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GRAVITATIONAL WAVE COSMOLOGY

The first detection of gravitational waves 
from black holes and neutron stars mergers 
has opened up a new way to study our 
Universe. [LIGO collaboration, ’15]

One very exciting, though challenging  
prospect, is the measurement of 
primordial gravitational waves  (PGW) 
produced in the very early universe 
during cosmological inflation.
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GRAVITATIONAL WAVE COSMOLOGY

Primordial gravitational waves are a generic prediction 
of cosmological inflation. Their amplitude is typically too 
small for being directly detected by gravitational wave 
(GW) experiments. 

Cosmological scenarios that can enhance the tensor 
primordial spectrum at different scales might be tested 
with different gravitational wave experiments.

3



Gravitational wave cosmology has 
opened up a new window to test 
theories of quantum gravity such as 
string theory.

GRAVITATIONAL WAVE COSMOLOGY & 
QUANTUM GRAVITY

It is thus important to understand the properties of string 
(motivated) cosmology models that can enhance the 
primordial spectra at different scales.

May be able to constraint models and parameters!
[String cosmology review: Cicoli, Conlon, Maharana, Parameswaran, Quevedo, IZ, ’23]
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PLAN

• Power spectra enhancement in mulfitield axion 
monodromy inflation  

• Post-inflationary non-standard cosmologies and 
gravitational waves signatures 

• Summary
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MULTIFIELD INFLATION
Consider the low energy effective action for scalar sector, 
which arise from some consistent theory of quantum gravity: 

The paper is organised as follows. In section 2 we introduce the new fat inflationary

attractor and show that it requires large turning rates, providing a novel way to evade

the ⌘-problem. In sections 3 and 4 we discuss an explicit fat inflation model in string

theory, where a probe D5-brane moves along the radial and angular directions of a warped

resolved conifold in a type IIB flux compactification. We start in section 3 by introducing

the set-up, following the construction used in [25]. Next in section 4 we use the low energy

action derived in section 3 to construct an explicit model of fat natural inflation. We

compute the cosmological observables, which are consistent with the recent Planck data,

thus improving the tension of single field natural inflation with observations. We also

include a set of parameters that gives rise to a standard hierarchy of masses and whose

cosmological predictions are indistinguishable from single field. We then compute the non-

linear parameter fNL, which may help to distinguish multifield models from the single field

case. We end by discussing our findings and future directions in section 5. We include an

appendix, A, where we collect some field theory models in the literature with large turning

rates, which happen to belong to the fat inflationary attractor. Finally, in appendix B we

show a set of parameters which illustrate a possible double D-brane inflation scenario with

two distinct inflationary epochs.

2 Fat Inflatons, Large Turns and the ⌘-problem

Consider a typical low energy Lagrangean for several scalar fields, which may arise from

some consistent theory of quantum gravity:

S =

Z
d4x

p
�g


M2

Pl

R4

2
� gab

2
@µ�

a@µ�b � V (�a)

�
, (2.1)

where g is the determinant of the four dimensional metric gµ⌫ , R4 is the four dimensional

Ricci scalar built from g, while gab is the metric of the scalar manifold spanned by the

scalar fields �a, with a = 1, . . . . Although in general there can be several scalar fields, for

clarity we will mostly focus on the two-field case, that is a = 1, 2.

For cosmology we take the Friedmann-Robertson-Walker (FRW) metric

ds2 = �dt2 + a2(t) dxidxi , (2.2)

with scale factor a(t), so the Hubble parameter is given by H = ȧ/a. The equations of

motion thus become:

H2 =
1

3M2
Pl

✓
'̇2

2
+ V (�a)

◆
, (2.3)

�̈a + 3H�̇a + �a

bc
�̇b�̇c + gabVb = 0 , (2.4)

framework of warm inflation, see [23, 24].
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In FRW spacetime, equations of motion are 

H
2 =

1

3M2
P

✓
'̇
2

2
+ V (�a)

◆

�̈
a + 3H�̇

a + �a
bc�̇

b
�̇
c + g

ad
Vd = 0

Christoffel symbols of field space metric gab�a
bc :

Here

'̇2 = gab�̇
a�̇b
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SLOW-ROLL IN MULTIFIELD INFLATION

Slow-roll conditions can be neatly written in terms of tangent 
and orthogonal projections of inflationary trajectory:
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[Gordon, Wands, Bassett, Maartens, '01; 
Groot Nibbelink, van Tent, '01]
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VT = VaT
a, VN = VaN

awhere 

turning rate

This basis is useful in studying the slow-roll conditions, which mimic the single field case.

Projecting the equation of motion (2.3) for the scalars �a along these two directions gives:

'̈+ 3H'̇+ VT = 0 , (2.6)

DtT
a + ⌦Na = 0 , (2.7)

where VT = VaT
a, VN = VaN

a and the turning rate parameter ⌦ is defined as

⌦ ⌘
VN

'̇
. (2.8)

The field-space covariant time derivative is defined as:

DtT
a
⌘ Ṫ

a + �a
bcT

b
�̇
c
. (2.9)

To study the masses of the scalar field, we introduce the following matrix:

Ma
b ⌘ M

2
Pl
r

a
rbV

V
, (2.10)

where raAb ⌘ @aAb � �c
abAc, for some vector Ab. For two fields, this can be written as

M =
M

2
Pl

V

 
VTT VTN

VNT VNN

!
,

where VTT = T
a
T
b
rarbV , etc., and we can now define the parameter ⌘V as:

⌘V ⌘ |min eigenvalue{M}| . (2.11)

Note also that the eigenvalues of M in the two field case can be written neatly as

�± =
1

2

⇣
TrM±

p
TrM2 � 4 detM

⌘
. (2.12)

For example, if all eigenvalues are positive as in the case of fat inflation, one has that

0 < detM  TrM2
/4.

We now summarize useful expressions for the tangent and normal projections of the

mass matrix elements. Taking the time derivative of eq. (2.6), we obtain an expression for

the tangent projection, that is [2, 7, 9, 34]:

VTT

3H2
=

⌦2

3H2
+ ✏� �' �

⇠'

3
, (2.13)

where we have introduced the slow-roll parameters:

✏ ⌘ �
Ḣ

H2
=

'̇
2

2M2
P lH

2
, (2.14)

�' ⌘
'̈

H'̇
, (2.15)

⇠' ⌘

...
'

H2'̇
. (2.16)
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NaṪ
a +Na�

a
bc T

b�̇c = �VN

'̇

! ⌘ VN

H '̇
⌘ ⌦

H



SLOW-ROLL IN MULTIFIELD INFLATION

We can now write the projections of the Hessian elements of V 
along normal and tangent directions as (exact)
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[Achucarro, et al. '10; Hetz, Palma, '16;  
Christodoulidis, Roest, Sfakianakis, '18; 

Chakraborty et al. ’19; Aragam et al. ‘21]
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The field-space covariant time derivative is defined as:

DtT
a
⌘ Ṫ

a + �a
bcT

b
�̇
c
. (2.9)

To study the masses of the scalar fields, we examine the eigenvalues of the mass matrix

M ⌘ r
a
rbV , where raAb ⌘ @aAb ��c

abAc, for some vector Ab. For two fields, this can be

written as

M =

 
VTT VTN

VNT VNN

!
,

where VTT = T
a
T
b
rarbV , etc., and the eigenvalues can be written as

�± =
1

2

⇣
TrM±

p
TrM2 � 4 detM

⌘
. (2.10)

In order to have both eigenvalues positive, as is the case in fat inflation, we must have

0 < detM  TrM2
/4.

We now summarize useful expressions for the tangent and normal projections of the

mass matrix elements. Taking the time derivative of eq. (2.6), we obtain an expression for

the tangent projection, that is [2, 7, 9, 33]:

VTT

3H2
=

⌦2

3H2
+ ✏� �' �

⇠'

3
, (2.11)

where we have introduced the slow-roll parameters:

✏ ⌘ �
Ḣ

H2
=

'̇
2

2M2
P lH

2
, (2.12)

�' ⌘
'̈

H'̇
, (2.13)

⇠' ⌘

...
'

H2'̇
(2.14)

Next, taking the time derivative of eq. (2.8), we obtain an expression for VTN as [2, 33]:

VTN

H2
= ! (3� ✏+ 2 �' + ⌫) , (2.15)

where we introduced the dimensionless turning rate ! ⌘ ⌦/H and its fractional derivative

⌫ ⌘ !
0
/!. Here, primes denote e-fold derivatives, in which dN = Hdt. Note that these

relations are exact, as we have not made use of any slow-roll approximations. We observe

that VTT and VTN can be written in terms of the turning rate and the slow-roll parameters.

On the other hand, VNN depends on the inflationary trajectory in a model-dependent

manner.

2.2 Slow-roll in multifield inflation

A nearly exponential expansion is ensured by requiring the fractional change of the Hubble

parameter per e-fold, d(lnH)/dN to be small. This corresponds to ✏ ⌧ 1. In order for

inflation to last for a su�ciently long time and solve the horizon problem, one also requires

– 4 –

, ⌫ ⌘ !̇

H!

fiducial set of parameters. We also present a fit for the resulting power spectra in a template

with oscillations in log k near the peak. In section 5, we discuss the phenomenological

implications in terms of production of PBH and large GW spectra due to the enhanced

adiabatic fluctuations in our model. We discuss our results and conclude in section 6.

2 Multifield inflation and large turns

We start by briefly reviewing slow-roll multifled inflation following ref. [17], focusing on

the two field case. The starting point is the following lagrangian

S =

Z
d
4
x
p
�g


M

2

Pl

R

2
� gab

2
@µ�

a
@
µ
�
b � V (�a)

�
, (2.1)

where gab is the field space metric and g = det gµ⌫ , where gµ⌫ is the FRW metric. MPl

is the reduced Planck mass. The equations of motion in an FRW spacetime, projected

along the tangent and normal (i.e. adiabatic and entropic) directions to the inflationary

trajectory, are given by

H
2 =

1

3M2

Pl

✓
'̇
2

2
+ V (�a)

◆
, (2.2)

'̈+ 3H'̇+ VT = 0 , (2.3)

DtT
a ⌘ �⌦Na

, (2.4)

where T
a = �̇

a

'̇
, with T

a
Ta = 1 is the tangent (adiabatic) and N

a with N
a
Ta = 0,

N
a
Na = 1 is the normal (entropic) directions along the trajectory. The velocity is given

by

'̇
2 ⌘ gab�̇

a
�̇
b
, (2.5)

and we introduced the turning rate parameter ⌦ and we define the dimensionless turning

rate as

! ⌘ ⌦

H
⌘ VN

H'̇
, (2.6)

which measures the departures from the geodesic trajectory for ! & 1. Finally, the direc-

tional derivative is given by

DtT
a = Ṫ

a + �a

bc
T
b
�̇
c
, (2.7)

where the Christo↵el symbols are computed using the scalar manifold metric gab, and

VT = VaT
a, VN = VaN

a with Va the derivative w.r.t the scalar field �
a.

Using the equations of motion, we can write the projections of the Hessian elements

along the tangent vector as [8, 18, 56, 57]:

VTT

3H2
=

⌦2

3H2
+ 2 ✏� ⌘

2
� ⇠'

3
, (2.8)

as well as the projection along T and N as [17]:

VTN

3H2
= !

⇣
1� ✏+

⌘

3
+

⌫

3

⌘
. (2.9)
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In these equations we introduced the slow-roll parameters:

✏ ⌘ � Ḣ

H2
=

'̇
2

2M2

P l
H2

, (2.10a)

⌘ ⌘ ✏̇

H✏
= 2(�' + ✏) , (2.10b)

�' ⌘ '̈

H'̇
, (2.10c)

⇠' ⌘
...
'

H2'̇
, (2.10d)

⌫ ⌘ !̇

H!
. (2.10e)

Note that the expressions (2.8), (2.9) are exact, as we have not made use of any slow-

roll approximations. On the other hand, VNN depends on the inflationary trajectory in a

model-dependent manner.

2.1 Slow-roll inflation

The slow-roll conditions require the slow-roll parameters ✏, ⌘, �', defined above, to be much

smaller than one to guarantee long lasting slow-roll inflation, that is, ✏, ⌘, �', ⇠' ⌧ 1. These

conditions imply

H
2 ' V

3MP l

, (2.11)

3H'̇+ VT ' 0 , (2.12)

and thus that the tangent projection of the derivative of the potential is small, that is:

✏T ⌘
M

2

P l

2

✓
VT

V

◆
2

⌧ 1 . (2.13)

On the other hand, the normal projection VN does not need to be small, and it is related

to the turning rate by eq. (2.6). Additionally, from (2.8) we see that during slow-roll,

VTT

3H2
⇠ ⌦2

3H2
, (2.14)

while from (2.9) we observe that, barring cancellations, ⌘ ⌧ 1 (equivalently �' ⌧ 1),

implies that
VTN

3H2
⇠ ⌦

H
, and ⌫ ⌧ 1 . (2.15)

Hence, we see that ⌫ behaves as a new slow-roll parameter in multifield inflation: the

turning rate is guaranteed to be slowly varying during slow-roll [16, 17]. As discussed

in [17], the slow-roll conditions above do not require small eigenvalues of the Hessian.

That is, the ⌘V parameter:

⌘V ⌘ M
2

Pl

����min eigenvalue

✓
rarbV

V

◆���� , (2.16)
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SLOW-ROLL IN MULTIFIELD INFLATION
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Slow-roll requires 

) 3H2 ' V,

M
2
Pl

VTT

V
' ⌦2

3H2
, &

[Chakraborty, Chiovoloni, Loaiza-Brito, Nix, IZ, ’19;  
Aragam, Paban, Rosati, '20;  

Aragam, Chiovoloni, Paban, Rosati, IZ, ’21]
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and thus that the tangent projection of the derivative of the potential is small, that is:

✏T ⌘
M

2

P l

2

✓
VT

V

◆
2

⌧ 1 . (2.13)

On the other hand, the normal projection VN does not need to be small, and it is related

to the turning rate by eq. (2.6). Additionally, from (2.8) we see that during slow-roll,

VTT

3H2
⇠ ⌦2

3H2
, (2.14)

while from (2.9) we observe that, barring cancellations, ⌘ ⌧ 1 (equivalently �' ⌧ 1),

implies that
VTN

3H2
⇠ ⌦

H
, and ⌫ ⌧ 1 . (2.15)

Hence, we see that ⌫ behaves as a new slow-roll parameter in multifield inflation: the

turning rate is guaranteed to be slowly varying during slow-roll [16, 17]. As discussed

in [17], the slow-roll conditions above do not require small eigenvalues of the Hessian.

That is, the ⌘V parameter:

⌘V ⌘ M
2

Pl

����min eigenvalue

✓
rarbV

V

◆���� , (2.16)

– 5 –



MULTIFIELD INFLATION

Focus on two field case with 

Scalar fields equations of motion become 

10

space geometries, the kinetic term can be written as 4

L� � �
f
2(r)

2

⇥
(@r)2 + (@✓)2

⇤
. (2.31)

Note that the field space metric is independent of the coordinate ✓, indicating an isometry

direction. The equations of motion (2.2) and (2.3) in terms of r and ✓ take the form

r
00 +

✓
3�

'
02

2M2
Pl

◆
r
0
�

fr

f

�
✓
02
� r

02�+ Vr

H2f2
= 0 , (2.32)

✓
00 +

✓
3�

'
02

2M2
Pl

◆
✓
0 + 2

fr

f
✓
0
r
0 +

V✓

H2f2
= 0 , (2.33)

where primes denote e-fold derivatives, and (2.4) reduces to '
02 = f

2(r)(r02 + ✓
02).

Inflationary Solutions

We now consider the possible inflationary solutions to (2.32) and (2.33).

1. Saxion inflation. Single field saxion inflation can occur for ✓
0
' 0, with ✓ fixed

at ✓0 such that V✓(r, ✓0) = 0 8 r. In this case (2.33) is automatically satisfied,

while (2.32) admits slow-roll solutions given a suitable potential. An example in

supergravity is discussed in [35, 36].

2. Axion inflation. A more interesting possibility occurs for solutions with r
0
' 0 5. In

this case, imposing slow-roll in ✓ on the equations of motion yields:

�
fr

f
✓
02 +

Vr

H2f2
= 0 , (2.34)

(3� ✏) ✓0 +
V✓

H2f2
= 0 . (2.35)

4
Note that this metric can be written in several other equivalent forms by suitable redefinition of the

field r:

L� � �1

2

⇥
(@R)

2
+ f2

(R)(@✓)2
⇤

(2.28)

� �f2
(⇢)
2

⇥
(@⇢)2 + ⇢2(@✓)2

⇤
. (2.29)

Hence, we focus on (2.31) and transform to either (2.28) or (2.29) by a simple redefinition of the radial

coordinate. Note further that in some cases [9], the scalar metric allegedly depends on both scalar fields.

However, it only depends on a single combination of them:

gab = f(�,�)diag(1, 1) =
1

1� (�2 + �2)
diag(1, 1) . (2.30)

Therefore, it is possible to change coordinates to � = r sin ✓ and � = r cos ✓, such that the metric takes the

form of (2.29), which in turn is equivalent to (2.31).
5
While ✓ = ✓0 (i.e. ✓0 = 0) is always a geodesic, r = r0 (r

0
= 0) is only a geodesic when (fr/f) |r0 = 0.
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๏ A mechanism to generate transient large turns arises 
through transient violations of slow-roll. 

๏ Supergravity scalar metric and potential take form: 

(R = �4)

(S2 = 0)

3.1 Multifield inflation in supergravity

Our starting point is the supergravity Lagrangian:

S =

Z
d
4
x
p
�g


M

2
Pl
R

2
�Ki|̄@µ�

i
@
µ�̄|̄

� V (�k
, �̄k)

�
, (3.1)

where Ki|̄ is the Kähler metric and W is the superpotential. The scalar potential is given

in terms of the Kähler potential K and the superpotential as

V = e
K/M2

Pl(Ki|̄
DiWD|̄W̄ � 3|W |

2
M

�2
Pl ) , (3.2)

where DiW = Wi+KiW . Here �i are complex fields, of which there are generically many.

To study inflation we consider an FLRW 4D spacetime, in which the equations of motion

for the scalars take the form:

�̈i + 3H�̇i + �i
jk�̇

j�̇k +K
i|̄
V|̄ = 0 , (3.3)

with an additional equation of motion for the conjugate field �̄ī. Here the Christo↵el

symbols are computed from the Kähler metric Ki|̄, with only �i
ik and �|̄

ı̄k̄
non-zero.

The simplest setup involves a single superfield comprised of two real scalars, so our

previous discussion on two-field inflation immediately applies. In this case, known as

sgoldstino inflation [39, 40], the inflaton and the sgoldstino are aligned. However, inflation

is generally di�cult to realize with a single superfield [35]. In Appendix A we explore the

possibility of sgoldstino inflation in a simple, analytically solvable model.

The next possibility involves two superfields, in such a way that during inflation, only

two of the real fields evolve. In [34] an interesting strategy to realise single field inflation

with any potential along the direction orthogonal to the sgoldstino [35] was introduced.

The model introduces two superfields, which act as the sgoldstino and inflaton respectively.

It was shown that the three additional scalars can always be stabilised by introducing a

suitable Kähler potential. Moreover, in [41] the sgoldstino was eliminated by introducing

a nilpotent condition to the goldstino superfield. Note that in principle one could com-

bine the real fields from the di↵erent superfields to drive two-field inflation. However,

such a configuration will not give rise to the type of attractors in the previous section.

Consequently, we consider the class of orthogonal inflation models throughout this section.

3.2 Rapid-turn attractor in supergravity

We saw in Section 2.3 that slow-roll in the r
0
⇠ 0 attractor implies ✏T ⌧ 1, which can

be written in terms of V✓ as in (2.35). In supergravity, this is expressed in terms of the

complex fields � and �̄ as

✏T '
M

2
Pl

2

1

2K��̄

✓
i(V� � V�̄)

V

◆2

, (3.4)

where V is the supergravity scalar potential. The ⌘T parameter (2.37) can be written as

⌘T '
M

2
Pl

2K��̄

(2V��̄ � V�� � V�̄�̄)

V
. (3.5)
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(� = ⇢+ i✓)

The Kähler and superpotentials for the axion monodromy model are given by

M
�2

Pl
K = �↵ log[(�+ �̄)/MPl � �SS̄/M

2

Pl
] , (3.2)

W = S(M�+ i�e
�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, the axion, while it depends only on the the real part, Re(�) = ⇢, the saxion.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [47, 48]).

We choose ↵ = 1 as in [50] for which the Kähler metric is K
��̄

= 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M

2

�

✓
⇢
2 + ✓

2 +
2�

M
e
�b⇢


✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e
�b⇢

�◆
, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[50], the modulations are now saxion dependent, and damped by the exponential terms.

The structure of the modulations along the axion depends on the parameters M,�, b, and

the value of the saxion, and it is encoded in the condition:

x [c ey � sinx] = � cosx(1 + y) , (3.5)

where we defined c ⌘ M

� b
, x ⌘ b ✓, y ⌘ b⇢. For y = 0, the potential has an infinite number

of stationary points if c < 1, while for larger values of c there will be a finite number of

stationary points. Once we introduce y, this behaviour depends on the saxion’s value and

the modulations of the axion are strongly damped by the saxion field values (we consider

only positive saxion values). When the axion and saxion are displaced from their minima,

they will evolve traversing the modulations in the potential (3.4). The parameter 1/b acts

as a “decay constant” for the axion at a fixed value of the saxion, while we can define an

instantaneous decay constant as finst =
p
g✓✓/b, [18]. We consider sub-Planckian values of

1/b in agreement with recent quantum gravity constraints on axions [64]. We can then

fix the value of �/M to determine the size of the modulations as the axion-saxion system

evolves. The parameters M and � fix the amplitude of the power spectrum. We do not

make a thorough search in the parameter space in the present work, but make a selection

of parameters that allow us to demonstrate the following aspects:

i. Transient large turning rates can be generated in supergravity with small field space

curvature - fooling supergravity - through transient violations of slow-roll, albeit sus-

taining enough inflation. Moreover, the minimal eigenvalue of the Hessian is large (in

Hubble units) and tachyonic, as conjectured in [17].

ii. Multifield axion monodromy in supergravity naturally gives rise to transient violations

of slow-roll and thus transient large turns, due to modulations of the axion potential

from (leading and subleading) non-perturbative e↵ects. These give rise to distinctive

– 7 –
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[Parameswaran, Tasinato, IZ, ’16;  
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๏ Natural realisation via subleading corrections to 
(supergravity) 2-field axion monodromy inflation.
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๏ A mechanism to generate transient large turns arises 
through transient violations of slow-roll. 

๏ Supergravity scalar metric and potential take form: 

[Bhattacharya, IZ, ’22]

The axion monodromy model that we consider below is particularly interesting since it

leads to growth of perturbations by exploiting the relation between two parameters, ⌘ and

!, via Eqs. (2.8) and (2.9). The transient large values of ⌘, and therefore of ��, repeatedly

induce kicks in the the turning rate, which becomes sharp and large4.

3 Multifield axion monodromy in supergravity

We now construct a supergravity axion monodromy model, which is the two field realisation

of the single field model introduced in [41].

The scalar potential in supergravity is constructed from the Kähler potential, K(�, �̄),

which is a real function of the superfields �, �̄, whose scalar component is the complex field;

and the holomorphic superpotential, W (�), as

V = e
K/M

2
Pl
�
K

i|̄
DiWDjW � 3|W |2M�2

Pl

�
, (3.1)

where DiW = Wi+(Ki/MPl)W , with Wi ⌘ @W

@�i
and Ki|̄ is the Kähler metric, which when

passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.

We use the approach in [47–49] and introduce two “orthogonal” chiral superfields [50],

the goldstino, S, and inflaton superfield, �, where we denote the scalar components of these

superfields with the same letter. We then eliminate the sgoldstino, S by either introducing

suitable Kähler potential corrections to stabilise it [48], or simply by introducing a nilpotent

condition in it, S2 = 0 [49].

The Kähler and superpotentials for the axion monodromy model are given by

M
�2

Pl
K = �↵ log[(�+ �̄)/MPl � �SS̄/M

2

Pl
] , (3.2)

W = S(M�+ i�e
�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K
��̄

= 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M

2

�

✓
⇢
2 + ✓

2 +
2�

M
e
�b⇢


✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e
�b⇢

�◆
, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4
This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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⇥
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๏ Natural realisation via subleading corrections to 
(supergravity) 2-field axion monodromy inflation.
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passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.
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W = S(M�+ i�e
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The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K
��̄

= 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M
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where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4
This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.

We use the approach in [47–49] and introduce two “orthogonal” chiral superfields [50],

the goldstino, S, and inflaton superfield, �, where we denote the scalar components of these

superfields with the same letter. We then eliminate the sgoldstino, S by either introducing

suitable Kähler potential corrections to stabilise it [48], or simply by introducing a nilpotent

condition in it, S2 = 0 [49].

The Kähler and superpotentials for the axion monodromy model are given by

M
�2

Pl
K = �↵ log[(�+ �̄)/MPl � �SS̄/M

2

Pl
] , (3.2)

W = S(M�+ i�e
�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K
��̄

= 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M

2

�

✓
⇢
2 + ✓

2 +
2�

M
e
�b⇢


✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e
�b⇢

�◆
, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4
This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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Figure 3: Variation of the slow-roll parameters for ✏, ⌘ and the dimensionless turning

rate ! = ⌦/H as functions of N . In the plots of ⌘ and !, the dashed lines signify the

boundaries 1,�1. The gray dashed horizontal line signifies the ultra slow-roll limit ⌘ = �6

in the ⌘-plot. The blue vertical lines correspond to Npivot. All the curves here correspond

to the evolution for the parameters’ set in Table 1. Magenta horizontal lines in each plot

denote the periodicity of the oscillations.

oscillations influence the oscillations in the power spectra as we see in the next section.

4 Cosmological perturbations

The linear perturbations in multifield inflation can be neatly described decomposing them

in terms of adiabatic and entropic modes, QT , QN , respectively, defined as the projections of

the field fluctuations Qa in spatially flat gauge [65–68]. The equations of motion describing

the dynamics of the primordial linear perturbations about the inflationary background are

given by [65, 67, 68]:

Q̈T + 3HQ̇T +

✓
k
2

a2
+m

2

T

◆
QT = (2!HQN )˙�

 
Ḣ

H
+

VT

'̇

!
2!HQN , (4.1)

Q̈N + 3HQ̇N +

✓
k
2

a2
+m

2

N

◆
QN = �2!'̇Ṙ (4.2)

where QT = TiQ
i, QN = NiQ

i, Qi are the field fluctuations in spatially flat gauge, R
is the comoving curvature perturbation directly proportional to the adiabatic fluctuation
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๏ A mechanism to generate transient large turns arises 
through transient violations of slow-roll. 

The axion monodromy model that we consider below is particularly interesting since it

leads to growth of perturbations by exploiting the relation between two parameters, ⌘ and

!, via Eqs. (2.8) and (2.9). The transient large values of ⌘, and therefore of ��, repeatedly

induce kicks in the the turning rate, which becomes sharp and large4.

3 Multifield axion monodromy in supergravity

We now construct a supergravity axion monodromy model, which is the two field realisation

of the single field model introduced in [41].

The scalar potential in supergravity is constructed from the Kähler potential, K(�, �̄),

which is a real function of the superfields �, �̄, whose scalar component is the complex field;

and the holomorphic superpotential, W (�), as

V = e
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where DiW = Wi+(Ki/MPl)W , with Wi ⌘ @W
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and Ki|̄ is the Kähler metric, which when

passing to real coordinates, can be identified with the field space metric introduced in (2.1)

as 2Ki|̄ = gab.

We use the approach in [47–49] and introduce two “orthogonal” chiral superfields [50],

the goldstino, S, and inflaton superfield, �, where we denote the scalar components of these

superfields with the same letter. We then eliminate the sgoldstino, S by either introducing

suitable Kähler potential corrections to stabilise it [48], or simply by introducing a nilpotent

condition in it, S2 = 0 [49].

The Kähler and superpotentials for the axion monodromy model are given by

M
�2
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K = �↵ log[(�+ �̄)/MPl � �SS̄/M

2
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] , (3.2)

W = S(M�+ i�e
�b�) . (3.3)

The Kähler potential is independent of the imaginary part of the inflaton superfield,

Im(�) = ✓, namely the axion, while it depends only on the saxion, the real part, Re(�) = ⇢.

The shift symmetry of the axion is broken by the non-perturbative term in the superpo-

tential, as well as at tree-level by the linear term. In a string theory set-up, the inflaton

could be identified with a complex structure modulus, with the fluxes breaking the shift

symmetry at tree-level (see for example [38, 39]).

We choose ↵ = 1 as in [41] for which the Kähler metric is K
��̄

= 1/(�+ �̄)2 and thus

the field space curvature is R = �4. The scalar potential becomes:

V =
M

2

�
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2 + ✓

2 +
2�
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e
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✓ cos (b ✓) + ⇢ sin (b ✓) +

�

2M
e
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, (3.4)

where we used that � = ⇢+i✓. In contrast to the case when the saxion ⇢ has been stabilised

[41], the modulations are now saxion dependent, and damped by the exponential terms.

4
This scenario is a combination of more complicated versions of the two types of features presented

in [46], as we discuss later.
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in the ⌘-plot. The blue vertical lines correspond to Npivot. All the curves here correspond

to the evolution for the parameters’ set in Table 1. Magenta horizontal lines in each plot

denote the periodicity of the oscillations.

oscillations influence the oscillations in the power spectra as we see in the next section.

4 Cosmological perturbations

The linear perturbations in multifield inflation can be neatly described decomposing them

in terms of adiabatic and entropic modes, QT , QN , respectively, defined as the projections of

the field fluctuations Qa in spatially flat gauge [65–68]. The equations of motion describing

the dynamics of the primordial linear perturbations about the inflationary background are

given by [65, 67, 68]:

Q̈T + 3HQ̇T +

✓
k
2

a2
+m

2

T

◆
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where QT = TiQ
i, QN = NiQ

i, Qi are the field fluctuations in spatially flat gauge, R
is the comoving curvature perturbation directly proportional to the adiabatic fluctuation
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๏ Large enhancement of adiabatic spectrum at small scales 
due to combined oscillatory effects

POWER SPECTRUM
[Bhattacharya, IZ, ’22]

M �/M b ⇢ini ✓ini Ninf r V
1/4

inf

2.52⇥ 10�6 60 50 0.250 4.20 64.77 0.010 0.0029

2.73⇥ 10�6 70 50 0.250 4.20 62.32 0.016 0.0030

2.15⇥ 10�6 80 50 0.245 4.20 59.48 0.018 0.0027

6.41⇥ 10�7 90 50 0.250 4.20 57.49 0.020 0.0015

1.10⇥ 10�7 100 50 0.250 4.20 56.07 0.022 0.0006

1.25⇥ 10�8 110 50 0.250 4.20 55.06 0.024 0.0002

1.60⇥ 10�6 80 40 0.250 4.50 63.63 0.011 0.0026

1.60⇥ 10�6 80 35 0.400 5.50 56.99 0.012 0.0026

Table 2: Selection of parameter values in Planck units (except �, which is dimensionless).

We consider � = 1 for all of these sets and fix the CMB normalisation by tuning M only.

The number of e-folds from the horizon exit of the pivot scale to the end of inflation is also

indicated as Ninf = Nend �Npivot.
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Figure 6: Adiabatic power spectra for the selection of parameters given in Table 2 com-

puted using the code PyTransport. The left panel shows the variation of PR(k) for di↵erent

values of �/M , with fixed b = 50. The right panel shows PR(k) for a fixed �/M = 80 with

varying b.

The e↵ect of decreasing “periodicity” in number of e-folds is clearly inherited in PR(k),

however, the rate of decrease may not follow the same pattern as the background pa-

rameters due to the combined contribution of the background e↵ects towards the scalar

perturbations.

It is interesting to note that for the range in �/M considered here, the peak position

kp is maximum for �/M = 80. For �/M � 80, the dependence of kp on �/M seems to

be mild (left panel of Fig. 6), whereas a stronger dependence of kp on the variation of b

can be seen in the right panel of Fig. 6. The mechanism of adiabatic and isocurvature

fluctuations sourcing each other is such that the isocurvature power spectra can be large

once the growth in curvature perturbations start to set in. However, the isocurvature

constraint at CMB scales is checked to be satisfied for each case.

It can be seen from the left panel of Fig. 6 that PR(k) has blue-tilt immediately after
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puted using the code PyTransport. The left panel shows the variation of PR(k) for di↵erent

values of �/M , with fixed b = 50. The right panel shows PR(k) for a fixed �/M = 80 with

varying b.

The e↵ect of decreasing “periodicity” in number of e-folds is clearly inherited in PR(k),

however, the rate of decrease may not follow the same pattern as the background pa-

rameters due to the combined contribution of the background e↵ects towards the scalar

perturbations.

It is interesting to note that for the range in �/M considered here, the peak position

kp is maximum for �/M = 80. For �/M � 80, the dependence of kp on �/M seems to

be mild (left panel of Fig. 6), whereas a stronger dependence of kp on the variation of b

can be seen in the right panel of Fig. 6. The mechanism of adiabatic and isocurvature

fluctuations sourcing each other is such that the isocurvature power spectra can be large

once the growth in curvature perturbations start to set in. However, the isocurvature

constraint at CMB scales is checked to be satisfied for each case.

It can be seen from the left panel of Fig. 6 that PR(k) has blue-tilt immediately after
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 [Computed using PyTransport: Mulryne, Ronayne, ’16]

(� = 1)

out for 55� 65 of e-folds; (ii) the scalar spectral index ns and the tensor-to-scalar ratio r

at CMB pivot scale belong to the observationally allowed range; (iii) PR(k) is enhanced at

small scales with oscillatory features which, for suitable choice of parameters, can lead to

interesting outcomes for PBH and GWs. We elaborate these points in detail in the next

sections with various values of the control parameters �/M and b.

4.1 Adiabatic power spectrum in multifield axion monodromy

The amplitude of PR(k) is controlled by an overall parameter M2
/�, whereas the param-

eters �/M and b determine the oscillatory profile. Interestingly, due to the presence of

multiple oscillations in the potential itself for viable parameter combinations, the initial

field values also influence slightly the dynamics of inflation. This is due to the fact that

for some initial values of ⇢ and ✓, one or both of the fields encounter local minima, which

makes it di�cult to execute slow-roll along that direction. In Table 2 we show a suitable

set of the parameters and initial conditions used to compute PR(k) for the supergravity

axion monodromy model described above. The perturbation equations (4.1) and (4.2) are

solved with the transport code PyTransport6 [67] to evaluate PR(k) for each case shown

in Fig. 6. For a given set of initial values ⇢i, ✓i and the parameters �/M and b, the pivot is

determined as the point at which the scalar spectral index ns matches the constraint given

by Planck 2018 [1]: ns = 0.9649 ± 0.0042 at 68% confidence limit. From the penultimate

column of Table 2, we see that the tensor-to-scalar ratio r is within the latest bound by

BKPlanck 2020 [2], which is r < 0.036 at 95% confidence limit. Notice that the values for

r do not correspond to either a �
2-like inflation nor natural inflation as the e↵ective decay

constants for the examples in Table 2 are of order fe↵ . 10�1
MPl. In other words, similar

to the modulated single field case discussed in [41], the non-perturbative subleading cor-

rections change the background evolution, as well as the cosmological predictions. Finally,

the parameter M
2
/� can be determined by matching with the pivot amplitude given by

Planck 2018.

The parameters �/M and b influence the oscillations in the background dynamics as

well as the turns in the field space. Therefore, the position of the peak, kp, and the

amplitude at the peak PR(kp) also depend on these parameters in a complex manner. The

enhancement in PR(k) at small scales can lead to interesting phenomenological implications

which we discuss in the next section. For all the examples in Table 2, c ⌧ 1, which leads

to a large number of stationary points in the potential for ⇢ = ⇢min.

6
Details about the PyTransport code can be found here.
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๏ Non-trivial PBHs mass spectrum 
with multiple peaks. 

๏ Lead to abundance of PBHs in 
narrow mass ranges, keeping 
the total abundance small. 

17



INDUCED GRAVITATIONAL WAVES

18

[Bhattacharya, IZ, ’22]

W
(2
)

G
W

h
2

f (Hz)

10�25

10�20

10�15

10�10

10�5

10�10 10�8 10�6 10�4 10�2 100 102 104 106

aL
IG

O

LISA

eLISA

BBO

DEC
IG

O

IP
TA

SK
A

ET
BBN Bound

W
(2
)

G
W

h
2

f (Hz)

10�25

10�20

10�15

10�10

10�5

10�10 10�8 10�6 10�4 10�2 100 102 104 106

aL
IG

O

LISA

eLISA

BBO

DEC
IG

O

IP
TA

SK
A

ET
BBN Bound

Figure 8: GW spectra for di↵erent choices of parameters given in Table 2, where the color

schemes are same as in Fig. 6. The left panel shows the variation of ⌦(2)

GW
h
2 for di↵erent

values of �/M , with fixed b = 50. The right panel shows ⌦(2)

GW
h
2 for a fixed �/M = 80

with varying b.

The GW spectrum at present time ⌧0 for this secondary GW background is then

⌦(2)

GW
(k, ⌧0) = 1.62⇥ 10�5

⌦rad,0

4.18⇥ 10�5

✓
g⇤(⌧)

106.75

◆✓
gs(⌧)

106.75

◆�4/3

⌦(2)

GW
(k, ⌧), (5.13)

where

⌦(2)

GW
(k, ⌧) =

(k⌧)2

24
Ph(k, ⌧). (5.14)

Due to the form of the kernel given in Eq. (5.12), the induced tensor power spectrum

Ph(k, ⌧) gathers a power (k⌧)�2, therefore, ⌦(2)

GW
(k, ⌧0) is independent of ⌧ . Hence, the full

second order GW can be calculated using Eq. (5.13) once the primordial power spectrum

PR(k) is obtained for the model under consideration. Fig. 8 shows the induced secondary

GW spectra the parameter sets in Table 2 for the supergravity axion monodromy model

considered in this paper.

As expected from the wide enhancement profiles in PR(k), the GW spectra have wide

peak profiles with inherent oscillations. Interestingly, for some of the parameter combi-

nations in Table 2, ⌦(2)

GW
h
2 crosses the sensitivity bounds of more than one GW survey

at various frequencies. For example, the green, orange and red curves in the left panel

of Fig. 8 with �/M � 90 are within the sensitivities of SKA, LISA and DECIGO. The

blue curve with �/M = 80 is within the sensitivity of LISA and DECIGO. The possibility

of simultaneous detection at di↵erent observations is encouraging, since cross-correlation

of between these surveys can put stringent constraints on the model parameters in such

cases, even for non-detection of such GW profiles. Moreover, the non-trivial spectral shape

and amplitude of a the GW of this class of models, may be detectable by LISA [130].

Finally, let us note that despite the wide profile of the GW spectra, the BBN boundR
df

f
⌦GWh

2
< 5.6⇥ 10�6�Ne↵ is satisfied for all of the examples considered here.
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Figure 6: Adiabatic power spectra for the selection of parameters given in Table 2 com-

puted using the code PyTransport. The left panel shows the variation of PR(k) for di↵erent

values of �/M , with fixed b = 50. The right panel shows PR(k) for a fixed �/M = 80 with

varying b.

The e↵ect of decreasing “periodicity” in number of e-folds is clearly inherited in PR(k),

however, the rate of decrease may not follow the same pattern as the background pa-

rameters due to the combined contribution of the background e↵ects towards the scalar

perturbations.

It is interesting to note that for the range in �/M considered here, the peak position

kp is maximum for �/M = 80. For �/M � 80, the dependence of kp on �/M seems to

be mild (left panel of Fig. 6), whereas a stronger dependence of kp on the variation of b

can be seen in the right panel of Fig. 6. The mechanism of adiabatic and isocurvature

fluctuations sourcing each other is such that the isocurvature power spectra can be large

once the growth in curvature perturbations start to set in. However, the isocurvature

constraint at CMB scales is checked to be satisfied for each case.

It can be seen from the left panel of Fig. 6 that PR(k) has blue-tilt immediately after
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๏ Broad and large GW spectrum with characteristic 
modulated shape. Can be probed by multiple future 
surveys together 



SUMMARY PART I 

๏ Transient large turns induced from transient slow-roll 
violations offers a novel mechanism to generate 
strong non-geodesic trajectories with rich testable 
phenomenology: PBHs, SIGWs. 

๏ This mechanism arises naturally in string inflation:  
multi-field axion monodromy inflation. 

๏ Challenges: CMB constraints; embedding in full string 
theory.



• Post-inflationary non-standard cosmologies and 
gravitational waves signatures 

20

POST-INFLATION PERIOD



POST-INFLATIONARY EVOLUTION 

Planck Inflation BBN CMB

1015GeV TeV GeV MeV eV

➠ 𝛬CDM model is relatively well supported by current data. 
However, the physics from reheating to Big-Bang 
Nucleosynthesis (BBN)  remains highly unconstrained.

➠ During such period, the universe may have gone through a 
non-standard period of expansion due to presence of new 
dof’s driving non-standard epochs

➠ Interestingly, a scalar-tensor dominated epoch may rise the 
primordial gravitational wave spectrum to observable levels  
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DS VACUA IN STRING THEORY 
CONFORMAL AND DISFORMAL 
COUPLINGS  

• Bekenstein deduced the most general relation 
compatible with general covariance to be of the 
form:

• In scalar tensor theories, besides a conformal relation 
between two metrics:  

[Bekenstein, ’92]

g̃µ⌫ = C(�)gµ⌫

+D(�)@µ�@⌫�g̃µ⌫ = C(�)gµ⌫

conformal transformation (preserves angles)

disformal transformation (distorts angles)D(�)

C(�)

The first term in (1.1) is the conformal transformation which characterises the Brans-Dicke

class of scalar-tensor theories widely explored in the literature [8–13]. The second term

is the so called disformal coupling, which is generic in extensions of general relativity. In

particular, it arises naturally in D-brane models, as discussed in [6] in a natural model of

coupled dark matter and dark energy. In [7], we studied briefly the e↵ect of turning on the

disformal term besides the conformal one studied in [8] in a phenomenological set-up. In

such case, the functions C and D are in principle independent functions, so long as they

satisfy the causality constraint: C(�) > 0 and C(�) + 2D(�)X > 0, (X = 1
2(@�)

2) [21].

We found however that in order to have a real positive modified expansion rate, H̃, the

conformal and disformal factors need to satisfy a non-trivial relation [7]. Moreover, turning

on a small disformal deformation to the conformal case, the profile of the modified expansion

rate has a similar shape with a comparable enhancement with respect to the standard

expansion rate and a possible re-annihilation phase. The net e↵ect is the possibility to

have larger and smaller annihilation rates for a large range of masses of the DM candidate

for the observed DM content.

In the present work, we study in detail the e↵ects on the expansion rate and the DM

relic abundances of the disformal coupling in (1.1), which arises in the case of matter

localised on D-branes. In this case, the conformal and disformal terms are closely related

and dictated by the underlying theory, for example type IIB flux compactifications in

string theory. The picture we have in mind is the following. After string theory inflation,

reheating takes place giving rise to a thermal universe. At this stage standard model

particles and dark matter should be produced. The SM would arise from stacks of D-

branes at singularities or intersecting at suitable angles [5], while DM particles could arise

from the same or a di↵erent stack of D-branes, which may be moving towards their final

stable positions in the internal six dimensional space before the onset of BBN. From the

end of inflation to BBN, a non-standard cosmological evolution can take place without

spoiling the predictions of BBN. In particular, a change in the expansion rate felt by the

matter particles due to the D-brane conformal and disformal couplings between the scalar

field(s) associated the transverse brane fluctuations and matter fields, associated to the

longitudinal brane fluctuations. As we will see, due to the coupling the expansion rate

will generically be enhanced, allowing for DM annihilation rates larger than the standard

prediction.

In this paper we show for the first time that this enhancement happens due to a purely

disformal contribution or a combination of conformal and disformal terms. The former

case, a disformal enhancement, is particularly interesting as it can be interpreted in terms

of an “unwarped” compactification, which is typical of a large volume compactification of

string theory, needed for perturbative control. When we identify the scale arising from

the disformal coupling with the tension of a moving D3-brane, where matter is localised,

this scale is determined by the string scale and the string coupling. Interestingly, the

modification of the expansion rate can take place at di↵erent temperature scales, depending

on the value of the string scale. When we turn on the conformal coupling, whose geometrical

interpretation is a non-trivial warping, the profile of the modified expansion rate resembles

the disformal example studied in [7], allowing for a re-anihilation phase for some DMmasses

– 3 –

where          satisfy the causality constraintC,D
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• Scalar-tensor theories arise naturally in string theory 
models of cosmology 

• Particularly interesting are those arising in D-brane 
models of cosmology and particle physics:  
The induced metric on the brane is a particular form of 
more general metric introduced by Bekenstein

g̃µ⌫ = C(�)gµ⌫ +D(�)@µ�@⌫�

Longitudinal (matter) and transverse 
(scalar) fluctuations are disformally 
coupled via DBI action. [Dimopoulos, Wills, IZ,’11;  

Koivisto, Wills, IZ ’13] 

[Bekenstein, ’92] 
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• After string inflation & reheating, radiation domination 
follows. 

• Matter lives on a (stack of) D-
brane(s): coupled to brane scalar 
field conformal and disformally via 
induced metric on brane.

• In what follows I describe a field theory picture of the 
modification of expansion rate due to such epoch and 
its implications for the GW spectrum.
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• Consider the following action:

where matter is coupled to      via�

We continue with a phenomenological section ??, which starts examining how the
initial scalar dynamics drives an initial epoch of DBI kination. This phase a↵ects the early
evolution of the Hubble parameter. Consequently, it enhances the size of the inflationary
SGWB spectrum, which acquires a broken power-law profile with a peak amplitude well
within the sensitivity curves of PTA experiments. Interestingly, the characteristic scale
controlling the DBI kination is comparable with the scale of QCD transition. We compare
the profile with recent data from Nanograv collaboration ??.

After examining the consequences of our set-up for GW physics, in section ?? we
discuss how the string-motivated axion potential can drive phases of dark-energy domi-
nation, which follow the previously-described initial phase of kination. The structure of
the axion potential is determined by the isometries of the extra-dimensional space, as
well as non-perturbative e↵ects. It can be su�ciently rich to first drive a phase of early
dark-energy domination – which can address the Hubble tension problem [] – and a late
dark energy epoch, which explains the current acceleration of our universe. Interestingly,
the parameters characterising the system satisfy the swampland criteria and represent an
acceptable set-up for building models of dark energy within string theory (see e.g. [] for
a review).

This framework of early non-standard dynamics can also be probed in terms of relict
DM [] and neutrino energy density. In the Discussion section ?? we speculate...check
Lambiase

3 Our set-up

In this section we discuss the e↵ective action for a string-motivated D-brane system.
It can be described in terms of a scalar-tensor theory with interesting consequences for
cosmology and the physics of gravitational waves. Our scenario is motivated by D-brane
scalar-tensor theories as discussed in [15]: we consider a (stack of) D-brane(s) that moves
along the angular direction of an internal warped compactification. The axion field �

is associated with the position of the brane through the extra-dimensional space. The
system is described by a scalar-tensor theory characterized by disformal couplings of the
scalar to the metric [] and matter fields. The reader interested in more general scenarios –
including conformal couplings between the scalar and the metric – can consult [1,16–18].

The scalar-tensor action to consider is:

Stot = S� + Sm, (3.1)

where

S� =

Z
d
4
x

p
�g

"
R

22
� M

4

r
1 +

(@�)2

M4
+ M

4 � V (�)

#
, (3.2)

Sm = �
Z

d
4
x

p
�g Lm(g̃µ⌫) . (3.3)

2

We continue with a phenomenological section ??, which starts examining how the
initial scalar dynamics drives an initial epoch of DBI kination. This phase a↵ects the early
evolution of the Hubble parameter. Consequently, it enhances the size of the inflationary
SGWB spectrum, which acquires a broken power-law profile with a peak amplitude well
within the sensitivity curves of PTA experiments. Interestingly, the characteristic scale
controlling the DBI kination is comparable with the scale of QCD transition. We compare
the profile with recent data from Nanograv collaboration ??.

After examining the consequences of our set-up for GW physics, in section ?? we
discuss how the string-motivated axion potential can drive phases of dark-energy domi-
nation, which follow the previously-described initial phase of kination. The structure of
the axion potential is determined by the isometries of the extra-dimensional space, as
well as non-perturbative e↵ects. It can be su�ciently rich to first drive a phase of early
dark-energy domination – which can address the Hubble tension problem [] – and a late
dark energy epoch, which explains the current acceleration of our universe. Interestingly,
the parameters characterising the system satisfy the swampland criteria and represent an
acceptable set-up for building models of dark energy within string theory (see e.g. [] for
a review).

This framework of early non-standard dynamics can also be probed in terms of relict
DM [] and neutrino energy density. In the Discussion section ?? we speculate...check
Lambiase

3 Our set-up

In this section we discuss the e↵ective action for a string-motivated D-brane system.
It can be described in terms of a scalar-tensor theory with interesting consequences for
cosmology and the physics of gravitational waves. Our scenario is motivated by D-brane
scalar-tensor theories as discussed in [15]: we consider a (stack of) D-brane(s) that moves
along the angular direction of an internal warped compactification. The axion field �

is associated with the position of the brane through the extra-dimensional space. The
system is described by a scalar-tensor theory characterized by disformal couplings of the
scalar to the metric [] and matter fields. The reader interested in more general scenarios –
including conformal couplings between the scalar and the metric – can consult [1,16–18].

The scalar-tensor action to consider is:

Stot = S� + Sm, (3.1)

where

S� =

Z
d
4
x

p
�g

"
R

22
� M

4

r
1 +

(@�)2

M4
+ M

4 � V (�)

#
, (3.2)

Sm = �
Z

d
4
x

p
�g Lm(g̃µ⌫) . (3.3)

2

We continue with a phenomenological section ??, which starts examining how the
initial scalar dynamics drives an initial epoch of DBI kination. This phase a↵ects the early
evolution of the Hubble parameter. Consequently, it enhances the size of the inflationary
SGWB spectrum, which acquires a broken power-law profile with a peak amplitude well
within the sensitivity curves of PTA experiments. Interestingly, the characteristic scale
controlling the DBI kination is comparable with the scale of QCD transition. We compare
the profile with recent data from Nanograv collaboration ??.

After examining the consequences of our set-up for GW physics, in section ?? we
discuss how the string-motivated axion potential can drive phases of dark-energy domi-
nation, which follow the previously-described initial phase of kination. The structure of
the axion potential is determined by the isometries of the extra-dimensional space, as
well as non-perturbative e↵ects. It can be su�ciently rich to first drive a phase of early
dark-energy domination – which can address the Hubble tension problem [] – and a late
dark energy epoch, which explains the current acceleration of our universe. Interestingly,
the parameters characterising the system satisfy the swampland criteria and represent an
acceptable set-up for building models of dark energy within string theory (see e.g. [] for
a review).

This framework of early non-standard dynamics can also be probed in terms of relict
DM [] and neutrino energy density. In the Discussion section ?? we speculate...check
Lambiase

3 Our set-up

In this section we discuss the e↵ective action for a string-motivated D-brane system.
It can be described in terms of a scalar-tensor theory with interesting consequences for
cosmology and the physics of gravitational waves. Our scenario is motivated by D-brane
scalar-tensor theories as discussed in [15]: we consider a (stack of) D-brane(s) that moves
along the angular direction of an internal warped compactification. The axion field �

is associated with the position of the brane through the extra-dimensional space. The
system is described by a scalar-tensor theory characterized by disformal couplings of the
scalar to the metric [] and matter fields. The reader interested in more general scenarios –
including conformal couplings between the scalar and the metric – can consult [1,16–18].

The scalar-tensor action to consider is:

Stot = S� + Sm, (3.1)

where

S� =

Z
d
4
x

p
�g

"
R

22
� M

4

r
1 +

(@�)2

M4
+ M

4 � V (�)

#
, (3.2)

Sm = �
Z

d
4
x

p
�g Lm(g̃µ⌫) . (3.3)

2


2 = M

�2
pl = 8 ⇡ G, and M is a mass scale entering in the scalar kinetic term, related to

the (possibly warped) tension of the D-brane. Matter fields contained in action (3.3) are
disformally coupled to the metric gµ⌫ entering in eq (??):

g̃µ⌫ = gµ⌫ +
@µ� @⌫�

M4
. (3.4)

We assume that matter is a perfect fluid, characterized by pressure and energy density
only (see [15] for details).

The scalar kinetic terms have the characteristic Dirac-Born-Infeld (DBI) form of D-
brane actions [] Polchinski. The scalar potential V (�) in eq (3.2) contains various contri-
butions, which are periodic functions of the size of the internal angular dimensions. We
focus on the case of a D3-brane fixed at a specific value of the radial component along
the extra dimensions. Its position is also fixed within four internal angular directions,
leaving the object free to move along only one angular direction in the compact space.
The motion of the brane through this angular direction is controlled by an axion field
� which appear in the scalar-tensor actions (??). See e.g. [19] (and [20]) for a scenario
where this idea is explicitly explored to realise natural inflation with D3 and D5 branes
in a warped resolved conifold geometry citation needed to this WRC.

Let us bit more explicit on the structure of the axion potential. The D-brane scalar
potential entering eq (??) acquires the schematic form citation needed:

V (✓) = V̄ (⇢0) + �
�
��(⇢0) + �h(⇢0, ✓)

�
, (3.5)

with ✓ the angular direction along which the D-brane moves, that – upon canonically
normalization – will give rise to the scalar field � appearing in action (??). The quantity
� is a parameter depending on the type of D-brane considered. ⇢ is the radial coordinate
fixed at ⇢ = ⇢0. V̄ and �� represent contributions to the D-brane potential depending
only on the fixed radial coordinate ⇢0. Instead, �h depends on the angular coordinate as
well, being given by [19]

�h(⇢0, ✓, �0) =
1X

l=0

m=lX

m=�l

⇥
alH

A
l (⇢0) + blH

B
l (⇢0)

⇤
Ylm(✓, �0) . (3.6)

The indexes (l, m) denote quantum numbers associated to isometries of the internal ge-
ometry. The specific form of H

A
l , H

B
l is not too important, as they are functions of

the fixed radial D-brane position ⇢0. Considering for definiteness the values (l, m) =
(0, 0), (1, 0), (2, 0), (3, 0), we get 1

�h = A1(⇢0) + A2(⇢0) cos ✓ + A3(⇢0) cos2 ✓ + A4(⇢0) cos3 ✓ . (3.7)

Therefore, the potential acquires the structure

V (✓) = V⇢0(⇢0) + A2(⇢0) cos ✓ + A3(⇢0) cos2 ✓ + A4(⇢0) cos3 ✓ . (3.8)

1In [19, 20], only the independent solutions for (l,m) = (0, 0), (1, 0), were kept, so that �h took the
form �h = A1(⇢0) + A2(⇢0) cos ✓

3

[Koivisto, Wills, IZ, ’14;  
Dutta, Jimenez, IZ, ’16-’17;  

Chowdhury, Tasinato, IZ, ’22-23]

(M = scale, related to brane tension, warping, wrapping, etc)
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where:

COSMOLOGICAL EVOLUTION
In FRW background, evolution equations in Einstein frame (with 
respect to       ) becomegµ⌫

For suitable values of the coe�cients,the potential can be arranged to be

V1(�) = V0ede (1 � cos[ �/f1])
3

, (3.9)

where we express the potential in terms of a canonically normalized angular field �. The
quantity f1 is an axion decay constant: we express it in terms of a dimensionless number,
pulling out a factor of  in eq (3.9). This is the structure of the potential recently
introduced for the so called early dark energy [21, 22] to relax the H0 discrepancy []. We
will discuss this topic in more detail in section ??.

Besides eq (3.9), there may be additional non-perturbative contributions to e↵ective
potential, originating from bulk physics, which generate extra periodic potential terms. if
possible, few extra words would be welcome. We assume that such contributions
are present, and we include an additional term to the total axion potential, as [23, 24]:

V2(�) = V0de(1 � cos[�/f2]) . (3.10)

with f2 an extra dimensionless decay constant. To summarize in what follows we consider
the following total potential for the scalar field

V (�) = V1(�) + V2(�) = V0ede (1 � cos[�/f1])
3 + V0de (1 � cos[�/f2]) . (3.11)

We plug the potential (3.11) in the total action (??), and we study the consequences of
this system for the cosmological evolution of our universe.

Evolution equations

The equations of motion for the scalar and the scale factor in a Friedmann-Lemaitre-
Robertson-Walker metric, as derived from the Einstein-frame action (??), result take the
form [1, 16,17]

H
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where the subindex N indicates derivatives with respect to the number of e-folds dN =
Hdt. For convenience we make use of the dimensionless scalar quantity ' ⌘  �. We
introduce the scalar-dependent Lorentz factor �, the quantity that characterize DBI mod-
els:

�
�2 = 1 � H

2

M42
'
2
N
, (3.13)

4

as well as the combination

B = 1 �
�
2
'
2
N

3 (� + 1)
. (3.14)

Furthermore, we define

� ⌘ V

⇢
(3.15)

as the characteristic quantity that controls the size of the axionic potential term with
respect to the total energy density.

Since in what follows we are interested in comparing the expansion rates between our
modified cosmological evolution and standard ⇤CDM cosmology, we work in the Jordan
frame where energy momentum and entropy are conserved. (See the discussion in [1].)
The energy density, pressure and equation of state result:

⇢̃ = �
�1

⇢, p̃ = � P, w̃ = w �
2
, (3.16)

where the non-tilded quantities are those in the Einstein frame, as appearing in eqs (??).
Moreover, the quantity ⇢̃ =

P
i ⇢̃i, is the total background energy density: the index i runs

over matter, radiation and possibly a cosmological constant, and !̃ takes into account of
the degrees of freedom at a given temperature during cosmic evolution (see e.g. [1]). The
departure from the standard cosmological evolution can thus be parametrized by the ratio
of Hubble parameters in our scalar-tensor gravity, with respect to its value in GR:

H̃

HGR
=

�
3/2(1 + �)1/2

B1/2
. (3.17)

The evolution equations (??) contain several terms that modify the evolution equation
with respect to ⇤CDM. Any early-universe modification from standard evolution should
not occur during or after Big-Bang Nuclosynthesis (BBN), to avoid spoiling its successful
predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
for the universe scale factor concludes before the onset of BBN, i.e. when the universe
temperature reach values around T ⇠ MeV. We will allow, however, for a late scalar-
tensor contribution closely mimicking a cosmological constant, and driving the current
acceleration of our universe. As we can learn from the structure of evolution equations
(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
time evolution of the scalar – when the potential term contributions are negligible – are
associated with the DBI form of its kinetic terms: during this phase, the amplitude of
primordial gravitational waves is enhanced. As the scalar potential V becomes important,
additional interesting consequences occur for cosmology. These topics are the subject of
next section.

2In contrast to the conformal case [4, 12], or for the case of sti↵ equation of state [].
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as the characteristic quantity that controls the size of the axionic potential term with
respect to the total energy density.

Since in what follows we are interested in comparing the expansion rates between our
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The evolution equations (??) contain several terms that modify the evolution equation
with respect to ⇤CDM. Any early-universe modification from standard evolution should
not occur during or after Big-Bang Nuclosynthesis (BBN), to avoid spoiling its successful
predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
for the universe scale factor concludes before the onset of BBN, i.e. when the universe
temperature reach values around T ⇠ MeV. We will allow, however, for a late scalar-
tensor contribution closely mimicking a cosmological constant, and driving the current
acceleration of our universe. As we can learn from the structure of evolution equations
(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
time evolution of the scalar – when the potential term contributions are negligible – are
associated with the DBI form of its kinetic terms: during this phase, the amplitude of
primordial gravitational waves is enhanced. As the scalar potential V becomes important,
additional interesting consequences occur for cosmology. These topics are the subject of
next section.

2In contrast to the conformal case [4, 12], or for the case of sti↵ equation of state [].

5

(    takes into account departures from 1/3 when a species 
becomes non-relativistic)
!
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where:

COSMOLOGICAL EVOLUTION
In FRW background, evolution equations in Einstein frame (with 
respect to       ) becomegµ⌫
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Furthermore, we define
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as the characteristic quantity that controls the size of the axionic potential term with
respect to the total energy density.

Since in what follows we are interested in comparing the expansion rates between our
modified cosmological evolution and standard ⇤CDM cosmology, we work in the Jordan
frame where energy momentum and entropy are conserved. (See the discussion in [1].)
The energy density, pressure and equation of state result:
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where the non-tilded quantities are those in the Einstein frame, as appearing in eqs (??).
Moreover, the quantity ⇢̃ =

P
i ⇢̃i, is the total background energy density: the index i runs

over matter, radiation and possibly a cosmological constant, and !̃ takes into account of
the degrees of freedom at a given temperature during cosmic evolution (see e.g. [1]). The
departure from the standard cosmological evolution can thus be parametrized by the ratio
of Hubble parameters in our scalar-tensor gravity, with respect to its value in GR:
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The evolution equations (??) contain several terms that modify the evolution equation
with respect to ⇤CDM. Any early-universe modification from standard evolution should
not occur during or after Big-Bang Nuclosynthesis (BBN), to avoid spoiling its successful
predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
for the universe scale factor concludes before the onset of BBN, i.e. when the universe
temperature reach values around T ⇠ MeV. We will allow, however, for a late scalar-
tensor contribution closely mimicking a cosmological constant, and driving the current
acceleration of our universe. As we can learn from the structure of evolution equations
(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
time evolution of the scalar – when the potential term contributions are negligible – are
associated with the DBI form of its kinetic terms: during this phase, the amplitude of
primordial gravitational waves is enhanced. As the scalar potential V becomes important,
additional interesting consequences occur for cosmology. These topics are the subject of
next section.

2In contrast to the conformal case [4, 12], or for the case of sti↵ equation of state [].
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Figure 4: Evolution of !̃ in (3.9) as function of temperature during the radiation domi-

nated era.

[24–26] indicate that ↵0 should be very small, with values ↵2
0 . 10�5, while binary pulsar

observations impose that ↵
0
0 & �4.5. The last constraint applies to the the speed-up

factor ⇠, which has to be of order 1 before the onset of BBN. In our examples we have

↵
2
0 ' 2⇥ 10�5, ↵0

0 > 0 and ⇠ ⇡ 1.05.

3.1.3 Impact on relic abundances

We are now ready to discuss the impact of the modified expansion rates on the relic abun-

dance of dark matter species. For a dark matter species � with mass m� and annihilation

cross-section h�vi, where v is the relative velocity, the dark matter number density n�

evolves according to the Boltzmann equation

dn�

dt
= �3H̃n� � h�vi

�
n
2
� � (neq

� )2
�
, (3.15)

where, as we have discussed above, the relevant expansion rate is the Jordan frame one,

which can give interesting e↵ects due to the presence of the scalar field. Further neq
� is the

equilibrium number density. We can rewrite this equation in terms of x = m�/T̃

dY

dx
= �

s̃h�vi

xH̃

�
Y

2
� Y

2
eq

�
. (3.16)

where Y = n�

s̃
, s̃ = 2⇡

45 gs(T̃ )T̃
3. Numerical solutions to the Boltzmann equation (3.16) with

the modified expansion rate H̃ were found for dark matter particles with masses ranging

from 5 GeV to 1000 GeV. For instance, we show solutions in figures 5 and 6 for two di↵erent

masses. As we can see from (3.16), the annihilation cross-section influences the evolution

of the abundance Y . The current value of Y determines the present dark matter content of

the universe. This can be seen clearly by recalling the current value of the energy density

parameter ⌦0 = ⇢0
⇢c,0

= mY0 s0
⇢c,0

, where ⇢c,0 and s0 are the well-known current values of the

critical energy density and the entropy density of the universe, respectively. So, for each
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where:

COSMOLOGICAL EVOLUTION
In FRW background, evolution equations in Einstein frame (with 
respect to       ) becomegµ⌫
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potential, originating from bulk physics, which generate extra periodic potential terms. if
possible, few extra words would be welcome. We assume that such contributions
are present, and we include an additional term to the total axion potential, as [23, 24]:
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with f2 an extra dimensionless decay constant. To summarize in what follows we consider
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We plug the potential (3.11) in the total action (??), and we study the consequences of
this system for the cosmological evolution of our universe.
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where the subindex N indicates derivatives with respect to the number of e-folds dN =
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Furthermore, we define
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as the characteristic quantity that controls the size of the axionic potential term with
respect to the total energy density.

Since in what follows we are interested in comparing the expansion rates between our
modified cosmological evolution and standard ⇤CDM cosmology, we work in the Jordan
frame where energy momentum and entropy are conserved. (See the discussion in [1].)
The energy density, pressure and equation of state result:
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where the non-tilded quantities are those in the Einstein frame, as appearing in eqs (??).
Moreover, the quantity ⇢̃ =

P
i ⇢̃i, is the total background energy density: the index i runs

over matter, radiation and possibly a cosmological constant, and !̃ takes into account of
the degrees of freedom at a given temperature during cosmic evolution (see e.g. [1]). The
departure from the standard cosmological evolution can thus be parametrized by the ratio
of Hubble parameters in our scalar-tensor gravity, with respect to its value in GR:
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The evolution equations (??) contain several terms that modify the evolution equation
with respect to ⇤CDM. Any early-universe modification from standard evolution should
not occur during or after Big-Bang Nuclosynthesis (BBN), to avoid spoiling its successful
predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
for the universe scale factor concludes before the onset of BBN, i.e. when the universe
temperature reach values around T ⇠ MeV. We will allow, however, for a late scalar-
tensor contribution closely mimicking a cosmological constant, and driving the current
acceleration of our universe. As we can learn from the structure of evolution equations
(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
time evolution of the scalar – when the potential term contributions are negligible – are
associated with the DBI form of its kinetic terms: during this phase, the amplitude of
primordial gravitational waves is enhanced. As the scalar potential V becomes important,
additional interesting consequences occur for cosmology. These topics are the subject of
next section.

2In contrast to the conformal case [4, 12], or for the case of sti↵ equation of state [].
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predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
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(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
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Modified expansion rate is given by the disformal or 
Jordan frame Hubble parameter whose deviation from 
standard evolution is given by 

BBN imposes a strong constraint on this modification: 

⇠ ! 1

MODIFIED EXPANSION RATE

with � given by:

�
�2 = 1�
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D⇢

C
'
02
. (2.41)

From (2.40) we see that the conformal case is recovered for D = 0, when the second

line vanishes. Moreover, the disformal piece appears always together with derivatives of

the scalar field, as expected and also nontrivially coupled to the energy density. This

complicates considerably the analysis of the disformal case, as we will see below.

2.3 Modified expansion rate

The e↵ect of the expansion rate during the early time evolution due to the presence of a

scalar field can be extracted from the Hubble parameter evolution in the disformal frame

defined as:

H̃ = d(log ã)/d⌧̃ ,

which can be written using (2.29) as:

H̃ =
H�

C1/2

�
1 + ↵(')'0�

, (2.42)

where remember that � depends onH (or ⇢) as seen from (2.37), while in the pure conformal

case D = 0 and � = 1. Note that in principle, the factor (1 + ↵(')'0) can be positive or

negative, indicating an expansion or contraction modified rate. We stick to positive definite

values for this factor and therefore only modified expansion rates, though in principle, one

could have a brief contraction period during the early universe evolution, before the onset of

BBN3. Moreover, notice that while H̃ can grow during the cosmological evolution, the null

energy condition (NEC) is not violated. This is because the Einstein frame expansion rate

H is dictated by the energy density ⇢ and pressure p, which obey the NEC and therefore

Ḣ < 0 during the whole evolution, as it should (see for example [19]).

We further want to relate the modified expansion rate to the expected expansion rate

in general relativity (GR), that is:

H
2
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2
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3
⇢̃ . (2.43)

We can do this be using the Friedmann equation (2.32) and the relation between the energy

densities (2.19) to write

�
�1

H
2 =


2


2
GR

C
2 (1 + �)

B
H

2
GR . (2.44)

Using the definition of � (see (2.37)) into this equation, one finds a cubic equation for

H
2 in terms of all the other parameters. The real positive solution to that equation can

then be replaced into (2.42) to find the modified expansion rate H̃, which will thus be a

complicated function of HGR as we now see. The cubic equation for H takes the form:

d1H
6
�H

4 + d
2
2 = 0 , (2.45)

3
See [18] for a review on scenarios with a possible contraction phase in the early universe.
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with respect to ⇤CDM. Any early-universe modification from standard evolution should
not occur during or after Big-Bang Nuclosynthesis (BBN), to avoid spoiling its successful
predictions. Hence from now on we require that any deviation from a ⇤CDM evolution
for the universe scale factor concludes before the onset of BBN, i.e. when the universe
temperature reach values around T ⇠ MeV. We will allow, however, for a late scalar-
tensor contribution closely mimicking a cosmological constant, and driving the current
acceleration of our universe. As we can learn from the structure of evolution equations
(??), any departures of 1/3 on the equation of state, do not give a noteworthy e↵ect in
the scalar field’s evolution2. In fact, in our case the most important e↵ects in the early
time evolution of the scalar – when the potential term contributions are negligible – are
associated with the DBI form of its kinetic terms: during this phase, the amplitude of
primordial gravitational waves is enhanced. As the scalar potential V becomes important,
additional interesting consequences occur for cosmology. These topics are the subject of
next section.

2In contrast to the conformal case [4, 12], or for the case of sti↵ equation of state [].
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at the onset of BBN.

27



During the early evolution, the potential term can be ignored, 
dynamics fully dictated by DBI kinetic (M)           . 

EARLY UNIVERSE EVOLUTION

Figure 1: Left panel: Evolution of the Hubble parameter in our scalar-tensor set-up (red
line) and in ⇤CDM case (blue line), plotted as functions of temperature. Right panel:

Evolution of the Lorentz factor � starting from the initial conditions in Table 1.

4 Phenomenology of the scalar-tensor theory

The cosmological evolution of the axionic field � has several interesting phenomenological
consequences. We assume that the initial conditions for � are set by cosmic inflation. We
select them such that the scalar has an initial kinetic-driven dynamics, able to enhance
the spectrum of gravitational waves – see section ??. The DBI-kinetic phase is followed
by a potential-driven phase, during which the scalar dynamics source phases of early and
late dark energy domination – see section ??.

4.1 Enhancing the gravitational wave signal at PTA scales

We show how an early modification of standard evolution associated with the DBI-type
action (??) amplifies the amplitude of inflationary gravitational waves at PTA scales. We
exploit the fact that this quantity is a↵ected by an early-time non-standard cosmological
evolution. The scalar-tensor dynamics, as controlled by the evolution equations of section
??, starts after inflation ends. We assume that initial conditions are chosen such that
initially the scalar is driven by the DBI kinetic terms only, as appearing in action (??),
with negligible contribution from the potential terms (see e.g. [1,18,19]). The parameter
controlling the kinetic part of the action is M , whose value can chosen together with the
initial conditions for Hi, ', '

i

N
– the latter entering in the initial value �i for the DBI

parameter of eq (??). The initial value for H is determined as described in Appendix A,
starting from an initial value for the DBI parameter �i of order O(1). Once '

i

N
is fixed,

as well as initial temperature Ti – associated with the initial value of the scale factor –
the value of M is bounded from below by requiring not to spoil the predictions of BBN.
Assuming entropy is conserved, the relation between the universe temperature T and the

6
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[ Dutta, Jimenex, IZ, ’16-17; Chowdhury, Tasinato, IZ, ’22-23]

evolution. The scalar-tensor dynamics, as controlled by the evolution equations of section
2, starts soon after inflation ends. We assume that initial conditions are chosen such that
initially the scalar is driven by the DBI kinetic terms only, as appearing in action (2.2),
with negligible contribution from the potential terms (see e.g. [14–16]). The parameter
controlling the kinetic part of the action is M , whose value can chosen together with the
initial conditions for Hi, 'i, '

i

N
– the last quantity entering in the initial value �i for the

DBI Lorentz parameter of eq (2.13). The initial value for H is determined as described in
Appendix A, starting from an initial value for the DBI parameter �i of order O(1). Once
'
i

N
is fixed along with an initial temperature Ti – which is associated with the initial

value of the scale factor – the value of M is bounded from below by requiring not to spoil
the predictions of BBN. Assuming that entropy is conserved, the relation between the
temperature of the universe T and the scale factor a is

a

a0
=

✓
g⇤s,0

g⇤s

◆1/3
T0

T
, (3.1)

where the index 0 indicates quantities evaluated today.

'i '
i

N
Hi Ti M

0.2 5 ⇥ 10�7 3.66127 ⇥ 10�13 GeV 499.8043 GeV 930 MeV

Table 1: Initial conditions and disformal scale (recall that ' is dimensionless and measured in
Planck units).

We select initial conditions as in Table 1. The initial conditions for ' and the Hubble
parameter are chosen such as to lead to an initial steady growth of the DBI Lorentz
factor � of eq (2.13), and a transitory large deviation of the Hubble parameter from its
GR value. See Fig 1. We select the parameter M demanding that the scalar evolution
does not interfere with BBN, which happens around 1 MeV – see Fig 1. The value of M

turns out to be of the order of the QCD scale of 170 MeV. Recall that we work in the
Jordan frame – see section 2 – hence with tilded quantities.

The initial enhancement of the Lorentz factor, as well as the early modifications of
the Hubble parameter, leads to an amplification of inflationary gravitational waves. The
fractional energy density of primordial gravitational waves measured today is given by
(we follow the treatments in [46–49]):

⌦̃0
GW(k) ⌘

1

⇢0
c

d ⇢̃
0
GW(k)

d ln k
(3.2)

'
1

24
PT (k)

✓
ãhc

ã0

◆4
 

H̃hc

H̃0

!2

(3.3)

where PT is the primordial inflationary tensor spectrum, and the su�x ‘hc’ indicates
horizon crossing time for the mode k. The quantity PT is

PT (k) =
2 H

2

⇡2 M
2
Pl

���
k=aH

, (3.4)
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THE RISE OF THE PRIMORDIAL SPECTRUM
[ Chowdhury, Tasinato, IZ, ’22,23]

The fractional energy density of primordial gravitational 
waves measured today can be written as

Where the primordial spectrum is set by

scale factor a is
a

a0
=

✓
g⇤s,0

g⇤s

◆1/3
T0

T
, (4.1)

where the index 0 indicates quantities evaluated today.

'i '
i

N
Hi Ti M

0.2 5 ⇥ 10�7 3.78162 ⇥ 10�13 GeV 499.8043 GeV 950 MeV

Table 1: Initial conditions and disformal scale (recall that ' is dimensionless and measured in
Planck units).

We select initial conditions as in Table 1 so that M is of the same order as the QCD
scale of 170MeV. The initial conditions for ' and the Hubble parameter are selected such
to lead to a initial steady growth of the DBI Lorentz factor � of eq (??), and a transitory
large deviation of the Hubble parameter from the GR value. See Fig 1. Recall we work in
the Jordan frame – see section ?? – hence with tilded quantities. All modifications from
standard evolution vanish before the universe temperature reach the values of around one
MeV – see again Fig 1 – corresponding to the onset of BBN.

The initial enhancement of the Lorentz factor, as well as the early modifications of
the Hubble parameter, leads to an enhancement of inflationary gravitational waves. The
fractional energy density of primordial gravitational waves measured today is given by []

⌦̃0
GW(k) ⌘

1

⇢0
c

d ⇢
0
GW(k)

d ln k
(4.2)

'
1

24
PT (k)

✓
ãhc

ã0

◆4
 

H̃hc

H̃0

!2

(4.3)

where PT is the primordial inflationary tensor spectrum, and the su�x ‘hc’ indicates
horizon crossing time for the mode k. The quantity PT is

PT (k) =
2 H

2

⇡2 M
2
Pl

���
k=aH

, (4.4)

and we take its amplitude at CMB scales to be PT = rAS, with AS = 2.1 ⇥ 10�9. For
simplicity we assume that r saturates the current upper bound r = 0.036 furnished by
the BICEP/Keck collaboration [].

Formula (4.3) indicates that any deviation of the cosmological evolution from standard
⇤CDM can change the predictions for ⌦̃0

GW(k), and possibly enhance the spectrum of
inflationary GW. In fact, we make use of the evolution equations (??), and re-express
⌦̃0

GW as

h
2 ⌦̃0

GW =

✓
PT

24

◆ ✓
ã

ã0

◆4
�
3
H

2
GR

B (H0/h)2
. (4.5)

The quantity B is given in eq (??), � in eq (??), and HGR corresponds to the Hubble
parameter in absence of scalar field contributions. Expression (4.5) shows that an en-
hancement of the DBI Lorentz factor �, and a modifications of the Hubble parameter

7

h
2⌦0

GW =

✓
PT

24

◆✓
a

a0

◆4
�
3
H

2
GR

B(H0/h)2

The initial enhancement of the Hubble parameter, leads 
to an enhancement of the primordial gravitational wave 
spectrum.
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The fractional energy density of primordial gravitational 
waves measured today can be written as

and we take its amplitude at CMB scales to be PT = rAS, with AS = 2.1 ⇥ 10�9. For
simplicity we assume that r saturates the current upper bound r = 0.036 provided by the
BICEP/Keck collaboration [50].

Formula (3.3) indicates that any deviation of the cosmological evolution from standard
⇤CDM can change the predictions for ⌦̃0

GW(k), and possibly amplifies the spectrum of
inflationary GW. In fact, we make use of the evolution equations (2.12a)-(2.12c), and
re-express ⌦̃0

GW as

h
2 ⌦̃0

GW =

✓
PT

24

◆ ✓
ã

ã0

◆4
�
3
H

2
GR

B (H0/h)2
. (3.5)

The quantity � is given in eq (2.13), while B in eq (2.14). HGR corresponds to the GR
Hubble parameter in absence of scalar field contributions. Expression (3.5) shows that an
enhancement of the DBI Lorentz factor �, and a modification of the Hubble parameter
with respect its GR value influence the scale-dependence of ⌦0

GW. We can express this
quantity as function of frequency f = 2⇡ k a0, through the formula [47, 48,51]

f = 2.41473 ⇥ 1023
✓

T0

Thc

◆ ✓
g⇤s,0

g⇤s,hc

◆1/3
s

8⇡⇢hc

3M2
Pl

Hz , (3.6)

where recall that hc is the horizon crossing scale of the mode k.
We represent in Fig 2 the GW spectrum obtained by numerically solving the evolution

equations of section 2, and plugging the results in eq (3.5). The initial conditions in Table
1 lead to a rapid, transient increase of �, and allow us to amplify the GW signal at PTA
frequencies. In fact, the energy density associated with primordial gravitational waves is
raised by several orders of magnitude with respect to its standard value, for a frequency
around the 10�9

� 10�8 Hz band that is probed by PTA experiments. The frequency
profile of the spectrum acquires a broken power-law shape. It initially raises as f

2, to
then grow as f

5 up to the peak, and then decreases as f
�3. The peak amplitude is of

the same order as the value detected by the NANOGrav collaboration [17]. However, the
NANOGrav value we compare with is based on a fiducial power-law model, and a more
sophisticated data analysis would be needed for comparing our broken power-law shape
with the amplitude obtained by PTA data. In fact, [17] also provides a brief analysis
of broken power-law models, providing the best-fit value for the break of the frequency
profile: our result is consistent with their value.

Figure 2 also contains the sensitivity curves for the NANOGrav experiment, as well as
other detectors for reference. The sensitivity curves are built with the broken power-law
sensitivity (BPLS) curve technique, introduced in [16] as an extension of the traditional
power-law sensitivity curves of [52]. (Our definition and methods to obtain BPLS is
slightly di↵erent from [53].) The BPLS curve allows one to visually realise whether a
broken power-law signal can be detected by a given experiment: our profile for ⌦̃GWh

2

enters into the sensitivity curve of NANOGrav, showing that the scalar-tensor theory we
described allows us to amplify the primordial spectrum of inflationary tensor fluctuations
at a level detectable by PTA experiments. We conclude that our signal might contribute
to the stochastic GW background recently detected by PTA experiments [17–20].

8

h
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24
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a
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◆4
�
3
H

2
GR

B(H0/h)2

Using entropy conservation we can express it in terms of 
frequency: 

evolution. The scalar-tensor dynamics, as controlled by the evolution equations of section
2, starts soon after inflation ends. We assume that initial conditions are chosen such that
initially the scalar is driven by the DBI kinetic terms only, as appearing in action (2.2),
with negligible contribution from the potential terms (see e.g. [14–16]). The parameter
controlling the kinetic part of the action is M , whose value can chosen together with the
initial conditions for Hi, 'i, '

i

N
– the last quantity entering in the initial value �i for the

DBI Lorentz parameter of eq (2.13). The initial value for H is determined as described in
Appendix A, starting from an initial value for the DBI parameter �i of order O(1). Once
'
i

N
is fixed along with an initial temperature Ti – which is associated with the initial

value of the scale factor – the value of M is bounded from below by requiring not to spoil
the predictions of BBN. Assuming that entropy is conserved, the relation between the
temperature of the universe T and the scale factor a is

a

a0
=

✓
g⇤s,0

g⇤s

◆1/3
T0

T
, (3.1)

where the index 0 indicates quantities evaluated today.

'i '
i

N
Hi Ti M

0.2 5 ⇥ 10�7 3.78162 ⇥ 10�13 GeV 499.8043 GeV 950 MeV

Table 1: Initial conditions and disformal scale (recall that ' is dimensionless and measured in
Planck units).

We select initial conditions as in Table 1. The initial conditions for ' and the Hubble
parameter are chosen such as to lead to an initial steady growth of the DBI Lorentz
factor � of eq (2.13), and a transitory large deviation of the Hubble parameter from its
GR value. See Fig 1. We select the parameter M demanding that the scalar evolution
does not interfere with BBN, which happens around 1 MeV – see Fig 1. The value of M

turns out to be of the order of the QCD scale of 170 MeV. Recall that we work in the
Jordan frame – see section 2 – hence with tilded quantities.

The initial enhancement of the Lorentz factor, as well as the early modifications of
the Hubble parameter, leads to an amplification of inflationary gravitational waves. The
fractional energy density of primordial gravitational waves measured today is given by
(we follow the treatments in [46–49]):

⌦̃0
GW(k) ⌘

1

⇢0
c

d ⇢̃
0
GW(k)

d ln k
(3.2)

'
1

24
PT (k)

✓
ãhc

ã0

◆4
 

H̃hc

H̃0

!2

(3.3)

where PT is the primordial inflationary tensor spectrum, and the su�x ‘hc’ indicates
horizon crossing time for the mode k. The quantity PT is

PT (k) =
2 H

2

⇡2 M
2
Pl

���
k=aH

, (3.4)
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The initial enhancement of the Hubble parameter, leads 
to an enhancement of the primordial gravitational wave 
spectrum.
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The fractional energy density of primordial gravitational 
waves measured today can be written as

h
2⌦0

GW =

✓
PT

24

◆✓
a

a0

◆4
�
3
H

2
GR

B(H0/h)2

Depending on the initial conditions, the enhancement of the 
PGWs can happen at frequencies relevant for different GW 
experiments: PTA, ET, LISA.

The initial enhancement of the Hubble parameter, leads 
to an enhancement of the primordial gravitational wave 
spectrum.
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DISFORMAL RISE OF THE PGW SPECTRUM
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Figure 17. The gravitational wave spectra for the purely disformal scenarios (C = 1) in the phe-
nomenological and D-brane cases have been plotted as functions of frequency. The dashed and dotted
lines correspond to the phenomenological cases with D = D0 and D = D0Ï

2 respectively, while the
solid line corresponds to the D-brane case with D = 1/M

4. The initial conditions have been chosen
as mentioned in table 4. The vertical line indicates the frequency corresponding to the initial temper-
ature (107 GeV). The experimental sensitivity curves have been plotted using the notion of broken
power-law sensitivity curve (see section 4.3 for details).

portional to f̃
2
0

at the beginning, subsequently changing slope to f̃
25
0

for the case with constant
disformal factor, and f̃

20
0

for the case with field dependent disformal factor. The spectrum
then drops as f̃

≠3

0
for both cases. Note that this behaviour, namely the di�erence in the

slopes for the two cases, has important implications as it makes these two couplings in prin-
ciple distinguishable by future GW experiments. Interestingly, the slopes in the D-brane case
are very di�erent (see below), thus again being distinguishable from a phenomenological case.

The shifting e�ect of the initial temperature condition is illustrated in figure 18. In
this plot, we use the same initial conditions as mentioned in table 4, but with an initial
temperature given by T̃i = 1011 GeV, instead of T̃i = 107 GeV. The slopes of the curves
are preserved, but the peak occurs at larger frequencies, which are relevant for the Einstein
telescope [35]. Note that, for earlier initial temperatures, the peak can access ultra high
frequencies, accessible by future experiments [36].

4.2.2 D-brane disformal enhancement
In the purely disformal D-brane-like case, C = 1 and thus D = 1/M

4. As we have seen,
the enhancement of the Hubble parameter is larger than in the phenomenological case (see
figure 8).

This is thus reflected in the rise of the PGW spectrum, as can be seen in figure 17,
where the solid line corresponds to the D-brane disformal case. Indeed in this case, the
rise of the PGW spectrum is much larger than that in the constant and field dependent
phenomenological cases. It could be possible that a power law disformal coupling, D = D0 Ï

r

with r > 2 for the phenomenological case might reach to and above the D-brane case.
However, interestingly, the frequency dependence of the PGW enhancement is very di�erent

– 26 –

of a disformal early 
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on initial conditions
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Figure 9. The evolution of the Hubble parameters in the Jordan frame (red lines), and GR (blue solid
line) have been plotted as functions of temperature, for the disformal coupling in the phenomenological
and D-brane cases. The dashed, dotted, and solid lines correspond to the following choices of the
disformal factor: D = D0, D = D0Ï

2, and the D-brane case with D = 1/M
4, respectively. The values

of D0 and the initial conditions are given in table 4.

D0(GeV≠4) Hi(GeV)
Pheno case: D = D0 5.000 ◊ 10≠22 1.413 ◊ 10≠4

Pheno case: D = D0Ï
2 6.000 ◊ 10≠21 1.408 ◊ 10≠4

D-brane case: D = 1/M
4 4.822 ◊ 10≠21 1.516 ◊ 10≠4

Table 4. Initial conditions for the disformal coupling models in the phenomenological and D-brane
scalar-tensor theories. The other initial conditions in all cases are Ï

i = 0.200, Ï
i
Ñ

= 2.000 ◊ 10≠5
,

T̃i = 107(GeV).

study is purely phenomenological and can be used as a first step to understand the e�ects
for gravitational waves in D-brane scalar tensor theories in the early universe. As shown in
appendix C of [19], the canonical normalisation of „, obtained by expanding the DBI action,
implies a relation between the conformal and disformal factors through M

4
CD = 1. Thus,

in this section, we study the solutions for the D-brane conformally and disformally coupled
matter with the choice above, which implies ”(„) = ≠–(„) (see eqs. (3.24) and (3.25)).

Evolution equations. In this case, the evolution equations (3.21), (3.22) simplify to

HN = ≠H

C
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Figure 9. The evolution of the Hubble parameters in the Jordan frame (red lines), and GR (blue solid
line) have been plotted as functions of temperature, for the disformal coupling in the phenomenological
and D-brane cases. The dashed, dotted, and solid lines correspond to the following choices of the
disformal factor: D = D0, D = D0Ï

2, and the D-brane case with D = 1/M
4, respectively. The values

of D0 and the initial conditions are given in table 4.

D0(GeV≠4) Hi(GeV)
Pheno case: D = D0 5.000 ◊ 10≠22 1.413 ◊ 10≠4

Pheno case: D = D0Ï
2 6.000 ◊ 10≠21 1.408 ◊ 10≠4

D-brane case: D = 1/M
4 4.822 ◊ 10≠21 1.516 ◊ 10≠4

Table 4. Initial conditions for the disformal coupling models in the phenomenological and D-brane
scalar-tensor theories. The other initial conditions in all cases are Ï

i = 0.200, Ï
i
Ñ

= 2.000 ◊ 10≠5
,

T̃i = 107(GeV).

study is purely phenomenological and can be used as a first step to understand the e�ects
for gravitational waves in D-brane scalar tensor theories in the early universe. As shown in
appendix C of [19], the canonical normalisation of „, obtained by expanding the DBI action,
implies a relation between the conformal and disformal factors through M

4
CD = 1. Thus,

in this section, we study the solutions for the D-brane conformally and disformally coupled
matter with the choice above, which implies ”(„) = ≠–(„) (see eqs. (3.24) and (3.25)).

Evolution equations. In this case, the evolution equations (3.21), (3.22) simplify to
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During a disformal dominated epoch, the PGW spectrum 
has a characteristic peak with a distinctive frequency 
profile, which offers a smoking-gun signature
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Figure 18. The gravitational wave spectra for the purely disformal scenarios (C = 1) in the phe-
nomenological and D-brane cases have been plotted as functions of frequency. The dashed and dotted
lines correspond to the phenomenological cases with D = D0 and D = D0Ï

2 respectively, while the
solid line corresponds to the D-brane case with D = 1/M

4. The initial conditions have been chosen
as mentioned in table 6. The experimental sensitivity curves have been plotted using the notion of
broken power-law sensitivity curve (see section 4.3 for details).

D0(GeV≠4) Hi(GeV)
Pheno case: D = D0 5.000 ◊ 10≠38 1.413 ◊ 104

Pheno case: D = D0Ï
2 6.000 ◊ 10≠37 1.408 ◊ 104

D-brane case: D = 1/M
4 4.822 ◊ 10≠37 1.516 ◊ 104

Table 6. Initial conditions for the disformal coupling models in the phenomenological and D-brane
scalar-tensor theories. The other initial conditions in all cases are Ï

i = 0.200, Ï
i
Ñ

= 2.000 ◊ 10≠5
,

T̃i = 1011(GeV).

in both cases. The D-brane disformal coupling produces a very characteristic enhancement
with a slope proportional to f̃

2
0

at the beginning, subsequently changing to f̃
5
0
, in contrast to

the f̃
25
0

or f̃
20
0

behaviour in the phenomenological cases. Moreover, the spectrum then drops as
f̃

≠3

0
, i.e. with the same slope as in the phenomenological case. This behaviour can be directly

understood from the behaviour of the Lorentz factor “ for the three cases. We can see from
figure 8 that the rise in “ di�ers between the phenomenological cases (dashed and dotted
lines), and the D-brane case (solid line), while it drops down with the same slope in all the
cases. In figure 18, we show the rise in the PGWs when the initial condition for temperature
is set at a higher value. Again, the D-brane case gives the largest enhancement, thus crossing
the sensitivity curves of Einstein Telescope. Setting even higher initial temperatures will be
relevant for the ultra high frequency experiments. Thus, a detection of this characteristic
peaked spectrum by either ET, LISA or ultra high frequency experiments will tell us the
epoch of scalar-tensor domination in the early universe.
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Figure 18. The gravitational wave spectra for the purely disformal scenarios (C = 1) in the phe-
nomenological and D-brane cases have been plotted as functions of frequency. The dashed and dotted
lines correspond to the phenomenological cases with D = D0 and D = D0Ï

2 respectively, while the
solid line corresponds to the D-brane case with D = 1/M

4. The initial conditions have been chosen
as mentioned in table 6. The experimental sensitivity curves have been plotted using the notion of
broken power-law sensitivity curve (see section 4.3 for details).

D0(GeV≠4) Hi(GeV)
Pheno case: D = D0 5.000 ◊ 10≠38 1.413 ◊ 104

Pheno case: D = D0Ï
2 6.000 ◊ 10≠37 1.408 ◊ 104

D-brane case: D = 1/M
4 4.822 ◊ 10≠37 1.516 ◊ 104

Table 6. Initial conditions for the disformal coupling models in the phenomenological and D-brane
scalar-tensor theories. The other initial conditions in all cases are Ï

i = 0.200, Ï
i
Ñ

= 2.000 ◊ 10≠5
,

T̃i = 1011(GeV).
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THE RISE OF THE PRIMORDIAL SPECTRUM
[ Chowdhury, Tasinato, IZ, ’23]	

For suitable initial conditions, the SPGW spectrum rises at 
scales accessible to PTA experiments f ⇠ 10

�9 � 10
�8

Hz

The frequency profile of the 
s p e c t r u m a c q u i r e s a 
distinctive broken power-
law shape.

f2

f5

The peak amplitude is of 
the same order of the 
value detected by the  
NANOGrav collaboration  

f�3

[NANOGrav , ’23]

PLSBPLS

[NANOGrav, EPTA, PPTA, CPTA, ’23]
evolution. The scalar-tensor dynamics, as controlled by the evolution equations of section
2, starts soon after inflation ends. We assume that initial conditions are chosen such that
initially the scalar is driven by the DBI kinetic terms only, as appearing in action (2.2),
with negligible contribution from the potential terms (see e.g. [14–16]). The parameter
controlling the kinetic part of the action is M , whose value can chosen together with the
initial conditions for Hi, 'i, '

i

N
– the last quantity entering in the initial value �i for the

DBI Lorentz parameter of eq (2.13). The initial value for H is determined as described in
Appendix A, starting from an initial value for the DBI parameter �i of order O(1). Once
'
i

N
is fixed along with an initial temperature Ti – which is associated with the initial

value of the scale factor – the value of M is bounded from below by requiring not to spoil
the predictions of BBN. Assuming that entropy is conserved, the relation between the
temperature of the universe T and the scale factor a is

a

a0
=

✓
g⇤s,0

g⇤s

◆1/3
T0

T
, (3.1)

where the index 0 indicates quantities evaluated today.

'i '
i

N
Hi Ti M

0.2 5 ⇥ 10�7 3.66127 ⇥ 10�13 GeV 499.8043 GeV 930 MeV

Table 1: Initial conditions and disformal scale (recall that ' is dimensionless and measured in
Planck units).

We select initial conditions as in Table 1. The initial conditions for ' and the Hubble
parameter are chosen such as to lead to an initial steady growth of the DBI Lorentz
factor � of eq (2.13), and a transitory large deviation of the Hubble parameter from its
GR value. See Fig 1. We select the parameter M demanding that the scalar evolution
does not interfere with BBN, which happens around 1 MeV – see Fig 1. The value of M

turns out to be of the order of the QCD scale of 170 MeV. Recall that we work in the
Jordan frame – see section 2 – hence with tilded quantities.

The initial enhancement of the Lorentz factor, as well as the early modifications of
the Hubble parameter, leads to an amplification of inflationary gravitational waves. The
fractional energy density of primordial gravitational waves measured today is given by
(we follow the treatments in [46–49]):

⌦̃0
GW(k) ⌘

1

⇢0
c

d ⇢̃
0
GW(k)

d ln k
(3.2)

'
1

24
PT (k)

✓
ãhc

ã0

◆4
 

H̃hc

H̃0

!2

(3.3)

where PT is the primordial inflationary tensor spectrum, and the su�x ‘hc’ indicates
horizon crossing time for the mode k. The quantity PT is

PT (k) =
2 H

2

⇡2 M
2
Pl

���
k=aH

, (3.4)

7



After the DBI kination epoch,          , standard evolution 

Considering the potential to become dominant around 
recombination, the axion field can drive a period of early 
dark energy.

⇠ ⇠ 1

POST-DBI EVOLUTION

At some scale after BBN, the scalar potential will become 
important.

Scalar potential cannot affect cosmological predictions 



EARLY AND LATER DARK ENERGY

Energy densities’ evolution of radiation, matter, axion
[ Chowdhury, Tasinato, IZ, ’23]	

DBI-kinetic  
domination

EDE

LDE



๏ D-brane scalar-tensor theories, can trigger a period of 
(coupled) DBI-kinetic domination. 

๏ Such an epoch modifies the expansion rate, and 
enhances the PGW spectrum with distinctive broken 
power law profiles, that can be tested by GW 
experiments (PTA, ET, LISA)

SUMMARY PART II



SUMMARY

๏ Gravitational wave cosmology offers a great 
opportunity to test models of cosmology derived from 
consistent theories of quantum gravity, specifically 
string theory. 

๏ Severa l theoret ical chal lenges, but severa l 
observational opportunities. We must use them!


