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Introduction

● At a high level, we are interested in understanding the role neutrinos play in 

the universe

● High level quantities, like oscillation parameters, can help constrain physics in 

the early universe

● Before we can do that, we need to be able to make sense of experimental data
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Reconstruction

Event Separation: Coarse event-level 

time-space clustering (slicing) using the 

DBSCAN algorithm.

Vertexing: Find lines of energy 

deposition using the Hough transform.  

Find the best point line radiate from.

Prong Clustering: Find clusters in 

angular space around the vertex in each 

view.  Merge views using topology and 

prong dE/dx.

In general, detectors produce hits in time and space, with the details depending on the 

detector technology in question.  These hits need to be interpreted in the context of 

neutrino interactions before we can do anything else.



Event Selection and Energy Estimation

Event Selection:

Once events have been reconstructed, 

selection algorithms determine the 

flavor of the neutrino that produced it

Energy Estimation:
Since neutrinos oscillate according to 

true energy, we use observable 

quantities to estimate the true energy 

as well as possible 



Parameter Extraction

● The neutrino spectrum is measured before oscillations at the ND

– Combination of flux, cross section, and e7iciency

● The measured spectrum is used to correct the raw FD MC predictions using the Far/Near ratio

– Each component oscillates di7erently, so they each are extrapolated separately

– ND data/MC disagreements are allocated to di7erent component either proportionally to MC predictions or using data-

driven decomposition techniques 

● Since the detectors are functionally similar, the combined flux and cross-section uncertainties largely cancel

● A fit is performed to find a set of parameters which produce a prediction which best matches the observed data



Probability and Statistics

● Every step of the analysis process is uncertain/stochastic

● Large uncertainties in our understanding of our neutrino beams and of 

neutrino cross sections

● Due to detector and electronic noise, measured energies are known 

imprecisely

● Particles interact with the detector stochastically

– Even if the detector measured energy deposits perfectly, they would still vary from 

particle to particle

● To make any measurements requires probability and statistics

– Probability: the study of how likely a given event is to occur

● Model 8 Predict outcome

– Statistics: the study of how to interpret data

● Data 8 infer parameters of model

● Statistics is essentially the inverse problem of probability, and inverse 

problems are always di7icult

● We’ll start by looking at the fundamentals of probability



Fundamentals of Probability



Kolomogorov’s Axioms

● Probability, colloquially, is how o<en you can expect a given event to 

happen

● Can make this mathematically rigorous using set theory

● Consider a set S, which represents the sample space, and a subset A

● For each subset A, we assign a real number P(A), which is the 

probability of the set

● P(A) follows our intuitive understanding of probability if:



Sample Space

● What S is is somewhat ambiguous and varies based 

on interpretation

– Will come back to this shortly

● Can be

– discrete

– continuous

● A variable that takes a specific value for each 

element of S is called a random variable

● Random variables can be multicomponent vectors if 

each element is associated with several quantities



Joint Probability

● Suppose S is a vector 

labeled space

– Possible dice rolls of a pair 

of dice

– A: die 1 yields odd number, 

die 2 yields any number

– B: die 1 yields any number, 

die 2 yields even number

– Probability of die 1 being 

odd and die 2 being even is 

the intersection of A and B

The probability of the intersection 

is the joint probability.

We usually write it as P(A,B)



Marginal Probabilities

● Some times we only care 

about one of the 

components of the vector

● If we compute the 

probability of one 

component without 

reference to the other 

component, the result is the 

marginal probability

● If we only care about the 

value of die 2, we can add up 

the probabilities of all 

possible values of die 1

Marginalizing is “integrating out” 

the component we aren’t 

interested in



Conditional Probability

● The joint probability, 

P(A,B), is the size of  A C B 

within S

● The conditional probability 

is the probability of A C B 

given that B is true

● That means that we need to 

divide the joint probability 

by the probability of any 

outcome in the set B

or



Bayes Theorem

● We can put these two expressions together to get 

Bayes’s Theorem

● This tells us how we can change the order of the 

conditioning

● This is important because we o<en know one 

conditional probability, but we really want to know the 

other
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Example: Triple Screen Test

● The importance of this o<en comes up in medical cases

● Let’s consider the triple screen test, a blood test to help 

determine if a fetus has Down syndrome

– 70% sensitivity (probability of positive result given Down 

syndrome is present)

– 5% false positive rate (probability of positive result given 

Down syndrome is not present)

– 0.1% prevalent rate of Down syndrome in general populace

● Suppose a triple screen test comes back positive.  What 

is the probability that the fetus has Down syndrome?



Example: Triple Screen Test

Posterior probability that Down syndrome is 

present

Sensitivity of test

Prior probability that Down syndrome is 

present

Probability of geHing a positive result, 

regardless of the presence of Down syndrome



Example: Triple Screen Test

Marginal probability:

Or by the rules of conditional probability:

Therefore

A<er a positive test, risk is 14x higher, but still a very low probability



Example: Triple Screen Test

Suppose a second test existed with similar sensitivity and false positive rates.  

What would be the probability of Down syndrome being present if both tests are 

positive?



Example: Triple Screen Test

Suppose a second test existed with similar sensitivity and false positive rates.  

What would be the probability of Down syndrome being present if both tests are 

positive?

New prior becomes posterior of the first test:

Bayes theorem allows us to update our knowledge as new information becomes 

available



Interpretations of Probability

● Rules of probability tell how probability is 

manipulated, but what it is

● Two main interpretations

– Frequentist

– Bayesian



Frequentist Interpretation

● Probability is the relative frequency of an event’s 

occurrence

● Set S corresponds to all possible outcomes of a 

measurement 

● The probability of a particular event to occur is:

● Only outcome of measurements have probabilities

– Can only talk about consistency of models with 

observed data, not probability of a model being true



Bayesian Interpretation

● Probability is subjective

● S consists of hypotheses

– Constructed such that only one hypothesis can be true

● P(A) = degree of belief that hypothesis A is true

● Bayes theorem provides machinery to update our 

degree of belief in any particular hypothesis

● P(theory) is our prior belief in the theory

● P(data|theory) is the likelihood of observing 

particular data if a given model were true



Why Does it MaHer?

● Frequentist

– definition of probability is objective

– measurement of probability only possible in the limit of infinite 

statistics

– can not answer the question everyone actually wants to know

● Bayesian

– definition of probability is subjective

– answers can be highly dependent on choice of prior

– answers the question everyone actually wants to know

● Everyone is a liHle of both, and some questions are more 

naturally approached under one framework than another

● Generally speaking, in the limit of infinite data, both 

interpretations give the same answers (i.e. the explanatory power 

of the data overpowers reasonable prior belieL)



Probability Density Functions

● Discrete distribution:

– Probability of experiment yielding value x: P(x) 

● Continuous distribution:

– Probability of x having a value in an infinitesimal interval 

(x, x+dx): f(x)dx

● Note: probability of any particular outcome is infinitesimal in 

continuous case, but value of f(x) gives the relative frequency of 

occurrence

● Normalization

● In general, continuous distributions require integrals  

instead of sums



Histograms

● Histograms, when 

normalized, 

approximate a pdf

● Each bin contains a 

approximation of f(x) 

integrated over the bin 

width

● Multidimensional 

histograms are an 

approximation of joint 

pdfs



Moments

Can characterize distributions using moments

Mean: a measure of the central 

point in the distribution

Variance: a measure of the width of 

the distribution

Square root of variance is the standard deviation – we usually take this as the 

standard error



Example: 

a b

A digital pulse has a constant 

value between times a and b, 

and it is zero otherwise.

What is the standard error on 

the time of the pulse? 
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Covariance

Can generalize to multivariate distributions

Variance generalized to covariance matrix: diagonals are 1D variances and o7-

diagonals are related to correlation

Or more compactly



Correlation

● The correlation coe7icient 

quantifies the linear relationship 

between two random variables

● Correlation is related to 

covariance simply:  �xy = ⇥xy/⇥x⇥y

● In the first, x1 and x2 are 

independent Gaussian 8 

correlation = 0

● In the second x1 and x2 are also 

Gaussian, but

– Correlation = 0.8



Lack of Correlation != No Relationship

● Correlation coe7icient 

only quantifies linear 

relationships

● Random distribution 

here has a correlation 

coe7icient of zero

● x1 and x2 are clearly 

related to each other



Binomial Distribution

● Represents probability of n 

successes given N trials, each 

with a probability ⇤ of success

● Strictly speaking, all bin counts 

are drawn from a binomial 

distribution

– Number of neutrinos of a given 

energy is finite

– A small fraction interact in the 

detector

● Generally, the number of 

successes is very low compared 

to the number of trials

– In this case, binomial distribution 

8 Poisson



Poisson Distribution

● The limiting 

distribution where 

– N 8 R

– ⇤ 8 0

– N⇤ 8 ⌅
● Predicted number of 

events in a bin is ⌅
● Actual number of 

events observed, n, is 

Poisson distributed



Gaussian Distribution

● If the expected number of 

events is large, the distribution 

can be approximated as 

Gaussian

– Origin of          error bars

● Continuous distribution

● 68.3% of probability between µ⌃
⇥ and µ+⇥

● Sum of two Gaussian is also a 

Gaussian

– Means add

– Standard deviations add in 

quadrature 

(That is, the moments are the 

parameters of the pdL)



Relationship Between Distributions



Central Limit Theorem

● The sum of small, 

uncorrelated random 

numbers is asymptotically 

Gaussian distributed

● This is true even for very 

non-Gaussian underlying 

distributions

● This is the reason why 

Gaussian uncertainties are so 

common in statistical 

analyses



Central Limit Theorem

● The sum of small, 

uncorrelated random 

numbers is asymptotically 

Gaussian distributed

● This is true even for very 

non-Gaussian underlying 

distributions

● This is the reason why 

Gaussian uncertainties are so 

common in statistical 

analyses



Central Limit Theorem

● The sum of small, 

uncorrelated random 

numbers is asymptotically 

Gaussian distributed

● This is true even for very 

non-Gaussian underlying 

distributions

● This is the reason why 

Gaussian uncertainties are so 

common in statistical 

analyses



Multivariate Gaussian

● Multivariate Gaussian is the 

N-dimensional generalization 

of the Gaussian

● Standard deviation is replaced 

by the covariance matrix

● Can be a good model for 

histogram bin contents if 

contents are relatively large, 

and systematic uncertainties 

have correlations between bins 

Can draw numbers from multivariate 

Gaussian easily

● Cholesky decompose covariance 

matrix: AAT = � 
● Draw z, an N-dimensional vector of 

unit Gaussian random numbers
● x = µ + Az



Hypothesis Testing



Hypothesis Testing

● Language of statistics requires us to pick a default 

hypothesis

– Call H0 8 null hypothesis

– If H0 has no free parameters, it is a simple hypothesis, 

otherwise it is a composite hypothesis

● Can have many alternate models

– Call one of them we are interested in testing against 

H1 



Particle Separation

● Suppose we have identified a 

track in our detector, and we want 

to know if it is a muon or a proton

● Consider muon hypothesis to be 

our null hypothesis

● Construct a test statistics t(x) 

which is a function only of the 

data

● Distribution of t under di7erent 

hypothesis tells us whether we 

can reject our null hypothesis 

● Define a critical region for t such 

that we reject H0 if tObs is in the 

critical region

tcut

g(t|H0) g(t|H1)

tcut is chosen so that probability of 

rejecting H0 when it is true is  

gran
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Particle Separation

● Suppose we have identified a 

track in our detector, and we 

want to know if it is a muon or 

a proton

● Consider muon hypothesis to 

be our null hypothesis

● Construct a test statistics t(x) 

which is a function only of the 

data

● Distribution of t under 

di7erent hypothesis tells us 

whether we can reject our null 

hypothesis 

tcut

g(t|H0) g(t|H1)

For a given  , the probability of 

accepting H0 when H1 is true is �



Neyman-Pearson Lemma

● If the test statistic, t, is one dimensional, � is 

completely specified by picking  
● If the test statistic is a vector, there are many 

critical regions for which the significance level is  
● Neyman-Pearson lemma says that the likelihood 

ratio produces the acceptance region with the 

highest power (that is, highest signal purity for a 

chosen selection e7iciency)

c is determined by fixing 1 –   (selection e7iciency)

Likelihoods can o<en be constructed as multi-

dimensional histograms from simulation


