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Directed Animals

For the undirected animals enumeration problem, exact analysis
has not been possible in any nontrivial case so far. The situation is
better in the directed case.

Consider a directed square lattice. A directed animal is a set of
sites connected to the origin by directed bonds.

Let An be number of directed animals of s sites, besides the origin.

Then it is easy to see that for s = 1, 2, 3, 4...

As = 1, 2, 5, 13...

.



Define A(x) =
∑∞

s=1 Asx
s .

A(x) is the generating function, sum over all animal configurations,
the weight of a configuration of s sites being x s .

Then using the directedness property, we can set up a recursion
relation
A(x) = x [1 + 2xA(x) + x2A11],
where A11 is the generating function for animals starting with two
neighboring sites along a constant t = (x + y) line.

Thus A(x) can be expressed in terms of A11(x). There is a
recursion relation for A11(x)
A11(x) = x2[1 + 3A(x) + 2A11(x) + A101(x) + A111(x)]

Note also that A111 = xA101.



More generally, consider a general source C , specified by its binary
string of the form 11000101.., we denote the generating function
by AC (x).

Then AC (x) satisfies the recursion relation

AC (x) = x |C |

[∑
C ′

AC ′(x)

]
,

where the sum is over all possible allowed occupation states of the
next layer C ′ after C .

These are called recursion relations, as if we know these functions
as a power series to some order xn, then using the series, we can
determine the coefficients of the series expansion of order xn+1,
and so on.

The full hierarchy can be truncated at any level, and all
coefficients of lower order are exactly determined.



In fact, we used such recursion relations, along with the Martin’s
algorithm, in 1982, we managed to produce a longish series



A model of growing mixed crystals

We consider a model of growth of a crystal from a supersaturated
solution of mixture of NaCl and KCl.

The growth in the model occurs layer by layer, Each ’odd’ site may
be occupied by K or Na. This occurs with different probabilities.
Denote K atom by 1 ( large magenta spheres), and Na atom by 0
(small yellow spheres).

The rule for growth: A potential site may be occupied by K, only if
both sites below are Na, and then only with a probability p. Else,
it occupied by Na.



If the system grows for a long time, it forgets the memory of initial
state. Then there is a fractional density of K sites in this state,
ρ(p) that depends on p.
This Markovian evolution has an explicit directed structure. One
can write an equation for ρ(p):

Prob(1) = p[Prob(00)],

and using inclusion-exclusion principle, this may be written as

= p[1− 2Prob(1) + Prob(11)],

More generally, we denote by Prob(1100101) the probability that
we a get a local configuration 1100101 in the steady state. Then
we get, for a general string C

Prob(C)= p|C |
[∑

C ′(−1)|C
′|Prob(C ′)

]
.

where the sum over C ′ is over all possible occupations of sites that
are predecessors of occupied sites in C .



It is very interesting that the structure of these equations is the
same as in the directed animals problem. In fact, we see that the
equations transform into each other under the identification

Prob(C ) = (−1)|C |AC (x = −p).

Then the problem of determining A(x) reduces to that of
determining the asymptotic density of K atoms in the CGM.

But the same picture of CGM may be thought of as a plot of the
history of a 1-dimensional lattice gas undergoing parallel update
even odd evolution with the following transition probabilitiess:

010 → 000, with probability (1− p),
000 → 010, with probability p.



But these transition rates satisfy the detailed balance condition
corresponding to the 1-dimensional nearest -neighbor exclusion
lattice gas with the Hamiltonian

Hnne = +∞
∑
i

nini+1 − µ
∑
i

ni ,

with activity z = exp(βµ) = p/(1− p).

Then in the long -time steady state of CGM, probabilities of
different configurations on a constant time slice correspond to the
equilibrium measure of the Hamiltonian Hnne .
cc
In this case, it is easy to see that the Landau free energy per site is

ω(z) = log

[
1 +

√
1 + 4z

2

]
,

Then the density is given by the ρ(z) = z d
dzω, giving

ρ(z) =

[
1− 1/

√
(1 + 4z)

2

]
.



Then converting this result to the generating function for animal
numbers, we get

A(x) =

[√
1− x

1− 3x
− 1

]
/2.

This agrees exactly with the all the series coefficients calculated
numerically earlier.



More importanatly, the arguments are easily extended to higher
dimensions. Consider the directed bcc lattice in d -dimensions.

Fig: The directed bcc lattice in 3 dimensions.

In this case, we get the generating function for directed animals in
d dimensions equal to the density of the nearest exclusion gas in
(d − 1) -dimensions with activity z denoted by ρ(d−1)(z) as

Ad ,bcc(x) = −ρ(d−1)(z = −x/(1− x)].

The directed animals problem shows dimensional reduction, in that
the solution of a d-dimensional problem reduces to the solution of
a (usually easier) (d − 1)-dimensional problem.



Unfortunately, the nearest -neighbor exclusion gas on a square
lattice is not exactly solved, and so, this does not yield an explicit
determination of A3,bcc .

But we can construct a directed cubic lattice, with directed bonds
to first and second nearest neighbors. In this case, the generating
function reduces to the solution of another hard core lattice gas
model: hard hexagons, for which the exact solution was obtained
by Baxter in 1972.

The directed cubic lattice with next nearest bonds.



Then using Baxter’s expression for the density of the hard hexagon
gas a function of activity, we get for this lattice, the exact
generating function. Unfortunately, the expression is a bit
complicated.

The number of animals of s sites , for large s grows as Cλss−θ,
where λ = (9 + 5

√
5)/2, θ = 5/6.



The Lee-Yang theory of phase transitions

Consider the grand partition function of molecules with a hard core,
and also longer rang attractive interactions, in a box of volume V .

ΩV (z) =
nmax∑
n=0

Zn(V ,T )zn

This is a polynomial in z of degree nmax ≈ 1.V . Then it has
exactly nmax zeros in the complex z-plane.

The partition function is analytically extended in the whole
complex plane. The log of the partition function is like the
potential due to unit charges at the placed at the zeros of Ω.



In the limit of large V , the zeroes have a limiting continuous
distribution. Lee and Yang showed that in some cases, there are
lines of zeroes with a continous line-density.

As we change temperature, the zeroes move. If the zeroes pinch in
on the real axis, it gives singularities in the partition function per
molecule.

Figure: Figure from Lee and Yang’s paper, showing lines on zeros in the
complex z-plane (called y -plane here), showing two phase transitions.



The universal Yang-Lee edge singularities

M E Fisher noted that the radius of convergence of the Mayer
series for density as a function of the activity z is governed by the
singularity closest to the origin in the complex z -plane.

It turns out that this is usually on the negative real-z axis. The
position varies with temperature, but the qualitative nature of
singulaity is the same for different fluids; Hard spheres,
ferromagnetic/ antiferromagnetic Ising models, Lennard-Jones
fluids ...

The value of the exponent depends only on the dimension. Near
this point, the analytically continued correlation length diverges,
and this is a genuine critical point, where the analytically
continued free energy has a singularity. Now called the Yang-Lee
edge singularity.



At the YL- edge sigularity, there is only one independent critical
exponent.

At the end-points of lines of zeros, the density of zeros has a
power-law singularity ∼ ϵϕ−1, where the exponent ϕ is universal,
independent of temperature, and depends only on dimension.

Thus, if we analytically continue the equation for P(z) to complex
values of z , the closest singularity to the origin is on the negative
z , and should have this singularity.



There is an even more amazing dimensional reduction, and it is
shown that the undirected animals enumeration problem in
(d + 1)-dimensions can also be related to the Lee-Yang edge
singularity in (d − 1) dimensions.

Unfortunately, this argument is rather subtle, using supersymmetry,
and not fully understood by me [Brydges and Imbrie, Annals of
Mathematics, 158 (2003), 1019–1039].



In the end, we get this relation between the critical exponents :

θdirected [d ] = σYL[d − 1] + 1 = θundirected [d + 1]− 1.

The value of σYL[d ] is known exactly for d =0,1,2, and d ≥ 6. It is
−1,−1/2,−1/6 and 1/2. In other cases, only estimates from series
expansions, or ϵ-expansion with Borel - resummation, are available.



Exercises:

1. Use the expression for A(x) for directed 2-d animals to deduce
the asymptotic behavior of As for large s.

2. From the exact solution of the hard hexagon gas, it is known
that it undergoes a phase transition at a critical value of the
activity z . What constraints does it place on the density of zeroes
in the complex plane?


