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Invasion percolation

This problem originates in the important real-world problem of
oil-extraction from porous oil-bearing rock ( called shale).

The method of extraction is to push hot steam from one side of
rock at high pressure, which displaces the oil, and it comes out at
the other end.

It was found that some fraction of the oil remains in the rock, and
is hard to extract.
Wilkinson and Willemsen proposed a model for this.

The porous rock is modelled as a percolation structure ( the
unoccupied sites are the pores).
A fraction of the pores are full of oil. Adjacent pores are connected
by necks of variable sizes. It takes a higher pressure head to push
oil through a narrower neck.



At any time, as the steam is pushed, there is the advancing front
of the invading fluid. The fluid invades at the bond corresponding
to the smallest pressure head.

Take the pressure head to a a radom variable uniformly distributed
between 0 and 1.

A schematic representaion of the advancing front. Different colors
represent different time intervals of invasion. Picture taken from
The Encyclopedia of Complexity and Systems Science.



Interestingly, it was observed that the invaded cluster looks like the
percolation cluster at its critical point.

The dynamics of system seems to reach the critical point without
any external fine tuning of parameters.

This was actually the first example of Self-organized Criticality.

Consider a bond occupied if its pressure -head is less than a value
p, with p = p+c .
Then, we have an infinite spanning cluster.

Once the invaded cluster hits this spanning cluster, all further
growth will be on this cluster. Oil trapped in finite clusters cannot
be recovered by fluid displacement.

All subsequently selected bonds will have a value of pressure head
uniformly distributed between 0 and pc .



Self -organized directed percolation

In the previous model, self-organization required ”extremal
dynamics”. Can one get self-organized criticality without this,
involving only local evolution rules?

The answer was provided in a model of SOC-DP by Grassberger
and Zhang.

Consider sites on a line. At each site the is a random number in
[0, 1]. Start with f (x , t = 0) = 0, at all sites x .
The sites are updated in parallel with the following simple rule:

f (x , t + 1) = Max [Min[f (x − 1, t), f (x + 1, t)], η(x , t + 1)] . (1)

where η(x , t) are i.i.d. random variables uniformly distributed in
[0, 1].



Then, one finds that at large times, the values of f lie only in the
interval f > pc,DP , and in fact are proportional P∞(p = f ).
This looks fairy mysterious at first. But may be seen as follows:

Think of all directed paths from (x , t) to the bottom line t = 0.
For each path there is a maximum value of the noise variable
η(x ′, t ′), with (x ′, t ′) on the path. Then find the least value of this
value amongst all possible directed paths. Call that f (x , t).

Then, it is easily that f (x , t) satisfies the evolution equation.

Then the result follows that all directed long paths to infinity must
have at least some site where η(x , t) is above pc,DP .



The treatment is clearly valid for other lattices, and other
dimensions.

Other properties of these optimal paths may be studied. And
follow from / are same as the expected behavior of directed
percolation clusters.



Self-organized Undirected Percolation

The directed case has some special features ( you cannot influence
your past). It is interesting to ask if one can make an undirected
variation of the Grassberger-Zhang model.

This is possible, but not obvious. But one can check that the
following works.

• We consider a finite L× L square lattice, with open boundaries.
• There is a real variable η(x , y) at each site (x , y). There are
i.i.d. variables distributed uniformly within [0, 1].

• Define a real variable f (x , y) at each site. the starting values are
f (x , y) = 1, for all x , y .
Define f (x , y) = 0 at all external perimeter sites of the square.
• These variables f are updated in parallel using the following rule:

f (x , y , t+1) = Max [Min of f of all neighbors at time t, η(x , y)] .



It is easy to see that time t = 1, at all internal point f (x , y)
remains 1. But it would change at the boundary sites.

At t = 2, the sites at the next layer would also be affected. And
with time, the disturbance propagates inwards.

At large times, the f values stablize, and do not change anymore.

On this stable attractor, let the value of the function
f (x , y) = f ∗(x , y).

The variable f ∗(x , y) is a random variable distributed in the
interval [pc,undirected , 1] with density proportional to P∞(p).



As in the SODP case, we consider a path P from site (x , y) to the
boundary, and find the maximum value of the quenched variable
η(x ′, y ′) along sites (x ′, y ′) on the path. Call this v(P) Then
determine the minimum value of v(P) over all paths P is f ∗(x , y).

Then on a large lattice, with (x , y) away from the boundary, the
allowed values of f ∗(x , y) are ≥ pc,undirected .

However, calculating f ∗(x , y) is not trivial. We imagine that there
is an agent at each site, who at each time step declares that, based
on available information, he concludes that f ∗(x , y) ≤ f (x , y , t),
and shares this information with his neighbors.

Iterating this process of information sharing, we are able to
compute f ∗(x , y).



In the beginning, the agent has no information, and f (x , y , t = 0)
is equal to the default value 1.

At t = 1, the sites at the boundary can use a lower value equal to
their own random η.

Then at t = 2, the some of sites in the next layer are able to set
their thresholds to a value lower than 1, and so on.

Eventually, when the f -values do not change, we have calculated
the function f ∗(x , y).



Chase -Escape Percolation
As a final example of variations of the percolation problems, I will
discuss the following variation of the first passage percolation
problem:

We consider a d-dimensional lattice. Each site can be in one of
three states: empty, occupied by a prey , or occupied by predator.
For simplicity we will call these white, red and blue sites.

The initial state will a single blue site, with all its neighbors red,
and all other sites empty.

The time evolution rule is this : A white site having a red neighbor
becomes red with rate λ ( preys reproduce). A red site having a
blue neighbor becomes blue with rate 1 ( predators need prey to
eat and reproduce).



If there are no predators, the behavior of the model is quite simple:
( this is a continuous time formulation of a model called the Eden
model): The cluster of red sites grows with time, and the diameter
of the cluster grows linearly with time.

If λ > 1, we get a red cluster that grows with time, and inside it a
blue cluster grows with time, at a smaller rate.

If λ ≪ 1, the predators are in a hurry, and eat up the prey, before
they have a chance to grow. Then the prey die out, and the
predators cannot grow, as they need prey to reproduce. Then the
system grows into an absorbing state with a non-growing cluster of
blue sites, in a background of white, with no red sites.



So, there will be critical value λ∗, such that for λ < λ∗, all prey
die, but for λ > λ∗, the prey can survive to large times with a
non-zero probability.

The interesting, and non-obvious point is λ∗ is much less than 1.
In fact, it is closer to 1/2.

How can the prey survive if predator can move much faster than
them ?

The red can survive , even for some range of λ < 1, as red sites on
the average have more available white neighbors, than the typical
number of red neighbors of a blue site (even in the growth region).
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A configuration at λ = 0.495, near the critical value at t = 500.
Note the irregular shape of frozen parts of the blue cluster. Some
red sites are presents near the boundary of the growing cluster.



It is interesting that in this problem, one can can find both the
directed and undirected critical thresholds.

We define a discrete time version of the model as follows:

• Evoltion occurs with parallel update of all sites. A white site
with a red neighbor at time t becomes red at time (t + 1) with
probability p1. A red site with a blue neighbor at time t becomes
blue at time (t + 1) with probability p2.



This problem has a more complicated phase diagram in the
(p1, p2) plane.

These phases are distinguished by the behavior of red and blue
boundaries at large times.





We note that the point E in this phase diagram must have the
p1-coordinate = the Undirected percolation threshold.

To prove this, we designate all the bonds of the lattice as ’active’
or ’inactive’, with probabilities p1 and (1− p1) at the beginning of
the simulation itself.

A red site at time t will give rise to a neighboring site becoming
red, IFF it is connected by an ’active’ bond.

Thus, the threshold for survival of prey for long times is the critical
concentration for undirected bond percolation on the lattice.



A key observation is that for the p > pc,directed , in the discrete time
evolution model, the asymptotic shape of the cluster has flat parts.

No red sites, or red boundary detached or not detached from blue
boundary, and red or blue boundaries having flat segements or not.



Problems:

1. Can you construct a dynamics for a system of Ising spins that
self-organizes to the critical point with only local rules?

2. Consider the chase-escape percolation with λ > λc , but λ < 1.
Prove that the asymptotic velocity of the red front is strictly less
than it would be if no predators were present.



THANK YOU
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