Special values of Motivic L-functions II Bengaluru, August 10, 2022

Matthias Flach

- ► Talk 1
 - Some history
 - ► The example of number fields
 - Determinant functors
- ► Talk 2
 - General formulation of the Tamagawa number conjecture (Deligne, Beilinson, Bloch, Kato, Fontaine, Perrin-Riou,....)
 - Proofs of known cases: Iwasawa Theory and p-adic L-functions
 - Detailed proof for Dirichlet L-functions
- ► Talk 3
 - Zeta functions of arithmetic schemes
 - Special values in terms of Weil-Arakelov cohomology groups and (variants of) cyclic homology
- ► Talk 4
 - ► Compatibility with the Conjecture of Birch and Swinnerton-Dyer
 - Compatibility with the functional equation

Motives and motivic structures (over Q)

 $X o \mathsf{Spec}(\mathbb{Q})$ smooth, projective variety,

$$M_{gm}(X)^* =: h(X) \stackrel{?}{=} \bigoplus_{i \in \mathbb{Z}} h^i(X)[-i] \in \mathsf{Ob}\ \mathcal{D}M_{gm}(\mathbb{Q})_{\mathbb{Q}} \quad (\mathsf{def.}\ \mathsf{by}\ \mathsf{Voevodsky})$$

 $M=h^i(X)(j)$ for $i,j\in\mathbb{Z}$, more generally $M\in DM_{gm}(\mathbb{Q})^{\heartsuit}_{\mathbb{Q}}$ (heart of conjectural t-structure), leads to a

"Motivic structure":

$$M_I=H^i_{et}(X_{ar{\mathbb{Q}}},\mathbb{Q}_I)(j)$$
 continuous rep'n of $G_{\mathbb{Q}}$ $M_B=H^i(X(\mathbb{C}),\mathbb{Q})(j)$ pure \mathbb{Q} -Hodge structure over \mathbb{R} $M_{dR}=H^i_{dR}(X/\mathbb{Q})(j)$ filtered \mathbb{Q} -vector space

Comparison isomorphisms:

$$M_I \cong M_{B,\mathbb{Q}_I}, \quad M_{B,\mathbb{C}} \cong M_{dR,\mathbb{C}}, \quad M_{I,B_{dR}} \cong M_{dR,B_{dR}}$$

Motivic L-functions

$$P_p(T) = \det(1 - \operatorname{Fr}_p^{-1} \cdot T | M_I^{I_p}) \stackrel{?}{\in} \mathbb{Q}[T]$$
 $L(M, s) = \prod_p P_p(p^{-s})^{-1}, \quad Re(s) >> 0$

- ► $M = \mathbb{Q}(j)_F := h^0(\operatorname{Spec}(F))(j)$ $L(\mathbb{Q}(j)_F, s) = \zeta_F(j+s)$ (Dedekind Zeta-Function)
- ► $M = h^0(\operatorname{Spec}(\mathbb{Q}(\sqrt{-1})))(0) = \mathbb{Q}(0) \oplus \mathbb{Q}(\epsilon)$ $L(\mathbb{Q}(\epsilon), s) = L(\epsilon, s)$ (Dirichlet L-Function)
- ► $E: y^2 = x^3 x$ $L(h^1(E), s) = L(\phi, s)$ (Hecke L-Function for a character ϕ of $\mathbb{Q}(i)$) Here $\phi((\alpha)) = \alpha$ where $\alpha \equiv 1 \mod (1+i)^3$
- ► $E: y^2 + y = x^3 x$ $L(h^1(E), s) = L(f, s)$ (f weight 2 cusp form on $X_0(37)$)

Meromorphic continuation

Conjecture: L(M,s) has meromorphic continuation to all $s \in \mathbb{C}$ and satisfies

$$\Lambda(M,s) = \epsilon(M,s)\Lambda(M^*,1-s)$$

where

$$egin{aligned} \Lambda(M,s) &= L_{\infty}(M,s) L(M,s) \ L_{\infty}(M,s) &= \prod_{p < q} \Gamma_{\mathbb{C}}(s-p)^{h^{p,q}} \prod_{p} \Gamma_{\mathbb{R}}(s-p)^{h^{p,+}} \Gamma_{\mathbb{R}}(s-p+1)^{h^{p,-}} \ \Gamma_{\mathbb{R}}(s) &= \pi^{-rac{s}{2}} \Gamma(rac{s}{2}), \quad \Gamma_{\mathbb{C}}(s) &= 2(2\pi)^{-s} \Gamma(s) \end{aligned}$$

Known for

- $\blacktriangleright h^0(X) = h^0(\operatorname{Spec}(\Gamma(X, \mathcal{O}_X)))$
- ▶ $h^1(X)$ for X/F an elliptic curve over $F = \mathbb{Q}$ or F real quadratic or cubic (holomorphic continuation) or F totally real or CM (meromorphic continuation)
- $h^1(X)$ for $X: z_0^n + z_1^n + z_2^n = 0$
- ▶ $\operatorname{Sym}^n h^1(E)$ for E/\mathbb{Q} an elliptic curve
- \blacktriangleright $h^d(X)$, X Shimura variety of dimension d

Motivic Cohomology

$$H^{0}(M) := \operatorname{Hom}_{DM(\mathbb{Q})_{\mathbb{Q}}}(\mathbb{Q}(0), M) = CH^{j}(X)_{\mathbb{Q}}/hom \text{ for } M = h^{2j}(X)(j)$$

$$H^{1}(M) := \operatorname{Hom}_{DM(\mathbb{Q})_{\mathbb{Q}}}(\mathbb{Q}(0), M[1]) = \begin{cases} K_{2j-i-1}^{(j)}(X)_{\mathbb{Q}} & \text{for } M = h^{i}(X)(j) \\ CH^{j}(X)_{\mathbb{Q}}^{0} & \text{if } 2j - i - 1 = 0 \end{cases}$$

$$H_f^0(M) := H^0(M)$$

$$H^1_f(M):=$$
image of $K^{(j)}_{2j-i-1}(\mathfrak{X})_{\mathbb{Q}}$ where \mathfrak{X} is regular, proper over $\mathrm{Spec}(\mathbb{Z})$

$$M_{B,\mathbb{C}} \cong M_{dR,\mathbb{C}}$$
 induces $\alpha_M : M_{B,\mathbb{R}}^+ \to (M_{dR}/M_{dR}^0)_{\mathbb{R}}$.

Conjecture Mot $_{\infty}$: There exists an exact sequence

$$0 \to H_f^0(M)_{\mathbb{R}} \xrightarrow{c} \ker(\alpha_M) \to H_f^1(M^*(1))_{\mathbb{R}}^* \xrightarrow{h} H_f^0(M)_{\mathbb{R}} \xrightarrow{r} \operatorname{coker}(\alpha_M) \to H_f^0(M^*(1))_{\mathbb{R}}^* \to 0$$

c= cycle class map, h= height pairing, and r= Beilinson regulator.

Vanishing order

Taylor expansion at s = 0

$$L(M,s) = L^*(M)s^{r(M)} + \cdots$$

Aim: Describe $L^*(M) \in \mathbb{R}^{\times}$ and $r(M) \in \mathbb{Z}$

Conjecture (Van): $r(M) = \dim_{\mathbb{Q}} H_f^1(M^*(1)) - \dim_{\mathbb{Q}} H_f^0(M^*(1))$

Known cases:

▶ *F* number field, $M = h^0(\operatorname{Spec}(F))(j)$, $j \in \mathbb{Z}$,

$$\dim_{\mathbb{Q}} H^1_f(M^*(1)) - \dim_{\mathbb{Q}} H^0_f(M^*(1)) = \begin{cases} K_{1-2j}(\mathcal{O}_F^{\times})_{\mathbb{Q}} & j \leq 0 \\ -1 & j = 1 \\ 0 & j \geq 2 \end{cases}$$

▶ $M = h^1(E)(1)$, E/\mathbb{Q} elliptic curve, $\operatorname{ord}_{s=1} L(E, s) \leq 1$, individual examples with $\operatorname{ord}_{s=1} L(E, s) = 2, 3$.

Rationality conjecture

Define Fundamental Line

$$\begin{split} \Xi(M) := & \det_{\mathbb{Q}}(H_f^0(M)) \otimes \det_{\mathbb{Q}}^{-1}(H_f^1(M)) \\ & \otimes \det_{\mathbb{Q}}(H_f^1(M^*(1))^*) \otimes \det_{\mathbb{Q}}^{-1}(H_f^0(M^*(1))^*) \\ & \otimes \det_{\mathbb{Q}}^{-1}(M_B^+) \otimes \det_{\mathbb{Q}}(M_{dR}/M_{dR}^0), \end{split}$$

Conjecture (Rat): $\vartheta_{\infty}(L^*(M)^{-1}) \in \Xi(M) \otimes 1$ where

$$\vartheta_{\infty}: \mathbb{R} \cong \Xi(M) \otimes_{\mathbb{Q}} \mathbb{R}$$

is the isomorphism induced by Conjecture \mathbf{Mot}_{∞} .

Known cases:

- ▶ *F* number field, $M = h^0(\operatorname{Spec}(F))(j)$, $j \in \mathbb{Z}$ (Borel)
- ▶ X/F Shimura curve over totally real F, A direct factor of Jac(X), $M = h^1(A)(1)$, ord_{s=1} $L(A, s) \le 1$ (Gross-Zagier-Zhang formula)

An example with $\Xi(M) = \mathbb{Q}$

F totally real, j < 0 odd, $M = h^0(\operatorname{Spec}(F))(j)$

$$\Xi(M)=\mathbb{Q}$$

since all spaces in the definition of $\Xi(M)$ are zero!

For $F = \mathbb{Q}$

$$\zeta(1-n) = -\frac{B_n}{n}$$
 where $\frac{z}{e^z - 1} = \sum_{n=0}^{\infty} B_n \frac{z^n}{n!}$

For F totally real $\zeta_F(j) \in \mathbb{Q}$ for $j \leq 0$ by the **Klingen-Siegel** theorem.

Galois cohomology

Fix prime *I*. For each prime *p* define a complex $R\Gamma_f(\mathbb{Q}_p, M_I)$

$$= \begin{cases} M_I^{I_p} \xrightarrow{1-\operatorname{Fr}_p} M_I^{I_p} & I \neq p \\ D_{cris}(M_I) \xrightarrow{(1-\operatorname{Fr}_p,\pi)} D_{cris}(M_I) \oplus D_{dR}(M_I)/D_{dR}^0(M_I) & I = p \end{cases}$$

There is a distinguished triangle of \mathbb{Q}_{I} -vector spaces.

$$R\Gamma_f(\mathbb{Q}_p, M_I) \to R\Gamma(\mathbb{Q}_p, M_I) \to R\Gamma_{/f}(\mathbb{Q}_p, M_I).$$

Let S be a finite set of primes containing I, ∞ and primes of bad reduction. There are distinguished triangles

$$R\Gamma_{c}(\mathbb{Z}[\frac{1}{S}], M_{I}) \to R\Gamma(\mathbb{Z}[\frac{1}{S}], M_{I}) \to \bigoplus_{p \in S} R\Gamma(\mathbb{Q}_{p}, M_{I})$$

$$R\Gamma_{f}(\mathbb{Q}, M_{I}) \to R\Gamma(\mathbb{Z}[\frac{1}{S}], M_{I}) \to \bigoplus_{p \in S} R\Gamma_{/f}(\mathbb{Q}_{p}, M_{I})$$

$$R\Gamma_{c}(\mathbb{Z}[\frac{1}{S}], M_{I}) \to R\Gamma_{f}(\mathbb{Q}, M_{I}) \to \bigoplus_{p \in S} R\Gamma_{f}(\mathbb{Q}_{p}, M_{I})$$

$$(1)$$

Galois cohomology and motivic cohomology

Conjecture Mot_{*l*}: a) The cycle class map induces an isomorphism $H_f^0(M)_{\mathbb{Q}_l} \cong H_f^0(\mathbb{Q}, M_l)$ (Tate conjecture).

b) The Chern class maps induce an isomorphism $H_f^1(M)_{\mathbb{Q}_l} \cong H_f^1(\mathbb{Q}, M_l)$ (Bloch-Kato).

Poitou-Tate duality gives an isomorphism

$$H_f^i(\mathbb{Q}, M_I) \cong H_f^{3-i}(\mathbb{Q}, M_I^*(1))^*$$

for all i. Hence Conjecture \mathbf{Mot}_I computes the cohomology of $R\Gamma_f(\mathbb{Q}, M_I)$ in all degrees.

Integrality Conjecture

The exact triangle (1) and conjecture Mot_i induce an isomorphism

$$\vartheta_I: \Xi(M) \otimes_{\mathbb{Q}} \mathbb{Q}_I \cong \det_{\mathbb{Q}_I} R\Gamma_c(\mathbb{Z}[\frac{1}{S}], M_I)$$

Let $T_I \subset M_I$ be any $G_{\mathbb{Q}}$ -stable \mathbb{Z}_I -lattice.

Conjecture (Int):

$$\mathbb{Z}_{I} \cdot \vartheta_{I} \vartheta_{\infty}(L^{*}(M)^{-1}) = \det_{\mathbb{Z}_{I}} R\Gamma_{c}(\mathbb{Z}[\frac{1}{S}], T_{I})$$

This conjecture (for all I) determines $L^*(M) \in \mathbb{R}^{\times}$ up to sign. It is independent of the choice of S and T_I .

Known cases:

- $M = h^0(\operatorname{Spec}(F))(j), j = 0, 1$ (Analytic class number formula)
- ▶ $M = h^0(\operatorname{Spec}(F))(j), j \in \mathbb{Z}, F/\mathbb{Q}$ abelian
- ▶ $M = h^0(\operatorname{Spec}(F))(j)$, $j \in \mathbb{Z}$, or F/K abelian, K imaginary quadratic, I > 3 split in K (Johnson-Leung)
- ▶ $M = h^1(E)(1)$, ord_{s=1} L(E,s) = 0, $l \notin S$, S finite, E/\mathbb{Q} CM elliptic curve (Rubin), E/\mathbb{Q} semistable elliptic curve (Kato, Skinner-Urban, Wan)

The equivariant refinement

Let A be a finite-dimensional semisimple \mathbb{Q} -algebra, acting on M. **Examples.**

- ▶ X abelian variety, $M = h^1(X)$, $A = \text{End}(X)_{\mathbb{Q}}$
- ▶ X variety with action of a finite group G, e.g. $X = X' \times_{\operatorname{Spec}(\mathbb{Q})} \operatorname{Spec}(F)$, F/\mathbb{Q} Galois with group G, $M = h^i(X)(j)$, $A = \mathbb{Q}[G]$.

For simplicity assume A commutative, so

$$A \cong E_1 \times \cdots \times E_r$$
, (E_i number fields)

Define $L({}_AM,s)$, $\Xi({}_AM)$, ${}_A\vartheta_{\infty}$, ${}_A\vartheta_I$ as above using the determinant functor over $A,A_{\mathbb{R}},A_I:=A\otimes \mathbb{Q}_I$.

- $L(_AM, s) \in A_{\mathbb{C}} \cong \prod_{\tau} \mathbb{C}$
- $ightharpoonup r(_AM) \in H^0(\operatorname{Spec}(A_{\mathbb C}), \mathbb Z) \cong \prod_{\tau} \mathbb Z$
- $L^*(_AM) \in (A_{\mathbb{R}})^{\times}$

The equivariant refinement, ctd.

$${}_{A}artheta_{\infty}:A_{\mathbb{R}}\cong \Xi({}_{A}M)\otimes_{\mathbb{Q}}\mathbb{R}$$
 ${}_{A}artheta_{I}:\Xi({}_{A}M)\otimes_{\mathbb{Q}}\mathbb{Q}_{I}\cong \det_{A_{I}}R\Gamma_{c,\mathrm{et}}(\mathbb{Z}[rac{1}{S}],M_{I})$

Equivariant Tamagawa number conjecture - ETNC

Van
$$r(_AM) = \dim_A H^1_f(M^*(1)) - \dim_A H^0_f(M^*(1))$$

Rat $_A\vartheta_\infty(L^*(_AM)^{-1}) \in \Xi(_AM) \otimes 1$
Int $\mathfrak{A}_I \cdot _A\vartheta_{IA}\vartheta_\infty(L^*(_AM)^{-1}) = \det_{\mathfrak{A}_I} R\Gamma_c(\mathbb{Z}[\frac{1}{S}], T_I)$

Here $\mathfrak{A} \subset A$ is a \mathbb{Z} -order so that there is a **projective** $G_{\mathbb{Q}}$ -stable $\mathfrak{A}_I := \mathfrak{A} \otimes \mathbb{Z}_I$ -lattice $T_I \subseteq V_I$.

Example. F/K Galois with group G, $\mathfrak{A} = \mathbb{Z}[G]$, $M = h^0(\operatorname{Spec}(F))(j)$ Conj. **Int** known if F/\mathbb{Q} abelian for all j. In general **Rat** not even known for j = 0, 1! (Stark conjectures)

Non-commutative coefficients

For any ring R

$$\tau_{\leq 1}K(R)\cong \mathcal{P}(R)$$

where $\mathcal{P}(R)$ is a **Picard category** (groupoid with \otimes). Universal Determinant functor

$$\mathcal{D}^{\mathsf{perf}}(R)^{\cong} o \mathsf{K}(R) o au_{\leq 1} \mathsf{K}(R) \cong \mathcal{P}(R)$$

Non-commutative coefficients

For any ring *R*

$$\tau_{\leq 1}K(R)\cong \mathcal{P}(R)$$

where $\mathcal{P}(R)$ is a **Picard category** (groupoid with \otimes). Universal Determinant functor

$$\mathcal{D}^{\mathsf{perf}}(R)^{\cong} o \mathsf{K}(R) o au_{\leq 1} \mathsf{K}(R) \cong \mathcal{P}(R)$$

If R is commutative semilocal then

$$\pi_0 \mathcal{P}(R) = K_0(R) = H^0(\operatorname{Spec}(R), \mathbb{Z}); \quad \pi_1 \mathcal{P}(R) = K_1(R) = R^{\times}$$

Hence: universal determinant functor = usual graded determinant functor

Non-commutative coefficients

For any ring R

$$\tau_{\leq 1}K(R)\cong \mathcal{P}(R)$$

where $\mathcal{P}(R)$ is a **Picard category** (groupoid with \otimes). Universal Determinant functor

$$\mathcal{D}^{perf}(R)^{\cong} o K(R) o au_{\leq 1} K(R) \cong \mathcal{P}(R)$$

If R is commutative semilocal then

$$\pi_0 \mathcal{P}(R) = K_0(R) = H^0(\operatorname{Spec}(R), \mathbb{Z}); \quad \pi_1 \mathcal{P}(R) = K_1(R) = R^{\times}$$

Hence: universal determinant functor = usual graded determinant functor

 $R = A, A \otimes \mathbb{Q}_I, \ \mathfrak{A} \otimes \mathbb{Z}_I$ semilocal If A is non-commutative use universal determinant functor.

Proven cases of the weak TNC

One has the following situation:

- ▶ Conjecture \mathbf{Mot}_{∞} reduces to $H^1_f(M)_{\mathbb{R}} \cong H^1_{\mathcal{D}}(M) := \operatorname{coker}(\alpha_M)$.
- $\blacktriangleright \ \operatorname{dim}_{A_{\mathbb{R}}} H^1_{\mathcal{D}}(M) = 1.$
- ▶ There is $\xi \in H^1_f(M)$ with $A_{\mathbb{R}} \cdot r(\xi) = H^1_{\mathcal{D}}(M)$.

Main example. f elliptic modular form of weight $k \ge 2$, M = M(f)(j), $j \le 0$.

- ▶ Weak form of Rat is known (Bloch-Beilinson)
- ▶ Int follows from the main conjecture of Kato/Skinner/Urban if one also assumes $A_{\mathbb{Q}_l} \cdot r_l(\xi) = H^1_f(M_l)$ (Gealy).

Dirichlet L-Functions

$$F = F_m := \mathbb{Q}(\zeta_m); \quad M = h^0(\operatorname{Spec}(F_m))(0)$$
 $G = G_m := \operatorname{Gal}(F_m/\mathbb{Q}) \cong (\mathbb{Z}/m\mathbb{Z})^{ imes}$
 $A = \mathbb{Q}[G_m] \cong \prod_{\chi \in \hat{G}_{rat}} \mathbb{Q}(\chi)$
 $L(AM, s) = (L(\eta, s))_{\eta \in \hat{G}} \in \prod_{\eta \in \hat{G}} \mathbb{C} \cong A_{\mathbb{C}}$

Note:

$$\zeta_{\mathcal{F}_m}(s) = \prod_{\eta \in \hat{\mathcal{G}}} \mathit{L}(\eta, s) \in \mathbb{C}$$

$$egin{aligned} \operatorname{ord}_{s=0} \mathcal{L}(\eta,s) &= egin{cases} 0 & \eta = 1 \text{ or } \eta(-1) = -1 \ 1 & \eta
eq 1 \text{ and } \eta(-1) = 1 \end{cases} \ &= \dim_{\mathbb{Q}(\eta)}(\mathcal{O}_F^{ imes} \otimes_{\mathbb{Z}[G]} \mathbb{Q}(\eta)) \end{aligned}$$

Leading Taylor coefficient at s = 0

$$\begin{split} L(\eta,0) &= -\sum_{a=1}^{f_{\eta}} \left(\frac{a}{f_{\eta}} - \frac{1}{2}\right) \eta(a) \\ \frac{d}{ds} L(\eta,s) \bigg|_{s=0} &= -\frac{1}{2} \sum_{a=1}^{f_{\eta}} \log|1 - e^{2\pi i a/f_{\eta}}| \eta(a) \\ &\equiv ({}_{A}M)^{\#} \\ &= \prod_{\substack{\chi \neq 1 \text{ even}}} (\mathcal{O}_{F_{m}}^{\times} \underset{\mathfrak{A}}{\otimes} \mathbb{Q}(\chi))^{-1} \underset{\mathbb{Q}(\chi)}{\otimes} (X_{\{v \mid \infty\}} \underset{\mathfrak{A}}{\otimes} \mathbb{Q}(\chi)) \\ &\times \prod_{\text{other } \chi} \mathbb{Q}(\chi) \end{split}$$

$$_Aartheta_\infty(L^*(_AM)^{-1})_\chi =$$

$$\begin{cases} 2\cdot [F_m:F_{f_\chi}][1-\zeta_{f_\chi}]^{-1}\otimes\sigma_m & \chi
eq 1 \text{ even} \\ \left(L(\chi,0)^\#\right)^{-1} & \text{else.} \end{cases}$$

Iwasawa-Theory

Let l be a prime, $m \ge 1$

$$\Xi({}_{A}M)^{\#} \otimes \mathbb{Q}_{I} \xrightarrow{A^{\vartheta_{I}}} \det_{A_{I}} R\Gamma_{c}(\mathbb{Z}[\frac{1}{mI}], M_{I})^{\#}$$
$$\cong \det_{A_{I}} \Delta(F_{m}) \otimes \mathbb{Q}_{I}$$

$$\Delta(F_m) := R \operatorname{Hom}_{\mathbb{Z}_l}(R\Gamma_c(\mathbb{Z}[\frac{1}{ml}], T_l), \mathbb{Z}_l)[-3]$$

Iwasawa-algebra

$$\Lambda = \varprojlim_{n} \mathbb{Z}_{I}[G_{mI^{n}}] \cong \mathbb{Z}_{I}[G_{\ell m_{0}}][[T]]$$

where

$$m = m_0 I^{\operatorname{ord}_I(m)}; \quad \ell = \begin{cases} I & I \neq 2 \\ 4 & I = 2. \end{cases}$$

Define perfect complex of Λ -modules

$$\Delta^{\infty} = \varprojlim_{n} \Delta(L_{m_0 I^n})$$

Iwasawa-Theory, ctd.

Define Elements

$$\begin{split} \eta_{m_0} := & (1 - \zeta_{\ell m_0 I^n})_{n \geq 0} \in \varprojlim_n \mathcal{O}_{F_{m_0 I^n}} [\frac{1}{mI}]^{\times} \otimes_{\mathbb{Z}} \mathbb{Z}_I = H^1(\Delta^{\infty}) \\ \sigma := & (\sigma_{\ell m_0 I^n})_{n \geq 0} \in H^2(\Delta^{\infty}) \\ \theta_{m_0} := & (g_{\ell m_0 I^n})_{n \geq 0} \in (\gamma - \chi_{\operatorname{cyclo}}(\gamma))^{-1} \Lambda \subset Q(\Lambda) \end{split}$$

where

$$g_k = -\sum_{0 < a < k, (a,k)=1} \left(\frac{a}{k} - \frac{1}{2}\right) \tau_{a,k}^{-1} \in \mathbb{Q}[G_k]$$

and $\tau_{\mathsf{a},\mathsf{k}} \in \mathsf{G}_\mathsf{k}$ is defined by $\tau_{\mathsf{a},\mathsf{k}}(\zeta_\mathsf{k}) = \zeta_\mathsf{k}^\mathsf{a}$.

$$0 \to P^{\infty} \to H^2(\Delta) \to X^{\infty} \to 0$$

$$P^{\infty} = \varprojlim_{n} \operatorname{Pic}(\mathcal{O}_{F_{m_{0}I^{n}}}[1/mI]) \otimes_{\mathbb{Z}} \mathbb{Z}_{I}, \quad X^{\infty} = \varprojlim_{n} X_{\{v \mid Im_{0}\infty\}}(F_{m_{0}I^{n}}) \otimes_{\mathbb{Z}} \mathbb{Z}_{I}$$

Iwasawa-Theory, ctd.

Total quotient ring

$$Q(\Lambda)\cong\prod_{\psi\in\hat{G}_{\ell m_0}^{\mathbb{Q}_I}}Q(\psi)$$

I-adic L-Functions

$$\mathcal{L} := \theta_{m_0}^{-1} + 2 \cdot \eta_{m_0}^{-1} \otimes \sigma \in \mathsf{det}_{Q(\Lambda)} \left(\Delta^{\infty} \otimes_{\Lambda} Q(\Lambda) \right)$$

Theorem(Main Conjecture). One has an equality of invertible A-submodules

$$\Lambda \cdot \mathcal{L} = \mathsf{det}_\Lambda \, \Delta^\infty$$

of
$$\det_{Q(\Lambda)} (\Delta^{\infty} \otimes_{\Lambda} Q(\Lambda))$$
.

Iwasawa-Theory, ctd.

Since Λ is Cohen-Macaulay (even complete intersection) it suffices to show

$$\Lambda_{\mathfrak{q}}\cdot\mathcal{L}=\mathsf{det}_{\Lambda_{\mathfrak{q}}}\ \Delta_{\mathfrak{q}}^{\infty}$$

for all **height one** prime ideals q.

If $l \notin \mathfrak{q}$ then $\Lambda_{\mathfrak{q}}$ is a d.v.r. with fraction field $Q(\psi_{\mathfrak{q}})$. Main conjecture reduces to

$$\operatorname{Fit}_{\mathfrak{q}}(P_{\mathfrak{q}}^{\infty}) \sim \operatorname{Fit}_{\mathfrak{q}}(H^{1}(\Delta)_{\mathfrak{q}}/\Lambda_{\mathfrak{q}} \cdot \eta_{m_{0}})$$
 $\psi_{\mathfrak{q}}$ even $\operatorname{Fit}_{\mathfrak{q}}(P_{\mathfrak{q}}^{\infty}) \sim \theta_{m_{0}}$ $\psi_{\mathfrak{q}}$ odd

which is the classical Iwasawa main conjecture (Theorem of Mazur-Wiles)

For **odd** $l \in \mathfrak{q}$ main conjecture follows from $\mu = 0$ (Ferrero-Washington)

Proof for l=2

For I=2 and $\mathfrak q$ a prime ideal of height one of Λ with $2\in\mathfrak q$ the $\Lambda_\mathfrak q$ -module

$$H^1(\Delta^\infty)_{\mathfrak{q}}\cong H^2(\Delta^\infty)_{\mathfrak{q}}\cong \Lambda_{\mathfrak{q}}/(c-1)$$

is **not** of finite projective dimension ($c \in \Lambda$ complex conjugation). The determinant $\det_{\Lambda_{\mathfrak{q}}} \Delta_{\mathfrak{q}}^{\infty}$ cannot be computed by passing to cohomology. One needs to construct $\Delta_{\mathfrak{q}}^{\infty}$ explicitly, using results of Coleman, Leopoldt et al. The proof of the main conjecture for such \mathfrak{q} reduces to a "mod 2 congruence" between

$$(\gamma - \chi_{\text{cyclo}}(\gamma))g_m$$

und

$$(1-\zeta_m)^{\gamma-\chi_{\rm cyclo}(\gamma)}$$

expressed by the following Lemma.

Lemma Let $M \equiv 1 \mod 4$ be an integer and 0 < x < 1. The sign of the real number

$$\frac{1-e^{2\pi ixM}}{(1-e^{2\pi ix})^M}$$

is
$$(-1)^{\lfloor xM \rfloor}$$
.

$$m_0$$
 odd, $M=1+4m_0=\chi_{\rm cyclo}(\gamma)$

$$(1-\zeta_m^a)^{\gamma-\chi_{\text{cyclo}}(\gamma)} = \frac{1-e^{2\pi i \frac{a}{m}M}}{(1-e^{2\pi i \frac{a}{m}})^M}$$

$$(\gamma - \chi_{\text{cyclo}}(\gamma))g_m \equiv \sum_{\substack{0 < a < m \ (a,m)=1}} \left\lfloor \frac{aM}{m} \right\rfloor \tau_{a,m}^{-1} \mod 2$$

Descent to F_m

For $n \in \mathbb{Z}$ there is a homomorphism $\kappa^n : \Lambda \to \mathbb{Z}[G_m]$ and an isomorphism

$$\Delta^{\infty} \otimes_{\Lambda,\kappa^n}^{L} \mathbb{Z}_{I}[G_m] \cong R\Gamma_{c}(\mathbb{Z}[\frac{1}{mI}], T_{I}(n))$$

For $n \leq 0$ one can compute the image of \mathcal{L} in

$$\det_{\mathfrak{A}_l} R\Gamma_c(\mathbb{Z}[\frac{1}{ml}], M_l(n)) \cong \Xi({}_AM(n)) \otimes \mathbb{Q}_l$$

in terms of Beilinson-Soule elements in $K_{1-2n}(F_m)$, verifying ETNC. For n=0 one needs theorems of Ferrero-Greenberg and Solomon to handle trivial zeros of \mathcal{L} .

To show ETNC for n > 0 one proves compatibility of ETNC with the functional equation.

Elliptic curves over $\mathbb Q$

Theorem

(Skinner-Urban, Kato) f elliptic modular form of weight k=2 and level N, p a prime of good ordinary reduction,

- $ightharpoonup \overline{\rho}_f$ irreducible
- For some $p \neq q \mid N \ \overline{\rho}_f$ is ramified at q $\operatorname{char}(\operatorname{Sel}^{\Sigma}(T_f)) \sim \mathcal{L}^{\Sigma}_{al\sigma}(f)$

Theorem

(X. Wan, Li Cai, Chao Li, Shuai Zhai) The full BSD formula

$$\frac{L(E,1)}{\Omega_E} = \frac{\# \underline{III}(E/\mathbb{Q})}{\# E(\mathbb{Q})^2} \prod_{\ell \mid N} c_{\ell}$$

holds for certain infinite families of E/\mathbb{Q} with $L(E,1)\neq 0$. Example: An infinite family of quadratic twists of

$$46A1: y^2 + xy = x^3 - x^2 - 10x - 12$$

Adjoint motives of modular forms

Theorem

(Diamond-Flach-Guo) f elliptic modular form of weight $k \geq 2$, level N, coefficients in E, Σ set of primes λ of E such that

- $\triangleright \lambda \mid Nk!$ or
- $ightharpoonup \overline{
 ho}_f$ restricted to $\mathbb{Q}(\sqrt{(-1)^{(p-1)/2}p})$ is not abs. irr.

If $\lambda \notin \Sigma$ the TNC holds for L(Ad(f), 0) and L(Ad(f), 1)

Proof uses Taylor-Wiles method and R = T theorems.

Theorem

(Tilouine-Urban) Under similar assumptions TNC holds for $L(Ad(f) \otimes \alpha, 0)$ where α is a Dirichlet character corresponding to a real quadratic field F.

Proof uses $R_F = T_F$ and relations between periods of f and f_F .