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» X is a regular connected scheme of dimension d, proper over
Spec(Z)
» Zeta function

o= I e

x€X closed
Converges for R(s) > d
» Aim: For any n € Z describe

ords—p ¢(X, s)

and
(*(X, n) € R*



Weil-étale cohomology
(Lichtenbaum)

» X — Spec(F,) smooth, proper

» Z(n) on X (Higher Chow or Suslin-Voevodsky complex)
Z(0) =27, Z(1)=Gpn[-1],...

> Wy, 27 C 7= Gy,

> X =Spec(F,), n=0

. 7 [ — . 7
HI(G‘lF 7Z): I 0 HI(W]F 7Z):
i Q/z i=2 i 0
» X a smooth, proper curve, n =1
o(x)* i=1
. Pic(X) =finite®Z i=2
Hi (X 2(1)) = { D) .

0 i=3
Q/z i=4
o(x)* i=1

H (Xw,Z(1)) = { Pic(X) = finite Z i =2
Z i=3



Weil-étale cohomology
(Special values of {(X,s))

» Conjecture: RI'(Xw,Z(n)) := RT(Wg,, RF(XFP,Z(n)) is a perfect
complex of abelian groups.
» Known for d <1
» Theorem: The conjecture implies (Milne, Lichtenbaum, Geisser)
» There is a long exact sequence (concentrated in degrees 2n,2n + 1)

o HU(Xw, Z(n))e 2 Y (X, Z(n))e — - -

»
ords— ((X,5) = > (—1)"-i-dima H'(Xw, Z(n))=
IEZ
>
¢*(X, n) = £x(RT(Xw, Z(n)), ug) - pX* 1)
where

X(X,0,n) = > (=1)"(n - i)dims, H(X,Q)

i<n.j



Proofs

» Grothendieck's formula: | # p prime

((X,5) =Z(X,p™)
2dim(X) _
Z(x,T)= [ det(1—Frob™"- T|H (5, Q)"
i=0

Z(n)/ 1" = p"

Rr(Gﬂrp7 RF(X?P,Z/(H))) = RF(XW7Z(H)) Q7 Ly

» For | = p one has

2dim(X)
Z(x,T)= [ det(1—Frob- T|H;

cris
i=0

(X/Fp)) V"



Higher Chow groups
A" = Spec(Zl[ty, . .., tm]/(to+- - - tm—1)) =~ A" (algebraic m-simplex)
z"(Y, m) :=free abelian group on codimension n points on Y x A™
intersecting all faces Y x A’ C Y x A™ properly

z"(Y,e) :=corresponding simplicial abelian group (or homological complex)
CH"(Y,m) :=Hpn(z"(Y,e)) Higher Chow groups

For regular Y and n > 0 define a cohomological complex Z(n) on Y by
Z(n)(U) :==z"(U,2n — o)
Z(n)/0¥ ~ pg" i £is invertible on Y
H'(Yer, Z(n))g = CH(Y,2n — i)q = Kan_i( Y)Y



Deligne cohomology

X regular of dimension d, X — Spec(Z) flat, proper
X (C) compact complex manifold with Gg := Gal(C/R)-action

Deligne complex in the analytic topology

Z(n)p =)"Z - O - Q' — ... - Q" !

RUp(Xg, Z(n)) :=RT (G, RT(X(C), Z(n)p))

R(n)p =27i)R -0 = Q' —» ... - Q" !

RTp(X/r, R(n)) :=RT(Gg, RT(X(C), R(n)p))



Weil-Arakelov cohomology
(Assumptions)

> X regular of dimension d, X — Spec(Z) flat, proper

» Z(n) on Xe (Higher Chow complex) For n < 0 define Z(n) by
pushforward under f : PN, — X

'L-\:’fet,*Z =7Z® Z(_l)[_2] DD Z(_N)[_ZN]

» Assumptions:
FG H'(Xe,Z(n)) is finitely generated for i < 2n+1
B Beilinson conjectures. There is a perfect duality for all i,n € Z

HL(X,R(n)) x H*7/(X,R(d — n)) = H*(X,R(d)) = R
where (with B the Beilinson regulator)
RT(X,R(n)) = RM(X,R(n)) = RTp(X/z, R(n))

Known for X = Spec(OF)
AV Artin-Verdier duality. There is a perfect duality for any m,i,n € Z

AL(Xet, Z(n) ) m)x H** 7 (Xer, Z(d—n) /m) — H2* (Xet, Z(d) /m) — Z/m

Known for d < 2 or X — Spec(Of) smooth, or n > d or n < 0.



Weil-Arakelov cohomology (Z(n)-coefficients)
» If X — Spec(Z) is flat then X is not "compact". One has a
diagram with exact rows and columns
RTarc(X,Z(n)) — RT.(X,Z(n)) — Rl p(X)/g,Z(n))

| I

RTar o(X,Z(n)) = R (X,Z(n)) — RM..(X,Z(n))

[ I

RTarx.. (X,Z(n)) = Rlar x.(X,Z(n))

in Db(l.c.a.grps). In general, only RT,,(X,Z(n)) is a perfect
complex of abelian groups.
>

H;,(SPec(oF),Z(l))—{ﬁQ(OF)@(@I e oo

IF i=1
Hi, (Spec(OF). Z(1)) = { PIc(OF) & (6. B)/ log(OF) i =2
Z i=3



Weil-Arakelov cohomology (R(n)- and R/Z(n)-coefficients)

» For Y = X, X, X, there are exact triangles in D®(l.c.a.grps)
RTar2(V,Z(n)) = RTar2(V,R(n)) = R4 2(V,R/Z(n)) —

> H2(X,R(n)) = CH(X)g (Gillet-Soulé Arakelov Chow group)
» Proposition

» There are dualities of finite-dimensional R-vector spaces
Har (X, R(n)) x HZM/(X,R(d — ) — HEH(X, R(d)) — R
and
HL (X, R(n)) x H2T1(X, R(d — n)) — HX™ (X, R(d)) - R
» There are Pontryagin dualities
R Hom(RT (X, Z(n)),R/Z) = RT(X,R/Z(d — n))[-2d — 1]
and

Hor(X, Z(n) x HI (X, R/ Z(d —n)) — Ho? ™ (R, R/ Z(d)) — R/Z



Weil-Arakelov cohomology (Special values of ((X,s))
For any n € Z the exact triangle
RTar.o(X,Z(n)) = RTar o(X,R(n)) = RTar.o(X,R/Z(n)) — (1)

has the following properties

> For all i € Z the groups H!, (X, R(n)) are finite dimensional vector

ar,c
spaces over R and there is an exact sequence

(X, R(m) 2 HIFL(X, R(n) 25 (2)

ar,c

ue i
o= H!

ar,c

In particular, the complex RT ., .(X,R(n)) has vanishing Euler
characteristic:

(-1’ dimg H (. B(n) = 0.

> For all i € Z the groups Hi, (X, R/Z(n)) are compact,

ar,c
commutative Lie groups, i.e. isomorphic to

Sl x ... x St x finite.



Conjectural relation to ((X,s)

» The function (X, s) has a meromorphic continuation to s = n and
ords—p ((X,5) = > (—1) - i -dimg H}, (X, R(n)).
i€z

> If ¢*(X, n) € R denotes the leading Taylor-coefficient of {(X, n) at
s = n then

@)t =TT (vollH (e R/z)) . @)

i€Z



Definition of the volume

If G is a locally compact abelian group, define its tangent space T, G
by
Too G := Homgs(Homs(G,R/Z), R)

which comes with an exponential map
exp : TooG — Homgs(Homes(G,R/Z),R/Z) = G.

Examples:
G ‘Z R R/Z
TG ‘ 0 R R

If G is a compact, commutative Lie group one has an exact triangle

exp

L-Ll®;R~T,G— G —

where L is a perfect complex of abelian groups. A volume form is a
nonzero section v € detg T, G. The volume vol(G) € R>? satisfies

detz L =7 -vol(G) - v



Weil-étale cohomology

T extends to an exact functor
To : Db(l.c.a)) — DP(R)

Weil-étale cohomology is the perfect complex of abelian groups
RIw (X, Z(n)) defined as the mapping fibre of the exponential map

exp

RTw.o(X,Z(n)) = TooRTar (X, R/Z(n)) 225 R, (X, R/Z(n))
Given a volume form
v € detp Too RT ar (X, R/Z(n)) =~ detg RT w (X, Z(n))r

the volume

T (vol(H, (2. /zn)

icz
in (3) is the unique u € R>? with

detZRFW,C(X,Z(n)) =Z -u-v



Definition of the volume form
Applying T, to (1) we get an exact triangle in D?(R)
TooRTar,c(X, Z(n)) = RTar (X, R(n) = RTw (X, Z(n)r —  (4)
Taking determinants of (4) gives an isomorphism
detg RTw (X, Z(n))r
detg RT o (X, R(n)) @r detg Too RT ar (X, Z(n))[-1]
detg Too Rl ar.c (X, Z(n))[-1]

where the trivialization detg R ., (X, R(n)) = R is induced by the exact
sequence (2). Applying T, to the defining triangle
Rl ar,c(X,Z(n)) = RTa (X, Z(n)) = RTar p(X)r, Z(n))
gives isomorphisms
detr Too Rl ar,c (X, Z(n)) Zdetg Too RT ar,p(X/r, Z(n))[1]
~detg RT (X (C), Q) % [—2]
%detRRF(XQ’Za,, Q;S/Q)R[_Zl



Definition of the volume form (ctd)

A natural way to define a volume form v € detRRF(X@,Za,,Q%’/Q)R
would be via a perfect complex of abelian groups P so that

PQ ~ RF(XQJ‘;,, Q;@n/@), Z-v = detz P

Possible choices for P:
> RF(XZQ,,Q;’}Z) (naive de Rham cohomology modulo Fil")
Clearly wrong
> R[N Xz, LQ;’/’Z) (derived de Rham cohomology modulo Fil” as
defined by lllusie) The special value conjecture becomes

detzRlMw (X, Z(n)) = (* (X, n)- C(X, n)-detz RT (Xzar, LQ;;Z)[—l]

for a certain correction factor C(X, n) € Q*.
» RI(Xzar, LQ;’/’S) (motivic weight n graded piece of TC*(X) as
defined by Morin) The special value conjecture becomes

detzRTw (X, Z(n)) = ¢*(X, n) - detz RT (Xzar, LQ;’}S)[fl]



Concerning the correction factor C(X, n)

Definition of C(X, n) is forced by compatibility with Tamagawa number
conjecture and involves p-adic Hodge theory.

Theorem
a) One has C(X,n) =1 if n <0 (trivial).
b) One has C(X,1) =1 (nontrivial)

c) One has C(X,n) =1 if X — Spec(F,) is smooth, proper over a
finite field (Thm of Morin)

d) For X = Spec(Of), all F,/Q, abelian and n > 1 one has

C(&x,n) = (n—1)1~Fd

In general we expect C(X,n) = Coo(X, )~ where
Coo(X,n) = [ (n—1— ip(- " dimeH (Xe)
i<n—1;j
since

detzl'-\’r(.k'za,—7 LQ;(?S) = COO(X, n) . deter(Xzar, LQ;(,}Z)



An integral fundamental line
For X regular, proper over Spec(Z) and n € Z define
A(X/Z, n) = Cie‘terW7c()C'7 Z(n)) K7 deter(XZar, LQ;\.’?S)

The Beilinson regulator, Arakelov intersection pairing and Period
isomorphism induce

Ao | R 5 A(X/Z,n) @z R
The special value conjecture says
Aoo(CF(X,n)"1 - Z) = A(X/Z, n)
If X — Spec(OF) is smooth proper over a number ring then

2d-2

A(X)Z,n) ©7Q = R) =(h(Xg)(n) Y

i=0
is the fundamental line of Fontaine and Perrin-Riou for the motive
2d—2

h(Xg)(n) = @ h (Xo)(n)[—1]

of the generic fibre of X. Moreover Ao = Q); 19&;1)[.



The definition of R[Ny (X, Z(n))
Key assumption (known for d <1 ...)
H'(Xe, Z(n)) is finitely generated for i < 2n+ 1
Artin-Verdier duality for Z(n)/m on X implies that
H'(Xet, Z(n)) = Homz(H?4271(X i, Z(d — n)),Q/7Z)

is cofinitely generated for i > 2n + 1. Define a perfect complex of abelian
groups Ry (X, Z(n)) as the mapping cone

RHom(RT (X, Z(d—n)), Q[-2d—2]) — RI(Xet, Z(n)) — RTw(X,Z(n))
and a perfect complex Rl'w (X, Z(n)) as a mapping fibre
RTw.c(X,Z(n)) = RTw(X,Z(n)) — RTw(Xs, Z(n))

also involving Betti cohomology of X'(C).



Compatibility with the Tamagawa number conjecture

Theorem
If X — Spec(OF) is smooth proper over a number ring then

(X, n)

Aoo(CF(X, )t [NER)]

-Z) = A(X/Z, n)

is equivalent to the Tamagawa number conjecture for h(Xg)(n).

Recall: Cgi;",{) =1for n <1or X = Spec(OF), all F,/Q, abelian.
Corollary

Our conjecture
)‘OO(C*(Xa n)il : Z) = A(X/Za n)

holds true for X = Spec(Of) and any n € Z if F/Q is abelian.
Follows from proof of TNC for Dirichlet L-functions.



The example X = Spec(OF)

F number field with r; real and r, complex places.

¢(X,s) =Cr(s) Dedekind Zeta function

All assumptions going into the definition of our groups are satisfied, in
particular for i = 1,2

H (Xet, Z(n)) ~2 Kan—i(OF)
is finitely generated. Note
0 — Z/27 — K3(Z) — H*(Spec(Z)et, Z(2)) — 0

The conjectures on the vanishing order hold true (Borel 1975)

r n <0 odd

n+nr n < 0 even
ords—nCr(s)=¢n+mn—-1 n=0

-1 n=1

0 n>1



The Beilinson regulator map

H (Xer, Z(n)) 2 Hp(X/r,R(n)) = ] HO(F,. (27i)"'R)

v|oo

induces isomorphisms

rog - H (Xe, Z(n))r = [ ] H(F,, (271)"'R)

v|oo

for n>1 and

nr: HY (X, (D)Rg(HR)Z_O

v]oo

forn=1. For n > 1 we set

hn :=|H?(Xet, Z(n))| ~2 [Kan—2(OF)|

o = H (Xt Z))eor| ~2 [Kan-1 (O or
R, :=vol(coker(r,))

where the volume is taken with respect to the Z-structure
[1yjoo HO(Fy, (2m1)"122), vesp. (I1,(a0 Z)>=0, of the target.



Our conjecture is equivalent to

C(n) = £ n Fion (5)

Wi—n
for n <0 and to

) = Ce(n) =
Fg 200 @n)F U (CD /)R,

=(n—1)! 6
(=1 |DF["=*/IDF| - wn ©
forn>1.
Proposition

Equations (5) and (6) hold for n = 0,1 if F is arbitrary and for any n € Z
if F/Q is abelian.

This follows from known cases of the Tamagawa number conjecture.



Cyclic Homology (Additive K-theory)

If k is a commutative ring and A/k a k-algebra define (derived)
Hochschild homology

HH(A/K) = A @0 A
and (derived) cyclic homology

HC(A/k) := HH(A/k)ps2

Theorem
(Majadas, Antieau) There is a (motivic) filtration Ff;,,HC(X /Z) on
HC(X/Z) so that for all n € Z

8o HC(X/Z) = RT(Xzar, LQT) ;) [2n — 2]

Compare with the motivic filtration on K-theory

8ot K(X) 2= RT(Xzar, Z(n))[2n]



Additive K-theory of Spec(OF)

For n > 1 and X = Spec(OF) one has
RT(Xzar, LQG] ) =2 (OF —>QOF/Z( ))

where Qo /z(n) is a certain finite abelian group of order |Dg|"~.

d(n
K39 (OF) := HCan_2(OF) = ker (oF o, QOF/Z(n))

;gdz(OF) = HC2,, 3((9[:) = coker <OF L> QOF/Z(H))

One has
‘DF|n—1\/@: hadd . Radd
where R2% := covol(K39,(OF)) and h2? = |K399,(OF)|.



Improved additive K-theory of Spec(Of) (TC*(OF))
How to explain C(Spec(Of), n) = (n — 1)I-1FU?
Topological Hochschild homology (Békstedt,...)
THH(X) := HH(X/S)

where S is the sphere spectrum.

Definition
Topological positive cyclic homology

TCH(X) := THH(X) st

Theorem
(Madsen, Lindenstrauss, 2000)

OF i=0
THH;(OF) =S DF'/j- O i=2j—1
0 else



Improved additive K-theory of Spec(Of) (TC*(OF))
The spectral sequence
Hi(BS', THH;(OF)) = TC/\ (OF)
shows that TC,, 5(OF) is finite and TGy, _,(Of) C O is a sublattice

so that
(n _ l)![F:Q]‘DF|n71 /|DF| — hzdd . Rr;;dd
where R2% := covol(TC,, ,(OF)) and h29 .= | TG, _5(OF)|.

Hence for n > 1 we have

n—1

) 2 (-1 (o) n e (1 -1/ . R,
Cr(n) = Cr(n) = hadd . Radd .y

without any correction factor!



The motivic filtration on TCT(X)
For X = Spec(OF) we have
F,\nﬂot TC+(OF) = T>2p-3 TC+(O,E)

but the motivic filtration in general is more complicated.

Theorem
(Morin, Bhatt-Lurie) There is a (motivic) filtration F},,, TC*(X) on
TCH(X) so that for all n € Z

8vor TC(X) T =t RT(Xzar, LQYg)[2n — 2]

satisfies
detZRr(XZam LQ;’/’S) = Coo(X7 n) . deter(XZara LQ;72)

where o ) _
ColX.n) = J] (n—1— )= dimeH(Xe.2)

i<n—1;j



Compatibility with the Birch and Swinnerton-Dyer conjecture
Assume X is regular, connected, proper, flat of dimension d = 2. Then
f:X = Spec(O)=:S; £.0x=0s
for a unique number field F and
Xr — Spec(F)
is a smooth, projective, geometrically connected curve. Moreover

C(HO’S)C(H2’S) — CF(S)CF(S B 1)
¢(H,s) ((H*,s)

where ((H', s) should be viewed as the Zeta function of a relative H' of f
in the sense of a motivic (i.e. perverse) t-structure

C(Xvs) =



Compatibility with BSD: The Zeta function of H*
For each finite place v of F set

C, :=set of irreducible components of the fibre &)
ro.i i =[k(v)i @ K(V)]
where 1(v); is the constant field of the component i € C,. Then
1
1 — . _ _( _1) v,i
C(HY,s) =L(J,s) H (1 — oD 1‘! (1— Ny~ (=Dr ))
v finite 1€Cy

where L(J,s) is the Hasse-Weil L-function of J := Jac(Xr).

Want to describe ((H!,s) at s = n = 1. Recall Z(1) = G,,[—1]. Need
motivic decomposition of Rf,G,,.



Compatibility with BSD: The motivic complex of H*
One has R'f,G,, = 0 for i > 2 (Grothendieck) and
P = Picy/s := R*.Gpy

is the relative Picard functor (étale sheafification of U — Pic(X xs U)).
One has a truncation triangle

Gm = .Gy = RELGp — P[-1] —

and we define a complex of étale sheaves P® on S by the exact triangle

PO p 7,

The complex P° serves as a substitute for the relative H1-motive and one
has P0|Spec(F)c: =J.



Compatibility with BSD: The main theorem

Theorem
a) One has

ords—1 C(Hl,s) = rankg PicO(X) < ords—1 L(J,s) = rankg J(F).
b) The following statements are equivalent

Moo (C*(HY, 1) - Z) = detzRTw (S, P°) @z det; ' HY (X, O )
vol( HO, (S, P°®R/Z)>

C*(Hlal):

vol (H;m(s, PO @ ]R/Z))
et gy L #BI(X) 0% Q(X) - R(X) 1 #O
CHL) (#(Pic®(X)or/ Pic(OF)))? H, 8,0y

and all these statements are equivalent to the BSD formula

L*(J,1) =#m(J() #?((jtm H 4,



Compatibility with BSD: ITI(J) vs Br(X)
Define the local and global index
8, := # coker (Pic(X,:v) deg, Z) . 0= # coker (Pic()\ﬁ:) deg, Z)
and the period
5, := # coker (P(Fv) s, Z) o = # coker (Pic®(Xr) — J(F))

Then 6, /6, € {1,2} for all places v.
Proposition
(Geisser, F.) If Br(X) ~ H?*(Xe, Gn) is finite then

#Be(®) . 02 = L0 i (7)

where the product is over all places v of F and

Br(X) := ker (Br()() — @ BF(XFV)>

v real

One shows that # Br(X) is a square if it is finite.



Compatibility with BSD: R(J(F)) vs R(X)

R(J(F)) :=regulator of the Neron-Tate height pairing on J(F)
R(X) :=regulator of the Arakelov intersection pairing on Pic’(X)

Proposition
R(X)
(#(Pic®(X)1or/ Pic(OF)))? - a2

= H ( Iog NV #e—1 H v:> R(J(Fi))

v bad ieC, (#J( )tor)

Proof uses results of Bosch and Liu on component groups of Neron
Models.



Compatibility with BSD: Q(7) vs Q(X)

Let
J — Spec(OF)

be the Neron model of J.
Let Q(X), Q(J) € R* be such that

dety HY(X(C), (27)Z)% = Q(X) - detz HY(X, Ox)
detz HY(J(C), (27)Z)% = Q(J) - dety Lie(7)
under the Deligne period isomorphism.
Proposition
QX)) =xQ(J)

Proof uses results of Liu, Lorenzini and Raynaud on tangent spaces of
Neron models.



Compatibility with BSD: Some proven cases

Theorem

(Rubin, Burungale, F.) Let E/F be an elliptic curve with CM by Ok for
an imaginary quadratic field K and such that F(E;os)/K is abelian. If
L(E,1) # 0 then E(F) and III(E/F) are finite and the BSD formula
holds true.

Theorem
(Yongxiong Li, Yu Liu, Ye Tian) Let p="5 mod 8 be a prime number
and E/Q the elliptic curve

y2 = X3 — px.
Then rankz E(Q) = ords—1 L(E,s) = 1, II(E/Q) is finite and the BSD

formula holds true.

Corollary

Let X/F be a genus 1 curve which is a torsor for E/F as above and

X /Og a proper, regular model of X. Then our conjecture on ((X,s) at
s =1 holds true.



Compatibility with the functional equation

Let X' be regular of dimension d, proper and flat over Spec(Z). Define
the completed Zeta-function

C(‘X7 5) = C(Xom S)C(X7 5)

where
2d—2

(Koo, s) = ] Loo(H(X),5)7D (8)
=0

Here hi(X) is the R-Hodge structure on H'(X(C),R). For simple
R-Hodge structures we have

M | dimg M | conditionon p,g € Z | Ly(M,5s)

Mp.q 2 p<gq Mc(s—p)
Moo | 1 c=(-1p Fa(s—p)
M, _ 1 c=(-1)rt1 R(s—p+1)

Mg(s) = 7r*5/2l'(s/2); Fe(s) =2(27) %I (s)



Compatibility with FE: Main Theorem

Theorem
Assume ((X, s) satisfies the functional equation

AX)IR((X, d — s) = A(X)2((X,5)
where A(X) is the Bloch conductor of X. Then for any n € Z
Aoo(¢ (X, n)7H - Z) = A(X/Z, n)
if and only if
Ao (C(X,d —n)"1-Z) = A(X/Z,d — n).

A(X) is defined in terms of Q7. Example: A(Spec(OF)) = |Df|.
Note: Compatibility with FE is not in general known for TNC.



Compatibility with FE: Proof

Defining
=oo(X/Z,n) = detzRTw(Xoo, Z(n)) @ det; RT (Xzar, LOF,)

@det; RTw(Xoo, Z(d — 1)) @ detzRT (Xzor, LOF95")
one has

A(X)Z,n) @ Zoe(X /T, n) > A(X/Z,d — n)

and a canonical trivialization and period x,, € R*
bo 1R = (X/Z,n) ®R; E(Z - x 1) =20 (X)Z, n)
Here
RTw (X, Z(n)) @z R ~ RT(X(C),R(n))" := RT(X(C), (27i)"R)*

is a certain Z-lattice in the Betti plus space.



Compatibility with FE: Proof

& is induced by
(detz RT w (Xoo, Z(n)) ® dety* RTw(Xoo, Z(d — n)))p
 detg (RT(X(C),R(n))* @ RT(X(C),R(n —1))*)
l> detg RT(X(C),C)*
=5 detg RT4p(Xc/C)*t
~, detg RT4r(Xp/R) ~ (detZ RT (Xzar, LQ;;’Z))

2ot
RACLEN (detz RF(XZan 9;72) ® detil RF(XZ‘"’ Q:";Z ”))R

Need to show
(X, n) ' Coo(X,d —n)
¢*(Xoo, d — n) Coo(X, n)

Xoo = £A(X)"2 .

or equivalently

Xoo = iA(X)”_d/z . 2d+(X,n)—d_(X,n) . (zﬂ)d_(X,n)—s-tH(X,n)



Compatibility with FE: Proof

» Verdier duality on the locally compact space X, := X(C)/Gg gives

Ag (detzRTw (Xoo, Z(n)) ® det;* RT w/(Xoo, Z(d — n)))
= detzRI(X(C), Z(n)) - od—(X,n)—dy(X,n)

» Comparing Poincaré duality for both sides gives
detz RT(X(C), Z(n)) = (2m)d~(Xm+t(Xm). A(X)5 . det,  RT (Xza, LQ39,)

» A result of Takeshi Saito implies

Aok (detilRF(XZa,, LQ5",) ® detzRT(Xzar, LS, ”))

= A(X)?" - dety ' RT (Xzar, LQS,)



Compatibility with FE: Proof

Theorem

(T. Saito) For any r € Z define C}, , € D*(Coh(X)) by the exact
triangle

LA Qx/z — RHom(L ATV Qu 7, wx/z) — Cx/z

Then RT(X, C% ;) has finite cohomology and

H (#H"(X, C}/Z))(ily = A(x)D"

i€Z



