ = −iη†−γnmη−, check: JnmJpn = −δnm

(X6, J) is thus almost-complex

But η covariant constant ; ∇mJpn = 0 ; ∇Np
mn = 0

Nijenhuis tensor Np
mn := Jqm∂[qJ

p
n] − (m↔ n)

(X6, J) is thus complex (Jnm = iδnm, J
n̄
m̄ = iδn̄m̄, J

n
m̄ = J n̄m = 0 for some

local coordinates (z, z̄) ; transition functions holomorphic )

Define J = 1
2Jmndx

m ∧ dxn (Jmn := Jkmgkn) check:

dJ = (∂ + ∂̄)J = 0

(X6, J) is thus Kähler

summary X6 is a Kähler manifold of dimC = 3, with SU(3) holonomy

Back to Het



Famous CICYs

The Quintic Q = [4|5]1,101
−200 (or simply [5]);

Yau-Tian Manifold: TY =

 1 3 0

1 0 3

14,23

−18

no CICY has χ = ±6

TY has freely-acting Z3 ; (TY/Z3)6,9
−6;

central to early string pheno [Distler, Greene, Ross, et al.]

Schön Manifold: S =


1 1

3 0

0 3


19,19

0

has Z3 × Z3 freely acting symmetry

explored more recently;

The quotient is M0
3,3.

Back to CICYs



Reflexive Polytopes: Rudiments

Convex Lattice Polytope ∆ (use ∆n to emphasize dim n)

DEF1 (Vertex Rep): Convex hull of set S of k lattice points pi ∈ Zn ⊂ Rn

Conv(S) =

{
k∑
i=1

αipi|αi ≥ 0,
k∑
i=1

αi = 1

}

DEF2 (Half-Plane Rep): intersection of integer inequalities A · x ≥ b

{extremal pts = vertices, edges, 2-faces, 3-faces, . . . , (n-1)-faces = facets, ∆}

n = 2 polygons, n = 3 polyhedra, . . .

Polar Dual: ∆◦ = {v ∈ Rn | m · v ≥ −1 ∀m ∈ ∆}

Reflexive ∆: if ∆◦ is also convex lattice polytope

in general, vertices of ∆◦ are rational, not integer

duality: (∆◦)◦ = ∆

if further ∆ = ∆◦, self-dual/self-reflexive
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Reflexive Polytope: example

∆2

Vertices : (1, 0), (0, 1), (−1,−1)

Facets :


−x− y ≥ −1

2x− y ≥ −1

−x+ 2y ≥ −1

∆◦2

Vertices : (−1, 2), (−1,−1), (2,−1)

Facets :


−x− y ≥ −1

x ≥ −1

y ≥ −1

THM: Reflexive ⇔ single interior lattice point

(set to origin; all facets = hyperplanes of distance 1 away)
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Toric Variety from ∆n

Face Fan Σ(∆) ≡ {σ = pos(F )
∣∣F ∈ Faces(∆)} with

pos(F ) ≡
{∑

i λivi
∣∣vi ∈ F , λi ≥ 0

}
e.g. ∆2 = ⇒ Σ(∆2) =

Σ(∆n) then defines a compact Toric variety X(∆n) of dimC = n

X(∆) called Gorenstein Fano, i.e., −KX is Cartier and ample, i.e., O(−KX)

is line bundle and X is positive curvature

THM: X(∆) smooth ⇔ generators of every cone σ is part of Z-basis, i.e.,

det(gens(σ)) = ±1 Back to KS CY3
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Observatio Curiosa

Penn group purely abstract, but X19, 19
0 =

(
1 1

3 0

0 3

)
, Tian-Yau:

(
1 3 0

1 0 3

)
TRANSPOSES!!

Why should the best manifold from 80’s be so-simply related to the best

manifold from completely different data-set and construction 20 years later ??

Two manifolds are conifold transitions and vector bundles thereon transgress

to one another ([Candelas-de la Ossa-YHH-Szendroi, 2008])

Connectedness of the Heterotic Landscape

All CICY’s are related by conifold transitions

Reid Conjecture: All CY3 are connected

Proposal: All (stable) vector bundles on all CY3 transgress

Back to Compactifications

YANG-HUI HE (London/Oxford/Nankai) ML Landscape KAWS 22 126 / 136



A Computational Approach

Northeastern/Witts/Notre Dame/Cornell Collaboration: Programme to

study the computational algebraic geometry ofM: joint with M. Stillman,

D. Grayson, H. Schenck (Macaulay 2), J. Hauenstein (Bertini), B. Nelson,

V. Jejjala

1 n-fields: start with polynomial ring C[φ1, . . . , φn]

2 D = set of k GIO’s: a ring map C[φ1, . . . , φn]
D−→ C[D1, . . . , Dk]

3 Now incorporate superpotential: F-flatness

〈fi=1,...,n = ∂W (φi)
∂φi

= 0〉 ' ideal of C[φ1, . . . , φk]

4 Moduli space = image of the ring map
C[φ1,...,φn]

{F=〈f1,...,fn〉}
D=GIO−→ C[D1, . . . , Dk], M' Im(D)

Image is an ideal of C[D1, . . . , Dk], i.e.,

M explicitly realised as an affine variety in Ck
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Abelian Quotient: M = C3/Γ

All abelian orbifolds are toric.

Archetypal example: C3/Z3 with action (1, 1, 1) ; U(1)3 quiver theory

>>
>

2

<<<

<<
<

3

1
W = εαβγX

(α)
12 X

(β)
23 X

(γ)
31 , X

(α)
12 , X

(β)
23 , X

(γ)
31 , α, β, γ = 1, 2, 3

Adjacency Matrix: A =


0 3 0

0 0 3

3 0 0



Incidence Matrix: d =


−1 −1 −1 0 0 0 1 1 1

1 1 1 −1 −1 −1 0 0 0

0 0 0 1 1 1 −1 −1 −1



loops: 33 = 27 GIOs; arrows: 3× 3 fields

Moduli space: 27 quadrics in C10, explicit equations for

C3/Z3 ← Tot(OP2(−3))

Back to Toric Quivers
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Notation for Affine Toric Variety Back to Toric Quivers

Def Example (Conifold)

Comb.:

Convex Cone σ ∈ Zd ;

Dual Cone σ∨ ; X =

SpecMaxC[Sσ = x
gen(σ∨)∩Zd
i ]

Toric Diagram = Sσ

Cone (1,0,1)

(0,0,1) (1,1,1)

(0,1,1)

(−1,0,1)
(0,−1,1)

(1,0,0)

(0,1,0)

Dual

Sσ = 〈a = z, c = yz, b = xyz, d = xz〉

ab = cd in C4[a, b, c, d]

Symp:

Generalise Pn:

a (C∗)q−d action on Cq[xi]
xi 7→ λ

Qa=1...q−d
i=1...q

a xi with

Relations:
d∑
i=1

Qai vi = 0

Toric Diagram = vi

(1,1,1)(0,0,1)

(1,0,1) (0,1,1)

Q = [−1,−1, 1, 1]

C∗ on C4 ;

kerQ = Gt =
1 0 0 1

1 0 1 0

1 1 1 1



Comp: Binomial Ideal 〈
∏
pi =

∏
qj〉 ab = cd in C4
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Progress in String Theory Back to ML Landscape

Major International Annual Conference Series

1986- First “Strings” Conference

2002- First “StringPheno” Conference

2006 - 2010 String Vacuum Project (NSF)

2011- First “String-Math” Conference

2014- First String/Theoretical Physics Session in SIAM Conference

2017- First “String-Data” Conference
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Principle Component Analysis 主成分分析

INPUT: ~x(i) ∈ Rn, n large, i = 1, . . . ,m;

OUTPUT: ~c(i) = f(~x) ∈ R`, and g : ~x ' g(f(~x))

`� n to help with the curse of dimension

try linear encoding: g(~c) = Dn×` · ~c, with DTD = I thus ~c = DT~x

Cost Function: ‖~x− g(~c)‖; Need to find Dn×` s.t., minimize√∑
i

|~x(i) −DDT~x(i)|2 , s.t. DTD = I` .

` gives the `-th Principal Component

Back to ML
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Some Jargon

Epoch: (training round) 訓練輪 1 complete cycle where the NN has seen T

Batch: 批量

T (since |T | is often too large) is divided into batches (mini-batches) to be

passed through the NN

iterations: need to iterate in order to pass all through all of T

Hence |T | = Batch size ×# Iterations

Often need to sample T from D and pass through multiple epochs

Back to NN
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Hodge Plots for WP4

(a) (b)

(a)Mirror plot of

(χ, h1,1 + h2,1) (b)Distribution ofh2,1

Return



Learning Curve: Deciding Large h2,1 WP4
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Training Curve: Deciding Large h2,1 WP4

Return
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Classifying Titles

Compare, + non-physics sections, non-science (Times), pseudo-science (viXra)

````````````Actual

Word2Vec + SVM
1 2 3 4 5

1 40.2 6.5 8.7 24.0 20.6

2 7.8 65.8 12.9 9.1 4.4

3 7.5 11.3 72.4 1.5 7.4

4 12.4 4.4 1.0 72.1 10.2

5 10.9 2.2 4.0 7.8 75.1


1 : hep-th

2 : hep-ph

3 : hep-lat

4 : gr-qc

5 : math-ph

PPPPPPPPActual

NN
1 2 3 4 5 6 7 8 9 10

viXra-hep 11.5 47.4 6.8 13. 11. 4.5 0.2 0.3 2.2 3.1

viXra-qgst 13.3 14.5 1.5 54. 8.4 1.8 0.1 1.1 2.8 3.

6: cond-mat, 7: q-fin, 8: stat, 9: q-bio, 10: Times of India Back to Main
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