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I X is a regular connected scheme of dimension d , proper over
Spec(Z)

I Zeta function
ζ(X , s) =

∏
x∈X closed

1
1− Nx−s

Converges for <(s) > d

I Aim: For any n ∈ Z describe

ords=n ζ(X , s)

and
ζ∗(X , n) ∈ R×



Weil-étale cohomology
(Lichtenbaum)

I X → Spec(Fp) smooth, proper
I Z(n) on Xet (Higher Chow or Suslin-Voevodsky complex)

Z(0) = Z, Z(1) = Gm[−1], . . .
I WFp

∼= Z ⊆ Ẑ ∼= GFp

I X = Spec(Fp), n = 0

H i (GFp ,Z) =

{
Z i = 0
Q/Z i = 2

H i (WFp ,Z) =

{
Z i = 0, 1
0 else

I X a smooth, proper curve, n = 1

H i (Xet ,Z(1)) =


O(X )× i = 1
Pic(X ) = finite⊕ Z i = 2
0 i = 3
Q/Z i = 4

H i (XW ,Z(1)) =


O(X )× i = 1
Pic(X ) = finite⊕ Z i = 2
Z i = 3



Weil-étale cohomology
(Special values of ζ(X , s))

I Conjecture: RΓ(XW ,Z(n)) := RΓ(WFp ,RΓ(XFp
,Z(n)) is a perfect

complex of abelian groups.
I Known for d ≤ 1
I Theorem: The conjecture implies (Milne, Lichtenbaum, Geisser)

I There is a long exact sequence (concentrated in degrees 2n, 2n + 1)

· · · → H i (XW ,Z(n))R
∪θ−−→ H i+1(XW ,Z(n))R → · · ·

I

ords=n ζ(X , s) =
∑
i∈Z

(−1)i · i · dimR H
i (XW ,Z(n))R

I

ζ∗(X , n) = ±χ(RΓ(XW ,Z(n)),∪θ) · pχ(X ,O,n)

where

χ(X ,O, n) =
∑
i≤n,j

(−1)i+j(n − i) dimFp H
j(X ,Ωi )



Proofs

I Grothendieck’s formula: l 6= p prime

ζ(X , s) =Z (X , p−s)

Z (X ,T ) =

2 dim(X )∏
i=0

det(1− Frob−1 · T |H i (XFp
,Ql))(−1)i+1

I Z(n)/lν ∼= µ⊗nlν

RΓ(GFp ,RΓ(XFp
,Zl(n))) ∼= RΓ(XW ,Z(n))⊗Z Zl

I For l = p one has

Z (X ,T ) =

2 dim(X )∏
i=0

det(1− Frob · T |H i
cris(X/Fp))(−1)i+1



Higher Chow groups

∆m := Spec(Z[t0, . . . , tm]/(t0+ · · · tm−1)) ' Am (algebraic m-simplex)

zn(Y ,m) :=free abelian group on codimension n points on Y ×∆m

intersecting all faces Y ×∆i ⊆ Y ×∆m properly
zn(Y , •) :=corresponding simplicial abelian group (or homological complex)

CHn(Y ,m) :=Hm(zn(Y , •)) Higher Chow groups

For regular Y and n ≥ 0 define a cohomological complex Z(n) on Yet by

Z(n)(U) := zn(U, 2n − •)

Z(n)/`ν ' µ⊗n`ν if ` is invertible on Y

H i (Yet ,Z(n))Q ' CHn(Y , 2n − i)Q ' K2n−i (Y )
(n)
Q



Deligne cohomology

X regular of dimension d , X → Spec(Z) flat, proper

X (C) compact complex manifold with GR := Gal(C/R)-action

Deligne complex in the analytic topology

Z(n)D :=(2πi)nZ→ O → Ω1 → · · · → Ωn−1

RΓD(X/R,Z(n)) :=RΓ(GR,RΓ(X (C),Z(n)D))

R(n)D :=(2πi)nR→ O → Ω1 → · · · → Ωn−1

RΓD(X/R,R(n)) :=RΓ(GR,RΓ(X (C),R(n)D))



Weil-Arakelov cohomology
(Assumptions)

I X regular of dimension d , X → Spec(Z) flat, proper
I Z(n) on Xet (Higher Chow complex) For n < 0 define Z(n) by

pushforward under f : PN
X → X

Rfet,∗Z ∼= Z⊕ Z(−1)[−2]⊕ · · · ⊕ Z(−N)[−2N].

I Assumptions:
FG H i (Xet ,Z(n)) is finitely generated for i ≤ 2n + 1
B Beilinson conjectures. There is a perfect duality for all i , n ∈ Z

H i
c(X ,R(n))× H2d−i (X ,R(d − n))→ H2d

c (X ,R(d))→ R

where (with B the Beilinson regulator)

RΓc(X ,R(n))→ RΓ(X ,R(n))
B−→ RΓD(X/R,R(n))

Known for X = Spec(OF )
AV Artin-Verdier duality. There is a perfect duality for any m, i , n ∈ Z

Ĥ i
c(Xet ,Z(n)/m)×H2d+1−i (Xet ,Z(d−n)/m)→ Ĥ2d+1

c (Xet ,Z(d)/m)→ Z/m

Known for d ≤ 2 or X → Spec(OF ) smooth, or n ≥ d or n ≤ 0.



Weil-Arakelov cohomology (Z(n)-coefficients)

I If X → Spec(Z) is flat then X is not "compact". One has a
diagram with exact rows and columns

RΓar ,c(X ,Z(n)) −→ RΓar (X ,Z(n)) −→ RΓar ,D(X/R,Z(n))

‖
x x

RΓar ,c(X ,Z(n)) −→ RΓar (X ,Z(n)) −→ RΓar (X∞,Z(n))x x
RΓar ,X∞(X ,Z(n)) RΓar ,X∞(X ,Z(n))

in Db(l.c.a.grps). In general, only RΓar (X ,Z(n)) is a perfect
complex of abelian groups.

I

H i
ar (Spec(OF ),Z(1)) =

{
O×F i = 1
Pic(OF )⊕ (

⊕
v |∞ Z)Σ=0 i = 2

H i
ar (Spec(OF ),Z(1)) =


µ×F i = 1
Pic(OF )⊕ (

⊕
v |∞R)/ log(O×F ) i = 2

Z i = 3



Weil-Arakelov cohomology (R̃(n)- and R̃/Z(n)-coefficients)

I For Y = X ,X ,X∞ there are exact triangles in Db(l.c.a.grps)

RΓar ,?(Y,Z(n))→ RΓar ,?(Y, R̃(n))→ RΓar ,?(Y, R̃/Z(n))→

I H2n
ar (X , R̃(n)) ∼= CH(X )R (Gillet-Soulé Arakelov Chow group)

I Proposition
I There are dualities of finite-dimensional R-vector spaces

H i
ar,c(X , R̃(n))× H2d+1−i

ar (X , R̃(d − n))→ H2d+1
ar,c (X , R̃(d))→ R

and

H i
ar (X , R̃(n))× H2d+1−i

ar (X , R̃(d − n))→ H2d+1
ar (X , R̃(d))→ R

I There are Pontryagin dualities

R Hom(RΓar,c(X ,Z(n)), R̃/Z) ∼= RΓ(X , R̃/Z(d − n))[−2d − 1]

and

H i
ar (X ,Z(n))×H2d+1−i

ar (X , R̃/Z(d−n))→ H2d+1
ar (X , R̃/Z(d))→ R/Z



Weil-Arakelov cohomology (Special values of ζ(X , s))

For any n ∈ Z the exact triangle

RΓar ,c(X ,Z(n))→ RΓar ,c(X , R̃(n))→ RΓar ,c(X , R̃/Z(n))→ (1)

has the following properties
I For all i ∈ Z the groups H i

ar ,c(X , R̃(n)) are finite dimensional vector
spaces over R and there is an exact sequence

· · · ∪θ−−→ H i
ar ,c(X , R̃(n))

∪θ−−→ H i+1
ar ,c(X , R̃(n))

∪θ−−→ · · · (2)

In particular, the complex RΓar ,c(X , R̃(n)) has vanishing Euler
characteristic: ∑

i∈Z
(−1)i dimR H i

ar ,c(X , R̃(n)) = 0.

I For all i ∈ Z the groups H i
ar ,c(X , R̃/Z(n)) are compact,

commutative Lie groups, i.e. isomorphic to

S1 × · · · × S1 × finite.



Conjectural relation to ζ(X , s)

I The function ζ(X , s) has a meromorphic continuation to s = n and

ords=n ζ(X , s) =
∑
i∈Z

(−1)i · i · dimR H i
ar ,c(X , R̃(n)).

I If ζ∗(X , n) ∈ R denotes the leading Taylor-coefficient of ζ(X , n) at
s = n then

|ζ∗(X , n)|−1 =
∏
i∈Z

(
vol(H i

ar ,c(X , R̃/Z(n)))
)(−1)i

. (3)



Definition of the volume

If G is a locally compact abelian group, define its tangent space T∞G
by

T∞G := Homcts(Homcts(G ,R/Z),R)

which comes with an exponential map

exp : T∞G → Homcts(Homcts(G ,R/Z),R/Z) = G .

Examples:
G Z R R/Z

T∞G 0 R R

If G is a compact, commutative Lie group one has an exact triangle

L→ L⊗Z R ' T∞G
exp−−→ G →

where L is a perfect complex of abelian groups. A volume form is a
nonzero section v ∈ detRT∞G . The volume vol(G ) ∈ R>0 satisfies

detZ L = Z · vol(G ) · v



Weil-étale cohomology

T∞ extends to an exact functor

T∞ : Db(l .c .a.)→ Db(R)

Weil-étale cohomology is the perfect complex of abelian groups
RΓW ,c(X ,Z(n)) defined as the mapping fibre of the exponential map

RΓW ,c(X ,Z(n))→ T∞RΓar ,c(X , R̃/Z(n))
exp−−→ RΓar ,c(X , R̃/Z(n))

Given a volume form

v ∈ detRT∞RΓar ,c(X , R̃/Z(n)) ' detRRΓW ,c(X ,Z(n))R

the volume ∏
i∈Z

(
vol(H i

ar ,c(X , R̃/Z(n)))
)(−1)i

in (3) is the unique µ ∈ R>0 with

detZRΓW ,c(X ,Z(n)) = Z · µ · v



Definition of the volume form

Applying T∞ to (1) we get an exact triangle in Db(R)

T∞RΓar ,c(X ,Z(n))→ RΓar ,c(X , R̃(n))→ RΓW ,c(X ,Z(n))R → (4)

Taking determinants of (4) gives an isomorphism

detRRΓW ,c(X ,Z(n))R
∼=detRRΓar ,c(X , R̃(n))⊗R detRT∞RΓar ,c(X ,Z(n))[−1]
∼=detRT∞RΓar ,c(X ,Z(n))[−1]

where the trivialization detRRΓar ,c(X , R̃(n)) ∼= R is induced by the exact
sequence (2). Applying T∞ to the defining triangle

RΓar ,c(X ,Z(n))→ RΓar (X ,Z(n))→ RΓar ,D(X/R,Z(n))

gives isomorphisms

detRT∞RΓar ,c(X ,Z(n)) ∼=detRT∞RΓar ,D(X/R,Z(n))[−1]

∼=detRRΓ(X (C),Ω<n
hol )

GR [−2]
∼=detRRΓ(XQ,Zar ,Ω

<n
XQ/Q)R[−2]



Definition of the volume form (ctd)

A natural way to define a volume form v ∈ detRRΓ(XQ,Zar ,Ω
<n
XQ/Q)R

would be via a perfect complex of abelian groups P so that

PQ ' RΓ(XQ,Zar ,Ω
<n
XQ/Q); Z · v = detZP

Possible choices for P:
I RΓ(XZar ,Ω

<n
X/Z) (naive de Rham cohomology modulo Filn)

Clearly wrong
I RΓ(XZar , LΩ<n

X/Z) (derived de Rham cohomology modulo Filn as
defined by Illusie) The special value conjecture becomes

detZRΓW ,c(X ,Z(n)) = ζ∗(X , n)·C (X , n)·detZRΓ(XZar , LΩ<n
X/Z)[−1]

for a certain correction factor C (X , n) ∈ Q×.
I RΓ(XZar , LΩ<n

X/S) (motivic weight n graded piece of TC+(X ) as
defined by Morin) The special value conjecture becomes

detZRΓW ,c(X ,Z(n)) = ζ∗(X , n) · detZRΓ(XZar , LΩ<n
X/S)[−1]



Concerning the correction factor C (X , n)

Definition of C (X , n) is forced by compatibility with Tamagawa number
conjecture and involves p-adic Hodge theory.

Theorem
a) One has C (X , n) = 1 if n ≤ 0 (trivial).
b) One has C (X , 1) = 1 (nontrivial)
c) One has C (X , n) = 1 if X → Spec(Fp) is smooth, proper over a

finite field (Thm of Morin)
d) For X = Spec(OF ), all Fv/Qp abelian and n ≥ 1 one has

C (X , n) = (n − 1)!−[F :Q]

In general we expect C (X , n) = C∞(X , n)−1 where

C∞(X , n) :=
∏

i≤n−1; j

(n − 1− i)!(−1)i+jdimQH
j (XQ,Ω

i )

since

detZRΓ(XZar , LΩ<n
X/S) = C∞(X , n) · detZRΓ(XZar , LΩ<n

X/Z).



An integral fundamental line

For X regular, proper over Spec(Z) and n ∈ Z define

∆(X/Z, n) := detZRΓW ,c(X ,Z(n))⊗Z detZRΓ(XZar , LΩ<n
X/S)

The Beilinson regulator, Arakelov intersection pairing and Period
isomorphism induce

λ∞ : R ∼−→ ∆(X/Z, n)⊗Z R

The special value conjecture says

λ∞(ζ∗(X , n)−1 · Z) = ∆(X/Z, n)

If X → Spec(OF ) is smooth proper over a number ring then

∆(X/Z, n)⊗Z Q '
2d−2⊗
i=0

Ξ(hi (XQ)(n))(−1)i

is the fundamental line of Fontaine and Perrin-Riou for the motive

h(XQ)(n) =
2d−2⊕
i=0

hi (XQ)(n)[−i ]

of the generic fibre of X . Moreover λ∞ =
⊗

i ϑ
(−1)i

∞ .



The definition of RΓW ,c(X ,Z(n))

Key assumption (known for d ≤ 1 . . . )

H i (Xet,Z(n)) is finitely generated for i ≤ 2n + 1

Artin-Verdier duality for Z(n)/m on X et implies that

H i (X et,Z(n)) ∼= HomZ(H2d+2−i (X et,Z(d − n)),Q/Z)

is cofinitely generated for i ≥ 2n + 1. Define a perfect complex of abelian
groups RΓW (X ,Z(n)) as the mapping cone

RHom(RΓ(X ,Z(d−n)),Q[−2d−2])→ RΓ(X et ,Z(n))→ RΓW (X ,Z(n))

and a perfect complex RΓW ,c(X ,Z(n)) as a mapping fibre

RΓW ,c(X ,Z(n))→ RΓW (X ,Z(n))→ RΓW (X∞,Z(n))

also involving Betti cohomology of X (C).



Compatibility with the Tamagawa number conjecture

Theorem
If X → Spec(OF ) is smooth proper over a number ring then

λ∞(ζ∗(X , n)−1 · C (X , n)

C∞(X , n)
· Z) = ∆(X/Z, n)

is equivalent to the Tamagawa number conjecture for h(XQ)(n).

Recall: C(X ,n)
C∞(X ,n) = 1 for n ≤ 1 or X = Spec(OF ), all Fv/Qp abelian.

Corollary
Our conjecture

λ∞(ζ∗(X , n)−1 · Z) = ∆(X/Z, n)

holds true for X = Spec(OF ) and any n ∈ Z if F/Q is abelian.
Follows from proof of TNC for Dirichlet L-functions.



The example X = Spec(OF )

F number field with r1 real and r2 complex places.

ζ(X , s) = ζF (s) Dedekind Zeta function

All assumptions going into the definition of our groups are satisfied, in
particular for i = 1, 2

H i (Xet,Z(n)) ∼2 K2n−i (OF )

is finitely generated. Note

0→ Z/2Z→ K3(Z)→ H1(Spec(Z)et ,Z(2))→ 0

The conjectures on the vanishing order hold true (Borel 1975)

ords=n ζF (s) =



r2 n < 0 odd
r1 + r2 n < 0 even
r1 + r2 − 1 n = 0
−1 n = 1
0 n > 1



The Beilinson regulator map

H1(Xet,Z(n))
rn−→ H1

D(X/R,R(n)) ∼=
∏
v |∞

H0(Fv , (2πi)n−1R)

induces isomorphisms

rn,R : H1(Xet,Z(n))R
∼−→
∏
v |∞

H0(Fv , (2πi)n−1R)

for n > 1 and
r1,R : H1(Xet,Z(1))R ∼=

(∏
v |∞

R
)Σ=0

for n = 1. For n ≥ 1 we set

hn :=|H2(Xet,Z(n))| ∼2 |K2n−2(OF )|
wn :=|H1(Xet,Z(n))tor | ∼2 |K2n−1(OF )tor |
Rn :=vol(coker(rn))

where the volume is taken with respect to the Z-structure∏
v |∞ H0(Fv , (2πi)n−1Z), resp. (

∏
v |∞ Z)Σ=0, of the target.



Our conjecture is equivalent to

ζ∗F (n) = ±h1−n · R1−n

w1−n
(5)

for n ≤ 0 and to

ζ∗F (n) = ζF (n) =

= (n − 1)!−[F :Q] · 2
r1·(−1)n−1

(2π)[F :Q]·n−r2−r1·(((−1)n−1)/2)hnRn

|DF |n−1
√
|DF | · wn

(6)

for n ≥ 1.

Proposition
Equations (5) and (6) hold for n = 0, 1 if F is arbitrary and for any n ∈ Z
if F/Q is abelian.

This follows from known cases of the Tamagawa number conjecture.



Cyclic Homology (Additive K-theory)

If k is a commutative ring and A/k a k-algebra define (derived)
Hochschild homology

HH(A/k) := A⊗L
A⊗L

kA
A

and (derived) cyclic homology

HC (A/k) := HH(A/k)hS1

Theorem
(Majadas, Antieau) There is a (motivic) filtration F ?MotHC (X/Z) on
HC (X/Z) so that for all n ∈ Z

grnMotHC (X/Z) ' RΓ(XZar , LΩ<n
X/Z)[2n − 2]

Compare with the motivic filtration on K-theory

grnMotK (X ) ' RΓ(XZar ,Z(n))[2n]



Additive K-theory of Spec(OF )

For n ≥ 1 and X = Spec(OF ) one has

RΓ(XZar , LΩ<n
OF/Z) ∼=

(
OF

d(n)−−→ ΩOF/Z(n)

)
where ΩOF/Z(n) is a certain finite abelian group of order |DF |n−1.

K add
2n−1(OF ) := HC2n−2(OF ) = ker

(
OF

d(n)−−→ ΩOF/Z(n)

)
K add
2n−2(OF ) := HC2n−3(OF ) = coker

(
OF

d(n)−−→ ΩOF/Z(n)

)
One has

|DF |n−1
√
|DF | = haddn · Radd

n

where Radd
n := covol(K add

2n−1(OF )) and haddn := |K add
2n−2(OF )|.



Improved additive K-theory of Spec(OF ) (TC+(OF ))

How to explain C (Spec(OF ), n) = (n − 1)!−[F :Q]?

Topological Hochschild homology (Bökstedt,...)

THH(X ) := HH(X/S)

where S is the sphere spectrum.

Definition
Topological positive cyclic homology

TC+(X ) := THH(X )hS1

Theorem
(Madsen, Lindenstrauss, 2000)

THHi (OF ) =


OF i = 0
D−1F /j · OF i = 2j − 1
0 else



Improved additive K-theory of Spec(OF ) (TC+(OF ))

The spectral sequence

Hi (BS
1,THHj(OF ))⇒ TC+

i+j(OF )

shows that TC+
2n−3(OF ) is finite and TC+

2n−2(OF ) ⊆ OF is a sublattice
so that

(n − 1)![F :Q]|DF |n−1
√
|DF | = haddn · Radd

n

where Radd
n := covol(TC+

2n−2(OF )) and haddn := |TC+
2n−3(OF )|.

Hence for n ≥ 1 we have

ζ∗F (n) = ζF (n) =
2r1·(−1)n−1

(2π)[F :Q]·n−r2−r1·(((−1)n−1)/2)hn · Rn

haddn · Radd
n · wn

without any correction factor!



The motivic filtration on TC+(X )

For X = Spec(OF ) we have

F n
MotTC

+(OF ) := τ≥2n−3TC
+(OF )

but the motivic filtration in general is more complicated.

Theorem
(Morin, Bhatt-Lurie) There is a (motivic) filtration F ?MotTC

+(X ) on
TC+(X ) so that for all n ∈ Z

grnMotTC (X )+ =: RΓ(XZar , LΩ<n
X/S)[2n − 2]

satisfies

detZRΓ(XZar , LΩ<n
X/S) = C∞(X , n) · detZRΓ(XZar , LΩ<n

X/Z).

where
C∞(X , n) :=

∏
i≤n−1; j

(n − 1− i)!(−1)i+jdimQH
j (XQ,Ω

i )



Compatibility with the Birch and Swinnerton-Dyer conjecture

Assume X is regular, connected, proper, flat of dimension d = 2. Then

f : X → Spec(OF ) =: S ; f∗OX = OS

for a unique number field F and

XF → Spec(F )

is a smooth, projective, geometrically connected curve. Moreover

ζ(X , s) =
ζ(H0, s)ζ(H2, s)

ζ(H1, s)
=
ζF (s)ζF (s − 1)

ζ(H1, s)

where ζ(H i , s) should be viewed as the Zeta function of a relative H i of f
in the sense of a motivic (i.e. perverse) t-structure



Compatibility with BSD: The Zeta function of H1

For each finite place v of F set

Cv :=set of irreducible components of the fibre Xκ(v)

rv ,i :=[κ(v)i : κ(v)]

where κ(v)i is the constant field of the component i ∈ Cv . Then

ζ(H1, s) =L(J, s) ·
∏

v finite

(
1

1− Nv−(s−1)

∏
i∈Cv

(1− Nv−(s−1)rv,i )

)

where L(J, s) is the Hasse-Weil L-function of J := Jac(XF ).

Want to describe ζ(H1, s) at s = n = 1. Recall Z(1) = Gm[−1]. Need
motivic decomposition of Rf∗Gm.



Compatibility with BSD: The motivic complex of H1

One has R i f∗Gm = 0 for i ≥ 2 (Grothendieck) and

P = PicX/S := R1f∗Gm

is the relative Picard functor (étale sheafification of U 7→ Pic(X ×S U)).
One has a truncation triangle

Gm = f∗Gm → Rf∗Gm → P[−1]→

and we define a complex of étale sheaves P0 on S by the exact triangle

P0 → P
deg−−→ Z→

The complex P0 serves as a substitute for the relative H1-motive and one
has P0|Spec(F )et = J.



Compatibility with BSD: The main theorem

Theorem
a) One has

ords=1 ζ(H1, s) = rankZ Pic0(X ) ⇔ ords=1 L(J, s) = rankZ J(F ).

b) The following statements are equivalent

λ∞(ζ∗(H1, 1) · Z) = detZRΓW ,c(S ,P0)⊗Z det−1Z H1(X ,OX )

ζ∗(H1, 1) =
vol
(
H0

ar ,c(S ,P0 ⊗ R̃/Z)
)

vol
(
H1

ar ,c(S ,P0 ⊗ R̃/Z)
)

ζ∗(H1, 1) =
#Br(X ) · δ2 · Ω(X ) · R(X )

(#(Pic0(X )tor/Pic(OF )))2
·
∏
v real

#Φv

δ′vδv

and all these statements are equivalent to the BSD formula

L∗(J, 1) =
#X(J) · Ω(J ) · R(J(F ))

(#J(F )tor )2
·
∏
v

#Φv .



Compatibility with BSD: X(J) vs Br(X )

Define the local and global index

δv := # coker
(

Pic(XFv )
deg−−→ Z

)
, δ := # coker

(
Pic(XF )

deg−−→ Z
)

and the period

δ′v := # coker
(
P(Fv )

deg−−→ Z
)

α := # coker
(
Pic0(XF )→ J(F )

)
Then δv/δ′v ∈ {1, 2} for all places v .
Proposition
(Geisser, F.) If Br(X ) ' H2(Xet ,Gm) is finite then

# Br(X ) · δ2 =

∏
v δ
′
vδv

α2
·#X(JF ) (7)

where the product is over all places v of F and

Br(X ) := ker

(
Br(X )→

⊕
v real

Br(XFv )

)

One shows that # Br(X ) is a square if it is finite.



Compatibility with BSD: R(J(F )) vs R(X )

R(J(F )) :=regulator of the Neron-Tate height pairing on J(F )

R(X ) :=regulator of the Arakelov intersection pairing on Pic0(X )

Proposition

R(X )

(#(Pic0(X )tor/Pic(OF )))2 · α2

=
∏
v bad

(
#Φv

δ′vδv
(logNv)#Cv−1

∏
i∈Cv

rv ,i

)
· R(J(F ))

(#J(F )tor )2

Proof uses results of Bosch and Liu on component groups of Neron
Models.



Compatibility with BSD: Ω(J ) vs Ω(X )

Let
J → Spec(OF )

be the Neron model of J.
Let Ω(X ), Ω(J ) ∈ R× be such that

detZ H
1(X (C), (2πi)Z)GR = Ω(X ) · detZ H

1(X ,OX )

detZ H
1(J(C), (2πi)Z)GR = Ω(J ) · detZ Lie(J )

under the Deligne period isomorphism.

Proposition

Ω(X ) = ±Ω(J )

Proof uses results of Liu, Lorenzini and Raynaud on tangent spaces of
Neron models.



Compatibility with BSD: Some proven cases

Theorem
(Rubin, Burungale, F.) Let E/F be an elliptic curve with CM by OK for
an imaginary quadratic field K and such that F (Etors)/K is abelian. If
L(E , 1) 6= 0 then E (F ) and X(E/F ) are finite and the BSD formula
holds true.

Theorem
(Yongxiong Li, Yu Liu, Ye Tian) Let p ≡ 5 mod 8 be a prime number
and E/Q the elliptic curve

y2 = x3 − p2x .

Then rankZ E (Q) = ords=1 L(E , s) = 1, X(E/Q) is finite and the BSD
formula holds true.

Corollary
Let X/F be a genus 1 curve which is a torsor for E/F as above and
X/OF a proper, regular model of X . Then our conjecture on ζ(X , s) at
s = 1 holds true.



Compatibility with the functional equation

Let X be regular of dimension d , proper and flat over Spec(Z). Define
the completed Zeta-function

ζ(X , s) = ζ(X∞, s)ζ(X , s)

where

ζ(X∞, s) =
2d−2∏
i=0

L∞(hi (X ), s)(−1)i (8)

Here hi (X ) is the R-Hodge structure on H i (X (C),R). For simple
R-Hodge structures we have

M dimR M condition on p, q ∈ Z L∞(M, s)

Mp,q 2 p < q ΓC(s − p)
Mp,+ 1 c = (−1)p ΓR(s − p)
Mp,− 1 c = (−1)p+1 ΓR(s − p + 1)

ΓR(s) = π−s/2Γ(s/2); ΓC(s) = 2(2π)−sΓ(s)



Compatibility with FE: Main Theorem

Theorem
Assume ζ(X , s) satisfies the functional equation

A(X )(d−s)/2ζ(X , d − s) = A(X )s/2ζ(X , s)

where A(X ) is the Bloch conductor of X . Then for any n ∈ Z

λ∞(ζ∗(X , n)−1 · Z) = ∆(X/Z, n)

if and only if

λ∞(ζ∗(X , d − n)−1 · Z) = ∆(X/Z, d − n).

A(X ) is defined in terms of ΩX/Z. Example: A(Spec(OF )) = |DF |.

Note: Compatibility with FE is not in general known for TNC.



Compatibility with FE: Proof

Defining

Ξ∞(X/Z, n) := detZRΓW (X∞,Z(n))⊗ det−1Z RΓ(XZar , LΩ<n
X/Z)

⊗det−1Z RΓW (X∞,Z(d − n))⊗ detZRΓ(XZar , LΩ<d−n
X/Z )

one has
∆(X/Z, n)⊗ Ξ∞(X/Z, n)

∼−→ ∆(X/Z, d − n)

and a canonical trivialization and period x∞ ∈ R×

ξ∞ : R ∼−→ Ξ∞(X/Z, n)⊗ R; ξ∞(Z · x−1∞ ) = Ξ∞(X/Z, n)

Here

RΓW (X∞,Z(n))⊗Z R ' RΓ(X (C),R(n))+ := RΓ(X (C), (2πi)nR)+

is a certain Z-lattice in the Betti plus space.



Compatibility with FE: Proof

ξ∞ is induced by(
detZ RΓW (X∞,Z(n))⊗ det−1Z RΓW (X∞,Z(d − n))

)
R

∼−→ detR
(
RΓ(X (C),R(n))+ ⊕ RΓ(X (C),R(n − 1))+

)
∼−→ detR RΓ(X (C),C)+

∼−→ detR RΓdR(XC/C)+

∼−→ detR RΓdR(XR/R) '
(

detZ RΓ(XZar , LΩ<d
X/Z)

)
R

λ−1
dR−−→

(
detZRΓ(XZar , LΩ<n

X/Z)⊗ det−1Z RΓ(XZar , LΩ<d−n
X/Z )

)
R

Need to show

x∞ = ±A(X )n−d/2 · ζ∗(X∞, n)

ζ∗(X∞, d − n)
· C∞(X , d − n)

C∞(X , n)
.

or equivalently

x∞ = ±A(X )n−d/2 · 2d+(X ,n)−d−(X ,n) · (2π)d−(X ,n)+tH (X ,n)



Compatibility with FE: Proof

I Verdier duality on the locally compact space X∞ := X (C)/GR gives

λB
(
detZRΓW (X∞,Z(n))⊗ det−1Z RΓW (X∞,Z(d − n))

)
= detZRΓ(X (C),Z(n)) · 2d−(X ,n)−d+(X ,n)

I Comparing Poincaré duality for both sides gives

detZRΓ(X (C),Z(n)) = (2π)d−(X ,n)+tH (X ,n)·A(X )
d
2 ·det−1Z RΓ(XZar , LΩ<d

X/Z)

I A result of Takeshi Saito implies

λdR

(
det−1Z RΓ(XZar , LΩ<n

X/Z)⊗ detZRΓ(XZar , LΩ<d−n
X/Z )

)
= A(X )d−n · det−1Z RΓ(XZar , LΩ<d

X/Z)



Compatibility with FE: Proof

Theorem
(T. Saito) For any r ∈ Z define C r

X/Z ∈ Db(Coh(X )) by the exact
triangle

L ∧r ΩX/Z → R Hom(L ∧d−1−r ΩX/Z, ωX/Z)→ C r
X/Z

Then RΓ(X ,C r
X/Z) has finite cohomology and

∏
i∈Z

(
#H i (X ,C r

X/Z)
)(−1)i

= A(X )(−1)r .


