Special values of Motivic L-functions Il
Bengaluru, August 10, 2022

Matthias Flach
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» Some history
» The example of number fields
» Determinant functors
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» General formulation of the Tamagawa number conjecture
(Deligne,Beilinson,Bloch,Kato,Fontaine, Perrin-Riou, ....)

» Proofs of known cases: lwasawa Theory and p-adic L-functions

» Detailed proof for Dirichlet L-functions

> Talk 3
» Zeta functions of arithmetic schemes
» Special values in terms of Weil-Arakelov cohomology groups and
(variants of) cyclic homology

> Talk 4

» Compatibility with the Conjecture of Birch and Swinnerton-Dyer
» Compatibility with the functional equation



Motives and motivic structures (over Q)
X — Spec(Q) smooth, projective variety,

Mgm(X)* = h(X) = @ h'(X)[~i] € Ob DMgn(Q)g  (def. by Voevodsky)

M = hi(X)(j) for i,j € Z, more generally M € DMgm((@)(g (heart of
conjectural t-structure), leads to a

” Motivic structure”:

M, = Hét(X@,Q,)(j) continuous rep’n of Gy
Mg = H'(X(C),Q)(j) pure Q-Hodge structure over R
Mag = Hip(X/Q)(j) filtered Q-vector space

Comparison isomorphisms:

M; = Mgq, Msc=Mirc, Mgy = Mdir six
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Motivic L-functions

P,(T) = det(1 — Tt - T|MP) £ Q[T]

~ao

X/\@J‘\,
\./—\

Q,':

Re(s) >>0

= H PP(p_S)_la

h®(Spec(F))())
F(j +s) (Dedekind Zeta-Function)

V=1)))(0) = Q(0) & Q(e)
€,s) (Dirichlet L-Function)

,5) (Hecke L-Function for a character ¢ of Q(i))
where @ =1 mod (1+14)?

— X

(E),s) = L(f,s) (f weight 2 cusp form on Xp(37))



Meromorphic continuation

Conjecture: L(M,s) has meromorphic continuation to all s € C and
satisfies
AM,s) = e(M,s)A(M*,1 —s)

where
ANM,s) = Loo(M,s)L(M,s)
Loo(M,5) = [ ] Fe(s = p)" " [ Tuls = p)" Tals —p+1)""

Ma(s) =7 M), Te(s) = 2(2m) T (s)

Known for

> hO(X) = h°(Spec(l'(X, Ox))

» h'(X) for X/F an elliptic curve over F = Q or F real quadratic or
cubic (holomorphic continuation) or F totally real or CM
(meromorphic continuation)

> h(X)for X :z0 +2{ +25 =0

» Sym"h!(E) for E/Q an elliptic curve

» h?(X), X Shimura variety of dimension d



Motivic Cohomology

H®(M) :=Hompp(q), (Q(0), M) = CH/(X)q/hom for M = h*(X)(j)

K . 1(X)g for M = H(X)(j)

Hl(/\/l) = HOmDM(Q)Q(Q(O)’ M[l]) = {CHJ(X)?Q if2j—i—1=0

HY (M) :=H°(M)
H} (M) :=image of Kz(j'.)f,>1(%)<@ where X is regular, proper over Spec(Z)
MB,(C = MdR,(C induces ay : M‘;R — (MdR/MgR)R-
Conjecture Mot..: There exists an exact sequence
0 — HAM)g S ker(anm) — HE(M*(1))5 2
Hi (M)g = coker(apn) — HE(M*(1));z — 0

¢ = cycle class map, h = height pairing, and r = Beilinson regulator.



Vanishing order
Taylor expansion at s =0
L(M,s) = L*(M)s"™M) ...
Aim: Describe L*(M) € R* and r(M) € Z
Conjecture (Van): r(M) = dimg H} (M*(1)) — dimg H2(M*(1))

Known cases:
» F number field, M = h%(Spec(F))(j), j € Z,

Ki-2(Of)e j<0
dimg H}(M*(1)) — dimg H2(M*(1)) = { —1 j=1
0 j>2

> M = h*(E)(1), E/Q elliptic curve, ords—; L(E,s) < 1, individual
examples with ords—; L(E,s) = 2,3.



Rationality conjecture
Define Fundamental Line
=(M) :=detg(H}(M)) & dety ' (H} (M)
®detg(H; (M*(1))*) ® dety ' (HA(M*(1))")
® dety' (MZ) © detg(Mar/Mdg),
Conjecture (Rat): ¥ (L*(M)™1) € (M) ® 1 where
Yoo :REZE(M)®gR
is the isomorphism induced by Conjecture Mot..

Known cases:
» F number field, M = h°(Spec(F))(j), j € Z (Borel)

» X/F Shimura curve over totally real F, A direct factor of Jac(X),
M = h*(A)(1), ords—1 L(A,s) < 1 (Gross-Zagier-Zhang formula)



An example with =(M) = Q

F totally real, j < 0 odd, M = h%(Spec(F))(j)

since all spaces in the definition of =(M) are zero!

For F=Q

n

¢(1—n) By here z iB z
— = —— w _ = n—
n n!

zZ __
e 1 pard

For F totally real (¢(j) € Q for j < 0 by the Klingen-Siegel theorem.



Galois cohomology

Fix prime /. For each prime p define a complex Rl ¢(Qp, M)

[Ny Vi I #p
- (1_F\rpv7r)
Dcris(Ml) E— Dcris(Ml) 2] DdR(MI)/DgR(M/) I= P

There is a distinguished triangle of Q,-vector spaces.
Rr,r((@p7 M/) — RF(QW M/) — Rr/f((@p, M/).

Let S be a finite set of primes containing /, oo and primes of bad
reduction. There are distinguished triangles

RTe(ZIg], Mi) = RT(Z[g], M) — @D RT(Qp, M)

pES
RI+(Q, M) — Rr(Z[%], M;) = @D RT ¢(Qp, M)
peS
ch(Z[%], M) = RT+(Q, M) — €D RT((Q,, M) (1)

peS



Galois cohomology and motivic cohomology

Conjecture Mot;: a) The cycle class map induces an isomorphism
H2(M)g, = HY(Q, M;) (Tate conjecture).

b) The Chern class maps induce an isomorphism H} (M)g, = H} (Q, M))
(Bloch-Kato).

Poitou-Tate duality gives an isomorphism
HH(Q, M) = HZ(Q, M7 (1))

for all /. Hence Conjecture Mot; computes the cohomology of
Rl ¢(Q, M)) in all degrees.



Integrality Conjecture

The exact triangle (1) and conjecture Mot; induce an isomorphism
9y =(M) ®@q Q) = detg, ch(Z[%], M;)
Let T C M, be any Gg-stable Z;-lattice.
Conjecture (Int):
Zy - 9190 (L*(M) 1) = dety, RFC(Z[%], 7))

This conjecture (for all /) determines L*(M) € R* up to sign. It is
independent of the choice of S and T;.
Known cases:
> M = h%(Spec(F))(j), j = 0,1 (Analytic class number formula)
> M = h%(Spec(F))(j), j € Z, F/Q abelian
> M = h%(Spec(F))(j), j € Z, or F/K abelian, K imaginary quadratic,
I > 3 split in K (Johnson-Leung)
» M = h1(E)(1), ords—; L(E,s) =0, I ¢ S, S finite, E/Q CM elliptic
curve (Rubin), E/Q semistable elliptic curve (Kato, Skinner-Urban,
Wan)



The equivariant refinement

Let A be a finite-dimensional semisimple Q-algebra, acting on M.
Examples.

> X abelian variety, M = h*(X), A= End(X)qg

» X variety with action of a finite group G, e.g.
X = Xf X spec(@) Spec(F), F/Q Galois with group G,
M = H(X)(). A=QIG].

For simplicity assume A commutative, so
A= E x---x E,, (E number fields)

Define L(aM,s), =(aM), a¥so, a0 as above using the determinant
functor over A, Ag, A (= AR Q.

> L(AM,S) € Ac = HT(C
> r(aM) € H(Spec(Ac),Z) =21, Z
> L*(aM) € (Ar)™



The equivariant refinement, ctd.
Aﬁoo : A]R = E(AM) ®Q R

— 1
AU :(AM) 20) Q= detA, ch7ct(Z[§], M/)

Equivariant Tamagawa number conjecture - ETNC
Van r(aM) = dima H}(M*(1)) — dima H2(M*(1))

Rat AU (L*(aM)™ ) eZ(aM) ® 1

Int 20 - 494000 (L*(aM) 1) = dety, RFC(Z[%], Ti)

Here 2l C A is a Z-order so that there is a projective Gg-stable
A = A ® Zs-lattice T; C V.

Example. F/K Galois with group G, A = Z[G], M = h°(Spec(F))(j)
Conj. Int known if F/Q abelian for all j. In general Rat not even known
for j =0,1! (Stark conjectures)



Non-commutative coefficients

For any ring R
T§1K(R) %J’P(R)

where P(R) is a Picard category (groupoid with ®). Universal
Determinant functor

DPe(R)® — K(R) — 7<1K(R) = P(R)



Non-commutative coefficients

For any ring R
T§1K(R) %J’P(R)

where P(R) is a Picard category (groupoid with ®). Universal
Determinant functor

DPe(R)® — K(R) — 7<1K(R) = P(R)
If R is commutative semilocal then
moP(R) = Ko(R) = H°(Spec(R),Z); m™P(R) = Ki(R) = R*

Hence: universal determinant functor = usual graded determinant
functor



Non-commutative coefficients

For any ring R
T§1K(R) %J’P(R)

where P(R) is a Picard category (groupoid with ®). Universal
Determinant functor

DPe(R)® — K(R) — 7<1K(R) = P(R)
If R is commutative semilocal then
moP(R) = Ko(R) = H°(Spec(R),Z); m™P(R) = Ki(R) = R*

Hence: universal determinant functor = usual graded determinant
functor

R=AA® Q) A® Z; semilocal
If A is non-commutative use universal determinant functor.



Proven cases of the weak TNC

One has the following situation:

» Conjecture Mot reduces to H}(M)gr = HL(M) := coker(am).

> dima, HL(M) = 1.

» There is £ € H}(M) with Ag - r(€) = HH(M).
Main example. f elliptic modular form of weight k > 2, M = M(f)()),
j<o.

> Weak form of Rat is known (Bloch-Beilinson)

> Int follows from the main conjecture of Kato/Skinner/Urban if one
also assumes Ag, - r1(£) = H} (M) (Gealy).



Dirichlet L-Functions

F = Fm:=Q(C(m); M = h°(Spec(Fn))(0)
G = G, := Gal(F,,/Q) = (Z/mZ)*
A=QlGa= ] ew

Xeérar
L(aM,s) = (L(n,5)),ee € ][ C= Ac
776(3'

Note:
Cr,(s) = H L(n,s)eC

176@

ords_ol(1,) = 0 n=1lorn(-1)=-1
ORI T £ 1land (-1 =1

= dimg(,)(OF @761 Q7))



Leading Taylor coefficient at s =0

“ _ 1 _ 2mia/fy,
7 L(n,s) o 2 log |1 —e In(a)
Z(aM)*
=[J(OF, @ QX)) © (Xpujeey @ QX))
A x) A
< ] @)
other x

{2 NFm: Felll = Cr ]t ®om x # 1 even

(L(x, 0)#)_1 else.



Iwasawa-Theory

Let / be a prime, m>1

Z(aM)* 2 Q ELIN dety, RFC(Z[%L M,)#
> deta, A(Fm) ® Qy
1
A(Fp) = RHomZ,(RFC(Z[m], T1), Z;)[-3]

Iwasawa-algebra

N = 1im Zy[Gmin] = Zi[ Germ ][ T]]

n

where

I 1#£2
m= molord/(m); = 7&
4 =2
Define perfect complex of A-modules

A% = lim A(Lpyr)

n



Iwasawa-Theory, ctd.
Define Elements
g (1 = Comyie)nzo € @OFWO,N[;lx ©0.Z = H(B™)
0 :=(0pmgin)n>0 € H2(A°°)
Omy :=(gemy1)n0 € (Y = Xeyelo(7)) T'A € Q(A)

where

a=- > (3-3)nicas
)=1

0<a<k,(a,k

and 7, x € Gy is defined by 7, «(¢k) = (3.

0= P™ = H*(A) = X™ =0

%

n

P =l PiC(OFmo’" [1/”’7/]) ®z ZI’ X* = |i<_mX{V\/mooo}(Fmol") ®z Z



lwasawa-Theory, ctd.

Total quotient ring
QM= [ ew)

AQ,
11}6 GZmO

[-adic L-Functions

L:=0,+2 n,! ®c € detgpn) (A™ @r Q(N))

0

Theorem(Main Conjecture). One has an equality of invertible

A-submodules
A - L = dety A*®

of detQ(/\) (AOO (SN Q(/\))



Iwasawa-Theory, ctd.

Since A is Cohen-Macaulay (even complete intersection) it suffices to
show
Nq - L =dety, AL

for all height one prime ideals g.
If I ¢ q then A is a d.v.r. with fraction field Q(v4). Main conjecture
reduces to

Fitq(Pg°) ~Fitq(H YA)g/Ng  Tmg) 1q even
Fitq(Py”) ~0m, hq odd

which is the classical lwasawa main conjecture (Theorem of Mazur-Wiles)

For odd / € q main conjecture follows from y = 0 (Ferrero-Washington)



Proof for [ =2
For / = 2 and g a prime ideal of height one of A with 2 € q the Aj-module
HI(AOC)CI = Hz(Am)q =Nq/(c—-1)

is not of finite projective dimension (¢ € A complex conjugation). The
determinant dety, AZ° cannot be computed by passing to cohomology.
One needs to construct AZ® explicitly, using results of Coleman, Leopoldt
et al. The proof of the main conjecture for such ¢ reduces to a "mod 2
congruence” between

(7 — Xeyelo(7))&m

und
(1- Cm)wfxcycuo(w)

expressed by the following Lemma.



Lemma Let M =1 mod 4 be an integer and 0 < x < 1. The sign of the

real number
1— e27rixM

is (—1)bMI,
my odd, M =1+ 4my = chclo('Y)
2mwi2 M
(1 _ Ca )'Y_chclo('Y) - ]-_ei':’
m (1 _ eQm;)M

aM | _
(’V - XCYCIO(’Y))gm = E LmJ Ta,r}v mod 2
0<a<m
(a,m)=1



Descent to F,,

For n € Z there is a homomorphism " : A — Z[G,] and an isomorphism
1
A® @ 0 Zy[G] = RTe(Z[-—], Ti(n)
For n < 0 one can compute the image of L in
1 —
dety, RFC(Z[W]’ M(n)) = =(aM(n)) @ Q,
in terms of Beilinson-Soule elements in Ki_2,(F,,), verifying ETNC.
For n = 0 one needs theorems of Ferrero-Greenberg and Solomon to
handle trivial zeros of L.

To show ETNC for n > 0 one proves compatibility of ETNC with the
functional equation.



Elliptic curves over Q

Theorem
(Skinner-Urban,Kato) f elliptic modular form of weight k = 2 and level
N, p a prime of good ordinary reduction,

» D, irreducible
» For some p # q | N pf is ramified at q
char(Selz(Tf)) Ea,g( )

Theorem

(X. Wan, Li Cai, Chao Li, Shuai Zhai) The full BSD formula

L(E, 1) #11I( E/Q
Qs  #EQ [

LN

holds for certain infinite families of E/Q with L(E,1) # 0. Example: An
infinite family of quadratic twists of

46A1: y? +xy = x> — x* — 10x — 12



Adjoint motives of modular forms

Theorem
(Diamond-Flach-Guo) f elliptic modular form of weight k > 2, level N,
coefficients in E, ¥ set of primes A of E such that

> \| Nkl or

> 7 restricted to Q(+/(—1)(P—1/2p) is not abs. irr.
If X\ ¢ © the TNC holds for L(Ad(f),0) and L(Ad(f),1)
Proof uses Taylor-Wiles method and R = T theorems.
Theorem
(Tilouine-Urban) Under similar assumptions TNC holds for

L(Ad(f) ® «,0) where « is a Dirichlet character corresponding to a real
quadratic field F.

Proof uses Rr = T¢ and relations between periods of f and fr.



