Special values of Motivic L-functions II Bengaluru, August 10, 2022

Matthias Flach

- Talk 1
- Some history
- The example of number fields
- Determinant functors
- Talk 2
- General formulation of the Tamagawa number conjecture (Deligne,Beilinson,Bloch,Kato,Fontaine,Perrin-Riou,....)
- Proofs of known cases: Iwasawa Theory and p-adic L-functions
- Detailed proof for Dirichlet L-functions
- Talk 3
- Zeta functions of arithmetic schemes
- Special values in terms of Weil-Arakelov cohomology groups and (variants of) cyclic homology
- Talk 4
- Compatibility with the Conjecture of Birch and Swinnerton-Dyer
- Compatibility with the functional equation

Motives and motivic structures (over \mathbb{Q})

$$
X \rightarrow \operatorname{Spec}(\mathbb{Q}) \text { smooth, projective variety, }
$$

$M_{g m}(X)^{*}=: h(X) \stackrel{?}{=} \bigoplus_{i \in \mathbb{Z}} h^{i}(X)[-i] \in \operatorname{Ob} D M_{g m}(\mathbb{Q})_{\mathbb{Q}} \quad$ (def. by Voevodsky)
$M=h^{i}(X)(j)$ for $i, j \in \mathbb{Z}$, more generally $M \in D M_{g m}(\mathbb{Q})_{\mathbb{Q}}^{\mathscr{Q}}$ (heart of conjectural t-structure), leads to a
"Motivic structure":

$$
\begin{gathered}
M_{l}=H_{e t}^{i}\left(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_{l}\right)(j) \quad \text { continuous rep'n of } G_{\mathbb{Q}} \\
M_{B}=H^{i}(X(\mathbb{C}), \mathbb{Q})(j) \quad \text { pure } \mathbb{Q} \text {-Hodge structure over } \mathbb{R} \\
M_{d R}=H_{d R}^{i}(X / \mathbb{Q})(j) \quad \text { filtered } \mathbb{Q} \text {-vector space }
\end{gathered}
$$

Comparison isomorphisms:

$$
M_{l} \cong M_{B, \mathbb{Q}_{l}}, \quad M_{B, \mathbb{C}} \cong M_{d R, \mathbb{C}}, \quad M_{l, B_{d R}} \cong M_{d R, B_{d R}}
$$

Motivic L-functions

$$
\begin{aligned}
& P_{p}(T)=\operatorname{det}\left(1-\mathrm{Fr}_{p}^{-1} \cdot T \mid M_{l}^{I_{p}}\right) \stackrel{?}{\in} \mathbb{Q}[T] \\
& L(M, s)=\prod_{p} P_{p}\left(p^{-s}\right)^{-1}, \quad \operatorname{Re}(s) \gg 0
\end{aligned}
$$

- $M=\mathbb{Q}(j)_{F}:=h^{0}(\operatorname{Spec}(F))(j)$ $L\left(\mathbb{Q}(j)_{F}, s\right)=\zeta_{F}(j+s)$ (Dedekind Zeta-Function)
- $M=h^{0}(\operatorname{Spec}(\mathbb{Q}(\sqrt{-1})))(0)=\mathbb{Q}(0) \oplus \mathbb{Q}(\epsilon)$ $L(\mathbb{Q}(\epsilon), s)=L(\epsilon, s)$ (Dirichlet L-Function)
- $E: y^{2}=x^{3}-x$ $L\left(h^{1}(E), s\right)=L(\phi, s)($ Hecke L-Function for a character ϕ of $\mathbb{Q}(i))$ Here $\phi((\alpha))=\alpha$ where $\alpha \equiv 1 \bmod (1+i)^{3}$
- $E: y^{2}+y=x^{3}-x$
$L\left(h^{1}(E), s\right)=L(f, s)\left(f\right.$ weight 2 cusp form on $\left.X_{0}(37)\right)$

Meromorphic continuation

Conjecture: $L(M, s)$ has meromorphic continuation to all $s \in \mathbb{C}$ and satisfies

$$
\Lambda(M, s)=\epsilon(M, s) \wedge\left(M^{*}, 1-s\right)
$$

where

$$
\begin{gathered}
\Lambda(M, s)=L_{\infty}(M, s) L(M, s) \\
L_{\infty}(M, s)=\prod_{p<q} \Gamma_{\mathbb{C}}(s-p)^{h^{p, q}} \prod_{p} \Gamma_{\mathbb{R}}(s-p)^{h^{p,+}} \Gamma_{\mathbb{R}}(s-p+1)^{p^{p,-}} \\
\Gamma_{\mathbb{R}}(s)=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right), \quad \Gamma_{\mathbb{C}}(s)=2(2 \pi)^{-s} \Gamma(s)
\end{gathered}
$$

Known for

- $h^{0}(X)=h^{0}\left(\operatorname{Spec}\left(\Gamma\left(X, \mathcal{O}_{X}\right)\right)\right.$
- $h^{1}(X)$ for X / F an elliptic curve over $F=\mathbb{Q}$ or F real quadratic or cubic (holomorphic continuation) or F totally real or CM (meromorphic continuation)
- $h^{1}(X)$ for $X: z_{0}^{n}+z_{1}^{n}+z_{2}^{n}=0$
- $\operatorname{Sym}^{n} h^{1}(E)$ for E / \mathbb{Q} an elliptic curve
- $h^{d}(X), X$ Shimura variety of dimension d

Motivic Cohomology

$H^{0}(M):=\operatorname{Hom}_{D M(\mathbb{Q})_{\mathbb{Q}}}(\mathbb{Q}(0), M)=C H^{j}(X)_{\mathbb{Q}} /$ hom for $M=h^{2 j}(X)(j)$
$H^{1}(M):=\operatorname{Hom}_{D M(\mathbb{Q})_{\mathbb{Q}}}(\mathbb{Q}(0), M[1])=\left\{\begin{array}{l}K_{2 j-i-1}^{(j)}(X)_{\mathbb{Q}} \text { for } M=h^{i}(X)(j) \\ C H^{j}(X)_{\mathbb{Q}}^{0} \text { if } 2 j-i-1=0\end{array}\right.$
$H_{f}^{0}(M):=H^{0}(M)$
$H_{f}^{1}(M):=$ image of $K_{2 j-i-1}^{(j)}(\mathfrak{X})_{\mathbb{Q}}$ where \mathfrak{X} is regular, proper over $\operatorname{Spec}(\mathbb{Z})$
$M_{B, \mathbb{C}} \cong M_{d R, \mathbb{C}}$ induces $\alpha_{M}: M_{B, \mathbb{R}}^{+} \rightarrow\left(M_{d R} / M_{d R}^{0}\right)_{\mathbb{R}}$.
Conjecture Mot $_{\infty}$: There exists an exact sequence

$$
\begin{aligned}
0 \rightarrow H_{f}^{0}(M)_{\mathbb{R}} \xrightarrow{c} \operatorname{ker}\left(\alpha_{M}\right) & \rightarrow H_{f}^{1}\left(M^{*}(1)\right)_{\mathbb{R}}^{*} \xrightarrow{h} \\
& H_{f}^{1}(M)_{\mathbb{R}} \xrightarrow{r} \operatorname{coker}\left(\alpha_{M}\right) \rightarrow H_{f}^{0}\left(M^{*}(1)\right)_{\mathbb{R}}^{*} \rightarrow 0
\end{aligned}
$$

$c=$ cycle class map, $h=$ height pairing, and $r=$ Beilinson regulator.

Vanishing order

Taylor expansion at $s=0$

$$
L(M, s)=L^{*}(M) s^{r(M)}+\cdots
$$

Aim: Describe $L^{*}(M) \in \mathbb{R}^{\times}$and $r(M) \in \mathbb{Z}$
Conjecture (Van): $r(M)=\operatorname{dim}_{\mathbb{Q}} H_{f}^{1}\left(M^{*}(1)\right)-\operatorname{dim}_{\mathbb{Q}} H_{f}^{0}\left(M^{*}(1)\right)$
Known cases:

- F number field, $M=h^{0}(\operatorname{Spec}(F))(j), j \in \mathbb{Z}$,

$$
\operatorname{dim}_{\mathbb{Q}} H_{f}^{1}\left(M^{*}(1)\right)-\operatorname{dim}_{\mathbb{Q}} H_{f}^{0}\left(M^{*}(1)\right)= \begin{cases}K_{1-2 j}\left(\mathcal{O}_{F}^{\times}\right)_{\mathbb{Q}} & j \leq 0 \\ -1 & j=1 \\ 0 & j \geq 2\end{cases}
$$

- $M=h^{1}(E)(1), E / \mathbb{Q}$ elliptic curve, ord $_{s=1} L(E, s) \leq 1$, individual examples with $\operatorname{ord}_{s=1} L(E, s)=2,3$.

Rationality conjecture

Define Fundamental Line

$$
\begin{aligned}
\equiv(M) & :=\operatorname{det}_{\mathbb{Q}}\left(H_{f}^{0}(M)\right) \otimes \operatorname{det}_{\mathbb{Q}}^{-1}\left(H_{f}^{1}(M)\right) \\
& \otimes \operatorname{det}_{\mathbb{Q}}\left(H_{f}^{1}\left(M^{*}(1)\right)^{*}\right) \otimes \operatorname{det}_{\mathbb{Q}}^{-1}\left(H_{f}^{0}\left(M^{*}(1)\right)^{*}\right) \\
& \otimes \operatorname{det}_{\mathbb{Q}}^{-1}\left(M_{B}^{+}\right) \otimes \operatorname{det}_{\mathbb{Q}}\left(M_{d R} / M_{d R}^{0}\right),
\end{aligned}
$$

Conjecture (Rat): $\vartheta_{\infty}\left(L^{*}(M)^{-1}\right) \in \equiv(M) \otimes 1$ where

$$
\vartheta_{\infty}: \mathbb{R} \cong \equiv(M) \otimes_{\mathbb{Q}} \mathbb{R}
$$

is the isomorphism induced by Conjecture Mot $_{\infty}$.

Known cases:

- F number field, $M=h^{0}(\operatorname{Spec}(F))(j), j \in \mathbb{Z}$ (Borel)
- X / F Shimura curve over totally real F, A direct factor of $\operatorname{Jac}(X)$, $M=h^{1}(A)(1), \operatorname{ord}_{s=1} L(A, s) \leq 1$ (Gross-Zagier-Zhang formula)

An example with $\equiv(M)=\mathbb{Q}$

F totally real, $j<0$ odd, $M=h^{0}(\operatorname{Spec}(F))(j)$

$$
\equiv(M)=\mathbb{Q}
$$

since all spaces in the definition of $\equiv(M)$ are zero!
For $F=\mathbb{Q}$

$$
\zeta(1-n)=-\frac{B_{n}}{n} \quad \text { where } \quad \frac{z}{e^{z}-1}=\sum_{n=0}^{\infty} B_{n} \frac{z^{n}}{n!}
$$

For F totally real $\zeta_{F}(j) \in \mathbb{Q}$ for $j \leq 0$ by the Klingen-Siegel theorem.

Galois cohomology

Fix prime I. For each prime p define a complex $R \Gamma_{f}\left(\mathbb{Q}_{p}, M_{l}\right)$

$$
= \begin{cases}M_{l}^{l_{p}} \xrightarrow{1-\mathrm{Fr}_{p}} M_{l}^{l_{p}} & l \neq p \\ D_{\text {cris }}\left(M_{l}\right) \xrightarrow{\left(1-\mathrm{Fr}_{p}, \pi\right)} D_{\text {cris }}\left(M_{l}\right) \oplus D_{d R}\left(M_{l}\right) / D_{d R}^{0}\left(M_{l}\right) & l=p\end{cases}
$$

There is a distinguished triangle of $\mathbb{Q} /$-vector spaces.

$$
R \Gamma_{f}\left(\mathbb{Q}_{p}, M_{l}\right) \rightarrow R \Gamma\left(\mathbb{Q}_{p}, M_{l}\right) \rightarrow R \Gamma_{/ f}\left(\mathbb{Q}_{p}, M_{l}\right) .
$$

Let S be a finite set of primes containing l, ∞ and primes of bad reduction. There are distinguished triangles

$$
\begin{align*}
& R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right) \rightarrow R \Gamma\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right) \rightarrow \bigoplus_{p \in S} R \Gamma\left(\mathbb{Q}_{p}, M_{l}\right) \\
& R \Gamma_{f}\left(\mathbb{Q}, M_{l}\right) \rightarrow R \Gamma\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right) \rightarrow \bigoplus_{p \in S} R \Gamma_{/ f}\left(\mathbb{Q}_{p}, M_{l}\right) \\
& R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right) \rightarrow R \Gamma_{f}\left(\mathbb{Q}, M_{l}\right) \rightarrow \bigoplus_{p \in S} R \Gamma_{f}\left(\mathbb{Q}_{p}, M_{l}\right) \tag{1}
\end{align*}
$$

Galois cohomology and motivic cohomology

Conjecture Mot ${ }_{/}$: a) The cycle class map induces an isomorphism $H_{f}^{0}(M)_{\mathbb{Q}_{l}} \cong H_{f}^{0}\left(\mathbb{Q}, M_{l}\right)$ (Tate conjecture).
b) The Chern class maps induce an isomorphism $H_{f}^{1}(M)_{\mathbb{Q}_{l}} \cong H_{f}^{1}\left(\mathbb{Q}, M_{l}\right)$ (Bloch-Kato).

Poitou-Tate duality gives an isomorphism

$$
H_{f}^{i}\left(\mathbb{Q}, M_{l}\right) \cong H_{f}^{3-i}\left(\mathbb{Q}, M_{l}^{*}(1)\right)^{*}
$$

for all i. Hence Conjecture Mot/ computes the cohomology of $R \Gamma_{f}\left(\mathbb{Q}, M_{l}\right)$ in all degrees.

Integrality Conjecture

The exact triangle (1) and conjecture Mot/ induce an isomorphism

$$
\vartheta_{l}: \equiv(M) \otimes_{\mathbb{Q}} \mathbb{Q}_{l} \cong \operatorname{det}_{\mathbb{Q}}, R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right)
$$

Let $T_{l} \subset M_{l}$ be any $G_{\mathbb{Q}}$-stable $\mathbb{Z}_{\text {l }}$-lattice.
Conjecture (Int):

$$
\mathbb{Z}_{l} \cdot \vartheta_{l} \vartheta_{\infty}\left(L^{*}(M)^{-1}\right)=\operatorname{det}_{\mathbb{Z}_{l}} R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{S}\right], T_{l}\right)
$$

This conjecture (for all I) determines $L^{*}(M) \in \mathbb{R}^{\times}$up to sign. It is independent of the choice of S and T_{l}.
Known cases:

- $M=h^{0}(\operatorname{Spec}(F))(j), j=0,1$ (Analytic class number formula)
- $M=h^{0}(\operatorname{Spec}(F))(j), j \in \mathbb{Z}, F / \mathbb{Q}$ abelian
- $M=h^{0}(\operatorname{Spec}(F))(j), j \in \mathbb{Z}$, or F / K abelian, K imaginary quadratic, $I>3$ split in K (Johnson-Leung)
- $M=h^{1}(E)(1)$, $\operatorname{ord}_{s=1} L(E, s)=0, I \notin S, S$ finite, E / \mathbb{Q} CM elliptic curve (Rubin), E / \mathbb{Q} semistable elliptic curve (Kato, Skinner-Urban, Wan)

The equivariant refinement

Let A be a finite-dimensional semisimple \mathbb{Q}-algebra, acting on M. Examples.

- X abelian variety, $M=h^{1}(X), A=\operatorname{End}(X)_{\mathbb{Q}}$
- X variety with action of a finite group G, e.g.
$X=X^{\prime} \times{ }_{\text {Spec }(\mathbb{Q})} \operatorname{Spec}(F), F / \mathbb{Q}$ Galois with group G, $M=h^{i}(X)(j), A=\mathbb{Q}[G]$.

For simplicity assume A commutative, so

$$
A \cong E_{1} \times \cdots \times E_{r}, \quad\left(E_{i} \text { number fields }\right)
$$

Define $L\left({ }_{A} M, s\right), \equiv\left({ }_{A} M\right), A \vartheta_{\infty}, A \vartheta$, as above using the determinant functor over $A, A_{\mathbb{R}}, A_{l}:=A \otimes \mathbb{Q}_{l}$.

- $L\left({ }_{A} M, s\right) \in A_{\mathbb{C}} \cong \prod_{\tau} \mathbb{C}$
- $r\left({ }_{A} M\right) \in H^{0}\left(\operatorname{Spec}\left(A_{\mathbb{C}}\right), \mathbb{Z}\right) \cong \prod_{\tau} \mathbb{Z}$
- $L^{*}\left({ }_{A} M\right) \in\left(A_{\mathbb{R}}\right)^{\times}$

The equivariant refinement, ctd.

$$
\begin{aligned}
& A \vartheta_{\infty}: A_{\mathbb{R}} \cong \equiv\left({ }_{A} M\right) \otimes_{\mathbb{Q}} \mathbb{R} \\
& A_{l} \vartheta_{l}: \equiv\left({ }_{A} M\right) \otimes_{\mathbb{Q}} \mathbb{Q}_{l} \cong \operatorname{det}_{A_{l}} R \Gamma_{c, \text { et }}\left(\mathbb{Z}\left[\frac{1}{S}\right], M_{l}\right)
\end{aligned}
$$

Equivariant Tamagawa number conjecture - ETNC
$\operatorname{Van} r\left({ }_{A} M\right)=\operatorname{dim}_{A} H_{f}^{1}\left(M^{*}(1)\right)-\operatorname{dim}_{A} H_{f}^{0}\left(M^{*}(1)\right)$
Rat $A^{\vartheta} \vartheta_{\infty}\left(L^{*}\left({ }_{A} M\right)^{-1}\right) \in \equiv\left({ }_{A} M\right) \otimes 1$
Int $\mathfrak{A}_{l} \cdot A \vartheta_{l A} \vartheta_{\infty}\left(L^{*}\left({ }_{A} M\right)^{-1}\right)=\operatorname{det}_{\mathfrak{A}_{l}} R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{S}\right], T_{l}\right)$
Here $\mathfrak{A} \subset A$ is a \mathbb{Z}-order so that there is a projective $G_{\mathbb{Q}}$-stable $\mathfrak{A}_{1}:=\mathfrak{A} \otimes \mathbb{Z}_{l}$-lattice $T_{I} \subseteq V_{l}$.
Example. F / K Galois with group $G, \mathfrak{A}=\mathbb{Z}[G], M=h^{0}(\operatorname{Spec}(F))(j)$ Conj. Int known if F / \mathbb{Q} abelian for all j. In general Rat not even known for $j=0,1$! (Stark conjectures)

Non-commutative coefficients

For any ring R

$$
\tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

where $\mathcal{P}(R)$ is a Picard category (groupoid with \otimes). Universal Determinant functor

$$
\mathcal{D}^{\text {perf }}(R)^{\cong} \rightarrow K(R) \rightarrow \tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

Non-commutative coefficients

For any ring R

$$
\tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

where $\mathcal{P}(R)$ is a Picard category (groupoid with \otimes). Universal Determinant functor

$$
\mathcal{D}^{\text {perf }}(R)^{\cong} \rightarrow K(R) \rightarrow \tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

If R is commutative semilocal then

$$
\pi_{0} \mathcal{P}(R)=K_{0}(R)=H^{0}(\operatorname{Spec}(R), \mathbb{Z}) ; \quad \pi_{1} \mathcal{P}(R)=K_{1}(R)=R^{\times}
$$

Hence: universal determinant functor $=$ usual graded determinant functor

Non-commutative coefficients

For any ring R

$$
\tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

where $\mathcal{P}(R)$ is a Picard category (groupoid with \otimes). Universal Determinant functor

$$
\mathcal{D}^{\text {perf }}(R)^{\cong} \rightarrow K(R) \rightarrow \tau_{\leq 1} K(R) \cong \mathcal{P}(R)
$$

If R is commutative semilocal then

$$
\pi_{0} \mathcal{P}(R)=K_{0}(R)=H^{0}(\operatorname{Spec}(R), \mathbb{Z}) ; \quad \pi_{1} \mathcal{P}(R)=K_{1}(R)=R^{\times}
$$

Hence: universal determinant functor $=$ usual graded determinant functor
$R=A, A \otimes \mathbb{Q}, \mathfrak{A} \otimes \mathbb{Z}_{\text {l }}$ semilocal
If A is non-commutative use universal determinant functor.

Proven cases of the weak TNC

One has the following situation:

- Conjecture $\operatorname{Mot}_{\infty}$ reduces to $H_{f}^{1}(M)_{\mathbb{R}} \cong H_{\mathcal{D}}^{1}(M):=\operatorname{coker}\left(\alpha_{M}\right)$.
- $\operatorname{dim}_{A_{\mathbb{R}}} H_{\mathcal{D}}^{1}(M)=1$.
- There is $\xi \in H_{f}^{1}(M)$ with $A_{\mathbb{R}} \cdot r(\xi)=H_{\mathcal{D}}^{1}(M)$.

Main example. f elliptic modular form of weight $k \geq 2, M=M(f)(j)$, $j \leq 0$.

- Weak form of Rat is known (Bloch-Beilinson)
- Int follows from the main conjecture of Kato/Skinner/Urban if one also assumes $A_{\mathbb{Q}_{l}} \cdot r_{l}(\xi)=H_{f}^{1}\left(M_{l}\right)$ (Gealy).

Dirichlet L-Functions

$$
\begin{gathered}
F=F_{m}:=\mathbb{Q}\left(\zeta_{m}\right) ; \quad M=h^{0}\left(\operatorname{Spec}\left(F_{m}\right)\right)(0) \\
G=G_{m}:=\operatorname{Gal}\left(F_{m} / \mathbb{Q}\right) \cong(\mathbb{Z} / m \mathbb{Z})^{\times} \\
A=\mathbb{Q}\left[G_{m}\right] \cong \prod_{\chi \in \hat{G}_{\text {rat }}} \mathbb{Q}(\chi) \\
L\left({ }_{A} M, s\right)=(L(\eta, s))_{\eta \in \hat{G}} \in \prod_{\eta \in \hat{G}} \mathbb{C} \cong A_{\mathbb{C}}
\end{gathered}
$$

Note:

$$
\zeta_{F_{m}}(s)=\prod_{\eta \in \hat{G}} L(\eta, s) \in \mathbb{C}
$$

$$
\begin{aligned}
\operatorname{ord}_{s=0} L(\eta, s) & = \begin{cases}0 & \eta=1 \text { or } \eta(-1)=-1 \\
1 & \eta \neq 1 \text { and } \eta(-1)=1\end{cases} \\
& =\operatorname{dim}_{\mathbb{Q}(\eta)}\left(\mathcal{O}_{F}^{\times} \otimes_{\mathbb{Z}[G]} \mathbb{Q}(\eta)\right)
\end{aligned}
$$

Leading Taylor coefficient at $s=0$

$$
\begin{aligned}
& L(\eta, 0)=-\sum_{a=1}^{f_{\eta}}\left(\frac{a}{f_{\eta}}-\frac{1}{2}\right) \eta(a) \\
& \left.\frac{d}{d s} L(\eta, s)\right|_{s=0}=-\frac{1}{2} \sum_{a=1}^{f_{\eta}} \log \left|1-e^{2 \pi i a / f_{\eta}}\right| \eta(a) \\
& \equiv\left({ }_{A} M\right)^{\#} \\
& =\prod_{\substack{\chi \neq 1 \\
\text { even }}}\left(\mathcal{O}_{F_{m}}^{\times} \underset{\mathfrak{A}}{\otimes} \mathbb{Q}(\chi)\right)^{-1} \underset{\mathbb{Q}(\chi)}{\otimes}\left(X_{\{v \mid \infty\}} \underset{\mathfrak{A}}{\otimes \mathbb{Q}(\chi))}\right. \\
& \quad \times \prod_{\text {other } \chi} \mathbb{Q}(\chi)
\end{aligned}
$$

$$
{ }_{A} \vartheta_{\infty}\left(L^{*}\left({ }_{A} M\right)^{-1}\right)_{\chi}=
$$

$$
\begin{cases}2 \cdot\left[F_{m}: F_{f_{f}}\right]\left[1-\zeta_{f_{\chi}}\right]^{-1} \otimes \sigma_{m} & \chi \neq 1 \text { even } \\ \left(L(\chi, 0)^{\#}\right)^{-1} & \text { else. }\end{cases}
$$

Iwasawa-Theory

Let / be a prime, $m \geq 1$

$$
\begin{gathered}
\equiv\left({ }_{A} M\right)^{\#} \otimes \mathbb{Q}_{l} \xrightarrow{A \vartheta_{l}} \operatorname{det}_{A_{l}} R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{m l}\right], M_{l}\right)^{\#} \\
\cong \operatorname{det}_{A_{l}} \Delta\left(F_{m}\right) \otimes \mathbb{Q}_{l} \\
\Delta\left(F_{m}\right):=R \operatorname{Hom}_{\mathbb{Z}_{l}}\left(R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{m l}\right], T_{l}\right), \mathbb{Z}_{l}\right)[-3]
\end{gathered}
$$

Iwasawa-algebra
where

$$
m=m_{0} I^{\operatorname{ord}_{l}(m)} ; \quad \ell= \begin{cases}l & l \neq 2 \\ 4 & l=2\end{cases}
$$

Define perfect complex of Λ-modules

$$
\Delta^{\infty}={\underset{n}{n}}_{\lim _{n}}^{\overleftarrow{n}} \Delta\left(L_{m_{0} / n}\right)
$$

Iwasawa-Theory, ctd.

Define Elements

$$
\begin{aligned}
\eta_{m_{0}} & :=\left(1-\zeta_{\ell m_{0} / n}\right)_{n \geq 0} \in{\underset{\check{n}}{\lim } \mathcal{O}_{F_{m_{0} / n}}\left[\frac{1}{m l}\right]^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_{l}=H^{1}\left(\Delta^{\infty}\right)}_{\sigma}:=\left(\sigma_{\ell m_{0} /^{n}}\right)_{n \geq 0} \in H^{2}\left(\Delta^{\infty}\right) \\
\theta_{m_{0}} & :=\left(g_{\ell m_{0} / n}\right)_{n \geq 0} \in\left(\gamma-\chi_{\text {cyclo }}(\gamma)\right)^{-1} \Lambda \subset Q(\Lambda)
\end{aligned}
$$

where

$$
g_{k}=-\sum_{0<a<k,(a, k)=1}\left(\frac{a}{k}-\frac{1}{2}\right) \tau_{a, k}^{-1} \in \mathbb{Q}\left[G_{k}\right]
$$

and $\tau_{a, k} \in G_{k}$ is defined by $\tau_{a, k}\left(\zeta_{k}\right)=\zeta_{k}^{a}$.

$$
\begin{aligned}
& 0 \rightarrow P^{\infty} \rightarrow H^{2}(\Delta) \rightarrow X^{\infty} \rightarrow 0 \\
& P^{\infty}={\underset{\check{n}}{ }}_{\lim } \operatorname{Pic}\left(\mathcal{O}_{F_{m_{0} / n}}[1 / m /]\right) \otimes_{\mathbb{Z}} \mathbb{Z}_{l}, \quad X^{\infty}={\underset{\sim}{n}}_{\lim _{n}} X_{\left\{v \mid / m_{0} \infty\right\}}\left(F_{m_{0} / n}\right) \otimes_{\mathbb{Z}} \mathbb{Z}_{l}
\end{aligned}
$$

Iwasawa-Theory, ctd.

Total quotient ring

$$
Q(\Lambda) \cong \prod_{\psi \in \hat{G}_{\ell m_{0}}^{Q}} Q(\psi)
$$

I-adic L-Functions

$$
\mathcal{L}:=\theta_{m_{0}}^{-1}+2 \cdot \eta_{m_{0}}^{-1} \otimes \sigma \in \operatorname{det}_{Q(\Lambda)}\left(\Delta^{\infty} \otimes_{\Lambda} Q(\Lambda)\right)
$$

Theorem(Main Conjecture). One has an equality of invertible Λ-submodules

$$
\Lambda \cdot \mathcal{L}=\operatorname{det}_{\Lambda} \Delta^{\infty}
$$

of $\operatorname{det}_{Q(\Lambda)}\left(\Delta^{\infty} \otimes_{\Lambda} Q(\Lambda)\right)$.

Iwasawa-Theory, ctd.

Since Λ is Cohen-Macaulay (even complete intersection) it suffices to show

$$
\Lambda_{\mathfrak{q}} \cdot \mathcal{L}=\operatorname{det}_{\Lambda_{\mathfrak{q}}} \Delta_{\mathfrak{q}}^{\infty}
$$

for all height one prime ideals \mathfrak{q}.
If $I \notin \mathfrak{q}$ then $\Lambda_{\mathfrak{q}}$ is a d.v.r. with fraction field $Q\left(\psi_{\mathfrak{q}}\right)$. Main conjecture reduces to

$$
\begin{array}{lr}
\operatorname{Fit}_{\mathfrak{q}}\left(P_{\mathfrak{q}}^{\infty}\right) \sim \operatorname{Fit}_{\mathfrak{q}}\left(H^{1}(\Delta)_{\mathfrak{q}} / \Lambda_{\mathfrak{q}} \cdot \eta_{m_{0}}\right) & \psi_{\mathfrak{q}} \text { even } \\
\operatorname{Fit}_{\mathfrak{q}}\left(P_{\mathfrak{q}}^{\infty}\right) \sim \theta_{m_{0}} \text { odd }
\end{array}
$$

which is the classical Iwasawa main conjecture (Theorem of Mazur-Wiles)

For odd $I \in \mathfrak{q}$ main conjecture follows from $\mu=0$ (Ferrero-Washington)

Proof for $I=2$

For $I=2$ and \mathfrak{q} a prime ideal of height one of Λ with $2 \in \mathfrak{q}$ the $\Lambda_{\mathfrak{q}}$-module

$$
H^{1}\left(\Delta^{\infty}\right)_{\mathfrak{q}} \cong H^{2}\left(\Delta^{\infty}\right)_{\mathfrak{q}} \cong \Lambda_{\mathfrak{q}} /(c-1)
$$

is not of finite projective dimension ($c \in \Lambda$ complex conjugation). The determinant $\operatorname{det}_{\Lambda_{\mathfrak{q}}} \Delta_{\mathfrak{q}}^{\infty}$ cannot be computed by passing to cohomology. One needs to construct Δ_{q}^{∞} explicitly, using results of Coleman, Leopoldt et al. The proof of the main conjecture for such \mathfrak{q} reduces to a $" \bmod 2$ congruence" between

$$
\left(\gamma-\chi_{\text {cyclo }}(\gamma)\right) g_{m}
$$

und

$$
\left(1-\zeta_{m}\right)^{\gamma-\chi_{\text {cyclo }}(\gamma)}
$$

expressed by the following Lemma.

Lemma Let $M \equiv 1 \bmod 4$ be an integer and $0<x<1$. The sign of the real number

$$
\frac{1-e^{2 \pi i x M}}{\left(1-e^{2 \pi i x}\right)^{M}}
$$

is $(-1)^{\lfloor\times M\rfloor}$.
m_{0} odd, $M=1+4 m_{0}=\chi_{\text {cyclo }}(\gamma)$

$$
\begin{gathered}
\left(1-\zeta_{m}^{a}\right)^{\gamma-\chi_{\text {cyclo }}(\gamma)}=\frac{1-e^{2 \pi i \frac{a}{m} M}}{\left(1-e^{2 \pi i \frac{a}{m}}\right)^{M}} \\
\left(\gamma-\chi_{\mathrm{cyclo}}(\gamma)\right) g_{m} \equiv \sum_{\substack{0<a<m \\
(a, m)=1}}\left\lfloor\frac{a M}{m}\right\rfloor \tau_{\mathrm{a}, m}^{-1} \quad \bmod 2
\end{gathered}
$$

Descent to F_{m}

For $n \in \mathbb{Z}$ there is a homomorphism $\kappa^{n}: \Lambda \rightarrow \mathbb{Z}\left[G_{m}\right]$ and an isomorphism

$$
\Delta^{\infty} \otimes_{\Lambda, \kappa^{n}}^{L} \mathbb{Z}_{l}\left[G_{m}\right] \cong R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{m l}\right], T_{l}(n)\right)
$$

For $n \leq 0$ one can compute the image of \mathcal{L} in

$$
\operatorname{det}_{\mathfrak{A}_{l}} R \Gamma_{c}\left(\mathbb{Z}\left[\frac{1}{m l}\right], M_{l}(n)\right) \cong \equiv\left({ }_{A} M(n)\right) \otimes \mathbb{Q}_{l}
$$

in terms of Beilinson-Soule elements in $K_{1-2 n}\left(F_{m}\right)$, verifying ETNC. For $n=0$ one needs theorems of Ferrero-Greenberg and Solomon to handle trivial zeros of \mathcal{L}.
To show ETNC for $n>0$ one proves compatibility of ETNC with the functional equation.

Elliptic curves over \mathbb{Q}

Theorem
(Skinner-Urban,Kato) f elliptic modular form of weight $k=2$ and level N, p a prime of good ordinary reduction,

- $\bar{\rho}_{f}$ irreducible
- For some $p \neq q \mid N \bar{\rho}_{f}$ is ramified at q

$$
\operatorname{char}\left(\operatorname{Sel}^{\Sigma}\left(T_{f}\right)\right) \sim \mathcal{L}_{\text {alg }}^{\Sigma}(f)
$$

Theorem

(X. Wan, Li Cai, Chao Li, Shuai Zhai) The full BSD formula

$$
\frac{L(E, 1)}{\Omega_{E}}=\frac{\#!I I(E / \mathbb{Q})}{\# E(\mathbb{Q})^{2}} \prod_{\ell \mid N} c_{\ell}
$$

holds for certain infinite families of E / \mathbb{Q} with $L(E, 1) \neq 0$. Example: An infinite family of quadratic twists of

$$
46 A 1: y^{2}+x y=x^{3}-x^{2}-10 x-12
$$

Adjoint motives of modular forms

Theorem
(Diamond-Flach-Guo) f elliptic modular form of weight $k \geq 2$, level N, coefficients in E, Σ set of primes λ of E such that

- $\lambda \mid N k$! or
- $\bar{\rho}_{f}$ restricted to $\mathbb{Q}\left(\sqrt{(-1)^{(p-1) / 2} p}\right)$ is not abs. irr.

If $\lambda \notin \Sigma$ the $T N C$ holds for $L(\operatorname{Ad}(f), 0)$ and $L(\operatorname{Ad}(f), 1)$
Proof uses Taylor-Wiles method and $R=T$ theorems.
Theorem
(Tilouine-Urban) Under similar assumptions TNC holds for $L(A d(f) \otimes \alpha, 0)$ where α is a Dirichlet character corresponding to a real quadratic field F.
Proof uses $R_{F}=T_{F}$ and relations between periods of f and f_{F}.

