

A tale of two kinds of superconducting nickelates

Frank Lechermann

Theoretische Physik III, Ruhr-Universität Bochum, Germany

Engineered 2D Quantum Materials 15-26 July 2024, ICTS Bengaluru, India

Collaborations

Ruhr-University Bochum

- Steffen Bötzel
- Jannik Gondolf
- 🔎 Ilya M. Eremin

Additional support

- Brian M. Andersen, Kopehagen
- Andreas Kreisel, Kopenhagen
- Astrid Romer, Kopenhagen
- Evgeny Stepanov, Paris
- Matteo Vandelli, Hamburg
- Alexander I. Lichtenstein, Hamburg

Superconducting nickelates: materials

 $\partial - \partial$

 $8\pm\delta$

Superconducting nickelates: motivated by high- T_c cuprates

basic cuprate characteristics

- charge-transfer insulator, ${\sf Cu}^{2+}(3d^9)$
- square CuO $_2$ planes
- antiferromagnetic (AFM) order
- hole doping: $3d^9 \underline{L}$ \rightarrow leads to low-energy Zhang-Rice singlet

effective one-orbital pic (minimal model): $\operatorname{Cu-d}_{x^2-y^2}$ hybridized with $\operatorname{O}(2p)$

by O. K. Andersen

"nickelates to cuprates"?

- prefered in oxides: $Ni^{2+}(3d^8)$
- doping of insulating nickelates often leads to in-gap states
- ^o 'most-natural' Ni⁺($3d^9$) compound: RENiO₂ (with RE rare-earth 3+ ion)

Nickelates: basics

transfer

insulator

0

-8

-6

 $Ni-e_g$ frontier orbitals

-2 ω (eV)

2

4

0

-4

Nickelates: Mott-Hubbard vs. charge-transfer

[Mattheis, PRB 5, (1972)]

[Zaanen, Sawatzky, Allen, PRL 55, (1985)] [Imada, Fujimori, Tokura, RMP 70, (1998)]

FIG. 59. Variation of $\varepsilon_d - \varepsilon_p$ for the LaMO₃ series with the metal *M* element. From Mahadevan *et al.*, 1996.

Superconducting nickelates: materials

 $\partial - \partial$

 $8\pm\delta$

$3d^{9-\delta}$ superconductors: initial work on LaNiO₂

experiment

 $LaNiO_3 + xH_2 \rightarrow LaNiO_{3-x} + xH_2O.$

[Crespin et al,. J. Chem. Soc., Faraday Trans. 2 79, 1181 (1983)] [Levitz et al., J. Chem. Soc., Faraday Trans. 2 79, 1195 (1983)] [Hayward et al., J. Am. Chem. Soc. 121, 8843 (1999)]

Fig. 6. Oxidation state of nickel in different phases formed during reduction of LaNiO₃ plotted against the energy shift of the absorption edge using LaNiO₃ as a standard: $(a)LaNiO_3$, $(b) LaNiO_{2.8}$, $(c) LaNiO_{2.7}$, $(d) LaNiO_{2.68}$, $(e) LaNiO_{2.6}$, $(f) La_2NiO_4$, $(g) LaNiO_{2.5}$ and $(h) LaNiO_2$.

Fig. 1. Proposed structure of LaNiO₂.

theory

[Choisnet et al., J. Phys. Chem. Solids 57, 1839 (1996)] [Anisimov, Bukhvalov, Rice, PRB 59, 7901 (1999)] [Lee and Pickett, PRB 70, 165109 (2004)]

energy (eV)

LaNiO2

Experimental finding: finally, a superconducting nickelate!

LETTER

https://doi.org/10.1038/s41586-019-1496-5

Superconductivity in an infinite-layer nickelate

Danfeng Li^{1,2}*, Kyuho Lee^{1,3}, Bai Yang Wang^{1,3}, Motoki Osada^{1,4}, Samuel Crossley^{1,2}, Hye Ryoung Lee^{1,4}, Yi Cui^{1,4}, Yasuyuki Hikita¹ & Harold Y. Hwang^{1,2}*

- thin films of infinite-layer NdNiO $_2$ on SrTiO $_3$
- film thickness $\sim 10\,$ nm
- resistivity upturn below T = 70 K
- igsquirin 20% Sr (hole) doping: superconducting below $T\sim 10\,{
 m K}$
 - critical current density $J_c \sim 170\,{
 m kA}\,{
 m cm}^{-2}$
 - zero-T coherence length $\sim 3.25\,\mathrm{nm}$, type-II superconductor
 - recent data: Pauli-limit violation in doped LaNiO₂ and PrNiO₂? [Chow et al., arXiv:2204.12606 (2022)] [B. Y. Wang, et al., arXiv:2205.15355 (2022)]

30

40

50

0

10

20

[Li et al., Nature 572, 624 (2019)] [Lee et al., APL Materials 8, 041107 (2020)]

$3d^{9-\delta}$ superconductors: some experimental data

[Li et al., PRL 125, 027001 (2020)] [Zheng et al., PRL 125, 147003 (2020)]

- superconducting "dome" for 0.125 < x < 0.25
- reminiscent of dome in layered cuprates
 - but: weakly-insulating on both sides of superconducting region
- Hall data suggests two-band picture with doping

$3d^{9-\delta}$ superconductors: theory concepts

e.g. reviews

[Norman, Physics 13, 85 (2020)]

[Botana, Bernadini, Cano, JETP 132, 618 (2021)]

- Indeed cuprate(-like) physics: mainly Ni-d_{x²-y²} driven e.g. [Nomura et al. PRB 100, 205138 (2019)]
 [Wu et al., PRB 101, 060504(R) (2020)][Si et al., PRL 124, 166402 (2020)] [Karp et al. PRX 10, 021061 (2020)][Been et al., PRX 11, 011050 (2021)]
 - Kondo-based physics involving Ni- $d_{x^2-y^2}$ and Nd orbitals e.g. [Zhang et al. PRBB 101, 020501(R) (2020)]
- dominant interface physics (induced by SrTiO₃ substrate) e.g. [Geisler and Pentcheva, PRB 102, (020502(R)] [Zhang et al., PRB 102, 195117 (2020)]
- Ni multiorbital physics (Mott vs. Hund (vs. Kondo)) e.g. [Werner and Hoshino, PRB 101, 041104(R) (2020)] [Wang et al., PRB 102, 161118(R)][Choi et al., PRR 2, 033445 (2020)]

Theoretical approach: realistic many-body

[Anisimov, Poteryaev, Korotin et al., JPCM 9, 7359 (1997)] [Held, Keller, Eyert et al., PRL 86, 5345 (2001)] [Minár, Chioncel, Perlov, at al., PRB 72, 045125 (2005)] [FL, Georges, Poteryaev et al., PRB 74, 125120 (2006)] [Lichtenstein and Katsnelson, PRB 57, 6884 (1998)] [Pavarini, Biermann, Poteryaev et al., PRL 92, 176403 (2004)] [Kotliar, S. Y. Savrasov, K. Haule et al, RMP 78, 865 (2006)] [Grieger, Piefke, Peil and FL, PRB 86, 155121 (2012)] ..., ..., ...

Density Functional Theory (DFT) + Dynamical Mean–Field Theory (DMFT)

charge self-consistency

1-5 local correlated orbitals

[Parcollet et al., Comput. Phys. Commun. 196, 398 (2015)] [Seth et al, Comput. Phys. Commun. 200, 274 (2016)]

Theoretical approach: settings for nickelates

- correlated subspace: Ni(3d) from projected-local orbitals
- rotational-invariant 5-orbital Slater-Hamiltonian: $U = 10 \,\text{eV}$, $J_{\text{H}} = 1 \,\text{eV}$
- self interaction correction (SIC) for oyxgen: $w_p = 0.8$
- fully-localized double counting correction

setting fixed for <u>all</u> nickelates

example: NdNiO₂

$3d^{9-\delta}$ superconductors: NdNiO₂

[FL, PRB 101, 081110(R) (2020)] [FL, PR Mat. 5, 044803 (2021)]

Ni- $d_{x^2-u^2}$ (nearly) Mott-insulating, Ni- d_{z^2} hybridizes with Nd- d_{z^2} and forms Γ -pocket of self-doping band

$3d^{9-\delta}$ superconductors: experimental spectrum

[FL, PRB 101, 081110(R) (2020)] [FL, PR Mat. 5, 044803 (2021)] [Chen et al., Matter 5, 1806 (2022)] [Ding et al., Nat. Sci. Rev. 194 (2024)] [Sun et al., arxiv:2403.07344 (2024)]

$3d^{9-\delta}$ superconductors: doped NdNiO₂

[FL, PRB 101, 081110(R) (2020)] [FL, PR Mat. 5, 044803 (2021)]

no strong Zhang-Rice physics

no strong Zhang-Rice physics

Ni- d_{z^2} flat-band part in $k_z = 0.5$ plane crosses Fermi level in the superconducting doping region when including oxygen-based correlations (brought in by SIC)

$3d^{9-\delta}$ superconductors: doped NdNiO₂

[FL, PR Mat. 5, 044803 (2021)]

Multilayer nickelates: infinite-layer vs. multilayer

e.g. [Li et al., APL Materials 8, 091112 (2020)]

$3d^{9-\delta}$ superconductors: quintuple-layer Nd₆Ni₅O₁₂

[Pan et al., Nat. Mater. 21, 160 (2022)] [FL, PRB 105, 155109 (2022)]

Temperature (K)

Theoretical picture: three-band model for $Nd_{1-x}Sr_xNiO_2$

[FL, PRX 10, 041002 (2020)]

•

solved with rotational-invariant slave bosons (RISB)

$3d^{9-\delta}$ superconductors: model superconductivity

[Kreisel et al., PRL 129, 077002 (2022)]

Leading SC instabilities from RPA spin fluctuations

 \Rightarrow various competing instabilities, nodal s_{\pm} a promising candidate

Superconducting nickelates: materials

 $\partial - \partial$

 $8\pm\delta$

$3d^{8\pm\delta}$ superconductors: ambient-pressure La₃Ni₂O₇

[Liu et al., Sci. China Phys. Mech. Astron. 66, 21741 (2023)] [Liu et al., arXiv:2307.02950 (2023)][Yang et al., arXiv:2309.01148 (2023)] [Chen at al., arXiv:2401.12657 (2024)]

temperature anomalies

x

-03

F

$3d^{8\pm\delta}$ superconductors: ambient-pressure La₃Ni₂O₇, DFT+sicDMFT

[Ling et al., J. Sol. Stat. Chem. 152, 517 (1999)] [Chen et al., JACS 146, 3640 (2024)] [Puphal et al., arXiv:2312.07341 (2023)] [FL, Bötzel, Eremin, arXiv:2403.12831 (2024)]

$3d^{8\pm\delta}$ superconductors: ambient-pressure La₃Ni₂O₇, DFT+sicDMFT

$3d^{8\pm\delta}$ superconductors: ambient-pressure La₃Ni₂O₇, DFT+sicDMFT

$3d^{8\pm\delta}$ superconductors: high-pressure La₃Ni₂O₇, DFT+sicDMFT

Μ

X

connection between d^9 -like and d^8 -like nickelate superconductivity?

Summary

superconducting nickelates split into d^8 -like and d^9 -like systems

DFT+sicDMFT provides an adequate tool for investigations

- d^9 -like systems
 - way larger charge-transfer energy than cuprates
 - orbital-selective Mottness at stoichiometry, flat-band physics with hole doping
- d^8 -like systems
 - again Ni- d_{z2} flat-band characteristics
 - different structural motifs: layer selectivity in 1313
 - ambient pressure: (S)DW transition at $T \sim 150$ K driven by flat band
 - high pressure: strong non-Fermi-liquid physics and Fermi arcs
- common features (?)
 - $Ni-d_{z^2}$ flat-band physics
 - coherence-incoherence dichotomy

Theoretical approach: dynamical mean-field theory

[Metzner, Vollhardt, PRL (1989)] [Georges, Kotliar, PRB (1992)]

→ local correlations are fully taken into account non-pertubatively, explicit non-local correlations are neglected

Theoretical approach: efficient inclusion of ligand-Coulomb in DFT+DMFT

[FL, Körner, Urban, Elsässer, PRB 100, 115125 (2019)]

Issue with late transition-metal oxides

The explicit role of O(2p) and concomitat charge-transfer physics becomes more and more relevant for later transition-metal oxides (\rightarrow Zaanen-Sawatzky-Allen). Therefore, conventional DFT+DMFT, with treating electronic correlations as only emerging from the transition-metal site, has to be extended to include explicit Coulomb interactions on oxygen.

$3d^{9-\delta}$ superconductors: NdNiO₂

[Li et al., Nature 572, 624 (2019)] [FL, PRX 10, 041002 (2020)]

•

Theoretical picture: model spin excitations

[Kreisel et al., PRL 129, 077002 (2022)] [Lu et al., Science 373, 213 (2021)]

Paramagnetic RIXS response

Interacting Fermi surface with hole doping