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Duality in percolation and resistance problems

In theoretical physics, there are several different notions of duality.
For example, there is a strong-coupling /weak coupling duality
(e.g. in the self duality of the Ising model on a square lattice.)

We will start with the notion of graph duality on planar graphs.

Consider a planar graph. The bonds may be denoted by line
segments. Then the two-dimensional may be divided into disjoint
polygonal areas called faces. The boundaries of polygons have
vertices, and edges. In the figure, the yellow vertices and red edges
form such a graph G .



We define a dual graph G̃ of these as follows: Each polygonal area
of G is a vertex in G̃ ( shown as big light blue blobs). Draw a blue
edge in G̃ between vertices A1 and A2 of G̃ , iff the corresponding
faces in G share a common edge.

In the figure the graph drawn between blue vertices with blue
edges is the dual graph G̃ .
It easy to see that the dual of G̃ is g .

The edges of G̃ intersect the edges of G .



This notion may be generalized to higher dimensions.

Say, in 3-dimensions, we can start with a decomposition of the 3-d
manifold into non-overlapping 3-dimensional cells. Then, the
intersection of adjoing cells are 2-dimensional ’surfaces’, and
intersection of adjacent surfaces are ’edges’, and two different
edges meet at 0-dimensional ’vertices’.

We will define this set of the vertices and edges as constituting the
graph G . The condition that the graph is embedded in 3-d
manifold , is the generalization of ”planarity” condition.

In the dual graph, G̃ , there is a vertex for each ”cell” in G . We
draw an edge in G̃ if the volumes corresponding to the end points
of this edge have a common surface in G . A surface in G̃
corresponds to bond in G , and each ”cell” in G̃ corresponds to a
vertex in G .



Self-duality of bond percolation on the square lattice

A picture of a configuration of bond percolation on a finite portion
of the square lattice ( red bonds), and its dual (blue bonds) .
Clearly, the bond percolation problem on the square lattice is
self-dual.
There is an obvious geometrical property: either there is a
connected path of red bonds from left to right boundary, OR there
is a path of blue bonds from top to bottom.

It can be proved that for pred > p∗, for large L, with a probability
near 1 there is a red path from left to right. Then, there is no blue
path. Hence the concentration of blue bonds must be less than p∗.
But pblue = 1− pred .



This implies that for the square lattice bond percolation, p∗ = 1/2.



Self-duality for site percolation on the triangular
lattice

A picture of a random configuration of white and pink hexagons.
The centers of hexagons form a Triangular lattice .

Again, there can either left-right crossing using only white tiles, or
top to down using the pink tiles.
Hence, we have pc [site, triangular lattice] = 1/2.



Duality transformation for planar resistor networks

Consider a network of resistors forming planar graph. We are given
the values of resistances of each link, and one wants to determine
the current distribution.

This is solved using the Kirchhoff’s laws. One assigns a voltage
variable Vi to each node i . This determines the current in each
link in terms of {Vi}. Then, one imposes the conditions that net
current at each (non-source) node is zero, to get linear coupled
equations for {Vi}.



The alternative is to define loop current variables ψj for each loop.
Then individual link currents are differences of ψ’s, and the current
conservation laws are automatically satisfied. Then, one gets linear
equations for {ψj} by requiring that net volatge drop across a loop
on the dual lattice (magenta colored) is zero.

It is easily seen that the variables {ψj} is just like the potentials for
the dual resistor network graph, with

σ̃j = 1/σj ,

for the dual link j̃ of the link j of the original graph.

This shows that resistor network problem on the planar garphs is
self-dual.



Directed Percolation

If the flow of fluid along bonds is only possible in prespecified
directions, that affects qualitative behavior strongly. This problem
has been studied a lot, and continues to be.

The percolation clusters are strongly anisotropic.

One may think of the preferred direction as time. This becomes a
prototypical model to study non-equilibrium steady states.

The model has remained unsolved even in 1 + 1 dimensions,
despite many efforts.



One can think of an infection in an orchard evolving in time, where
the person recovers after one unit of time.

At low rates of infection, the infection eventually dies out, and the
model shows an ’Active -absorbing state transition’

More hegerally, there are reaction diffusion systems, where the
activity can grow, diffuse or die, that often show such absorbing
state transitions.

There is a lot of work on absorbing state transitions. The Janssen
-Grassberger conjecture states that if there is a unique absorbing
state, and no special symmetries, then, the transition is in the
Directed Percolation universality class.



A picture of some directed percolation clusters, taken from G.
Lemoult et al, Nature Phys., 12,(2016) 254.



There are two correlation lengths: ξ‖ , ξ⊥ that diverge with
different exponents ε−ν‖ and ε−ν⊥ .

Equivalently, the relaxation time diverges as a nontrivial power of
correlation length τ ∼ ξZ , with z > 1.



Duality transformations for Directed percolation

It is possible to extend the duality transformation for percolation in
two dimensions to the case where each bond can be of any of four
types: R, I, D+ and D−, which are resistor, insulator, forward and
backward diodes.

The assignment of dual bonds is as follows:

The red sites are original lattice sites, and the green sites are dual
lattice sites. The I is denoted by absent bond, R is a undirected
bond allowing two way flow, and the directed bonds denote allowed
direction of flow. The assignment for vertical bonds on the original
lattice is obtained by rotating figure anticlockwise by 90◦.



If only R and I states are allowed, this is the old undirected
percolation case. If only I and D+ are allowed, that is the usual
directed percolation ( here we shall it DI-percolation).

The dual of the DI -percolation is the DR-percolation. This has an
interesting structure. Assume the bonds allow only flow in the
negative x or negative y-direction with probability p, and two way
flow with probability (1− p).

We consider a source at the origin, and look at the region than can
be reached by the fluid. It is easy to see that flow in the negative
direction is always allowed, then if site(x,y) is wet, so are all sites
(x ′, y ′) with x ′ ≤ x , y ′ ≤ y .

Hence the structure of the wetted cluster is like. single staircase’
On large scales it forms an approximate wedge. The wedge angle
= 90◦, and slowly increases as p is increased. At a value
p∗ = 1− pc,DP,sq, the angle reaches 180◦. Then there is an
instability, and the angle jumps to 360◦, for all p > p∗.



A picuture of Diode-resistor percolation. All the unmarked bonds
allow flow left or down. The red bonds are resistors allowing
two-way flow of the fluid. The blue line marks the boundary of
wetted sites, wetted by a point source at the origin(black circle).



For the general case, where I,D+, D-, and R cases occur with
probabilities p0, p+, p− and p2, the system has four possible phases
: No flow to long distances, flow to long distances in the positive
directions, only in negative directions, or both directions.
The phase diagram may be drawn in a tetrahedon ( with
p0 + p2 + p+ + p− = 1.) There is a symmetry under the
interchanging p0 and p2 and p+ and p−. A qualitative phae
diagram is given below [ taken from S. Redner, Phys. Rev. B
25(1982)3242]



Exercises
1. In the resistor network shown below, each resistance is 1Ω.
Determine the effective resistance between the nodes A and C .
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