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Statistical mechanics of freely fluctuating

elastic sheets 5
In the previous chapter, we studied the physics of one-dimensional chain polymers.

In this section, we’ll be studying two-dimensional sheet polymers. In particular, we’ll
focus on the interesting physics that arises when they’re allowed to freely fluctuate,
such as when in a vacuum or a good solvent. One example of a freely-fluctuating
sheet polymer is the spectrin polymer skeleton of a red blood cell. The red blood
cell has a biconcave shape, no nuclei, and its membrane consists of a lipid bilayer
lined underneath with the spectrin skeleton, which can be extracted from the RBC
and studied experimentally [85]. Another example is freestanding graphene. While
graphene is populated with electrons described by a band structure with Dirac
cones in momentum space [86], freely fluctuating graphene also has quite interesting
mechanical properties.

The theoretical framework can be described as follows. Imagine a reference elastic
sheet that’s flat at zero temperature. When the sheet is thermally excited at finite
temperatures, it may crumple, much like the linear polymer chains we studied in the
previous section. However, even if the sheet doesn’t crumple, it can still wrinkle and
fluctuate in interesting ways, leading to profound changes in its mechanical strength.
We will now derive a description of this physics in terms of a nonlinear strain tensor.
As shown in Figure 5.1, if we track a short reference line segment as we begin
to distort the sheet, the image of that line segment will typically get longer or
shorter due to local undulations or some partial crumpling. This new image segment
that gets mapped from the reference segment into some slightly distorted object is
described by

(5.1)

which is the flat reference state plus two in-plane displacements and
out-of-plane (flexural) displacement , and where are the internal
coordinates (imagine a warped piece of graph paper) that allow us to traverse the
sheet. The squared length associated with Eq. 5.1 can then be written as,

(5.2)

where the stretching (strain) tensor is nonlinear in the out of plane displacement
field ,

(5.3)

We can derive Eqs. 5.2 and 5.3 via a long-wavelength description applicable to any
elastic solid, including metals, insulators, wherever you can blur your eyes and
coarse-grain over the microscopic lattice structure. On the long length scales, the
normal modes of the displacements would describe, for example, in-plane
acoustic longitudinal and transverse phonons as well as flexural phonons in a thin
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Figure 5.1: The flat reference state
and the possible crum-

pled actual state of a sheet
polymer, as a function of the ref-
erence state in-plane coordinates

that allow us to traverse
the sheet. The changes a segment
in the flat state undergoes as it
is mapped to the actual state gives
us the stretching tensor of the actual
system.

elastic membrane. Just as in the Debye theory of the specific heat of crystals, one can
quantify these phonon fields at low temperatures [86], although this will not be our
primary concern in this chapter.

To make contact with other chapters of this book, we’ll take an unconventional
approach and derive the stretching tensor from a Landau theory, starting in the high
temperature crumpled phase of a sheet polymer. We can then study this problem
by doing a Landau expansion in the (soft) tangents to the surface, which are the
order parameters for this problem, similar to the linear polymer tangents employed
in Chapter 4,

(5.4)

If we coarse-grain over multiple ripples, these tangents are not required to be unit
vectors, since they can be stretched or compressed by short wavelength undulations.
Once we drop below a potential critical temperature , we can then study the
properties of a possible broken-symmetry flat phase. Of course, Landau theory
is a mean field theory, so we’ll have to incorporate fluctuations and check if the
physics is changed by the Hohenberg-Mermin-Wager Goldstone modes invoked by
the Hohenberg-Mermin-Wagner theorem.

5.1 Statistical mechanics of sheet polymers

We assume the probability of a particular sheet polymer configuration will depend
on the Boltzmann factor associated with some coarse-grained Landau free energy,

(5.5)

To calculate statistical mechanical averages, we’ll be doing functional integrals over
all the possible configurations. Note that is a three-dimensional vector
field and represents two-dimensional internal coordinates. We’ll be
using to denote three-dimensional vectors and to denote two-dimensional vectors.



5 Statistical mechanics of freely fluctuating elastic sheets 172

Henceforth, will denote the internal space and will denote the embedding
space. To get the free energy , we’ll expand in tangents, up to quartic order, in
analogy to what we could do for the linear polymer chains of Chapter 4 in scales
large compared to the persistence length [87],

(5.6)

where we have adopted the Einstein summation convention. The form of the Landau
potential is determined by translational and rotational invariance; in the absence
of edge forces, there are no terms odd in because that would indicate a preferred
direction. Note the following

1. The first term in Eq. 5.6 gives rise to a bending energy proportional to spatial
variations of the membrane tangents, , measuring how fast

the tangents turn/bend as we move along the undulating surface of the sheet
polymer. This term will be especially important in the crumpled phase, where
the magnitudes of the undulations are large.

2. Polynomial terms in the tangents include

(5.7)

where there are two distinct quartic coupling coefficients , both positive
such that the free energy is stablewhen the tangents are large, and
where is the crumpling temperature, signified by a change of sign in at the
transition.

3. For any configuration , the free energy is invariant under both
translations and rotations of

(5.8)

where is a three-dimensional rotation matrix about the -axis with
angle .

4. is also invariant under rotations of the internal coordinates :

(5.9)

Eventually, we’ll carry out functional integrals to do statistical mechanics with ,
but for now, we can obtain an approximate understanding by just minimizing the free
energy using a saddle point approximation, which may be a reasonable description at
low temperatures. Within mean field theory, we can assume negative ( )
and minimize the free energy functional in Eq. 5.6 with the following ansatz

(5.10)

where and are orthogonal unit vectors on the tangent plane of a reference sheet.
The order parameter magnitude is nonzero in the flat phase and measures the
spatial extent of the sheet polymer despite shrinkage due to thermal fluctuations. (At

, when we neglect quantum fluctuations, we expect for an square
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reference sheet.) The two order parameters are the tangents

(5.11)

On substituting the linear ansatz in Eq. 5.10 into the free energy in Eq. 5.6, the first
term (bending energy) vanishes. The tangent magnitude corresponding to the
minimum energy configuration, left as an exercise to this reader, is given by

(5.12)

Note that this Landau theory predicts that the order parameter magnitude scales
as follows

(5.13)

as the crumpling transition is approached from below.

5.1.1 Connection with a metric tensor

Our Landau free energy measures a penalty for how much the metric tensor deviates
from that of a flat sheet. For , it is helpful to rewrite the free energy by
completing the square,

const.

(5.14)

where . The energy is controlled by a tangent bending energy
proportional to , and two stretching terms proportional to elastic constants and
, which control the energy cost associated with deviations from an idealized flat

“preferred metric”:

(5.15)

(5.16)

The fluctuatingmetric tensor associatedwith a particular sheet polymer configuration
can then be read off as

(5.17)

which describes how distances warp and change in the system, while the preferred
metric that minimizes Eq. 5.14 is

(5.18)
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5.1.2 Goldstone modes of the flat phase

Similar to our dicussion of linear polymer chains on scales below the persistence
length (see Chapter 4), the free energy landscape described by Eq. 5.14 has the shape
of a wine bottle. Hence, we expect to find Goldstone modes in the flat phase of the
sheet polymer. We can derive these Goldstone phonon modes by parametrizing an
elastic membrane with small deviations from flatness as,

(5.19)

where and are the in-plane phonon displacements and the field
describes the flexural (out-of-plane) phonons.

We now substitute this ansatz into the free energy in Eq. 5.14 and determine the
energetic cost (bending, stretching) associated with deviation from the idealized
mean field theory metric at long wavelengths. The distorted metric tensor associated
with Eq. 5.19 is now

(5.20)

where the second term on the RHS describes the distortion due to fluctuations in the
sheet polymer. The strain matrix representing these distortions is given by

(5.21)

The first part of the strain tensor consists of the symmetrized derivatives of the
in-plane phonon fields, which show up in studies of flat two-dimensional crystals,
e.g. a continuum theory of the specific heat, where (as in a Debye theory) phonon
modes should be quantized at low temperatures. Anti-symmetric contributions do
not appear because derivative combinations such as

(5.22)

are not rotationally invariant. The terms second order in can be neglected relative
to terms, but an extra term second order in is kept because it is the lowest
order term in . The new physics due to flexural phonons comes entirely from this
term. One can approximate the bending energy term in the Landau free energy in a
similar fashion,

(5.23)

which, like the metric in Eq. 5.20, is also proportional to . Thus, up to an additive
constant, the free energy can be expressed as

(5.24)

where the (nonlinear) strain tensor is given by Eq. 5.21. The first term describes
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the bending energy, and the remainder of the RHS consists of elastic terms of two-
dimensional elastic sheet that one finds in standard elasticity textbooks [88], known
since the 19th century. The coupling coefficient of the tangent derivatives gives rise
to the bending rigidity while the quartic couplings and from Landau theory
gave rise to the Lamé coefficients and ,

(5.25)

Note that, since , these quantities vanish linearly as the crumpling
temperature is approached from below.

5.1.3 Analogy with superconductivity

There is an interesting analogy between elasticity theory and the Ginzburg-Landau
model of superconductivity in a low temperature limit originally studied by Fritz
and Heinz London [89]. This phenomenalogical model was written down for a
charged superfluid, where electron pairs give rise to a complex order parameter
wave function. Gradients of the order parameter are coupled minimally to a vector

potential , which fluctuates in a superconductor, leading to a magnetic field energy

proportional to in the total free energy,

(5.26)

Upon going down to low temperatures, where , we can minimize
the free energy to get the preferred amplitude of the order parameter .
On substituting into the free energy functional, we recover the London
model of low-energy excitations in superconductors, which typically works well for

,

const. (5.27)

The form of this free energy is quite similar to Eq. 5.24, describing the low energy
excitations of the sheet polymers (see Table 5.1). The gradients of the in-plane phonon
field in Eq. 5.21 are like the gradients of the phase angle for the superconductor. The
nonlinear portion of the strain tensor is in fact like a matrix vector potential

. There’s something quite subtle going on in both of these problems. In
the superconductivity problem, after determining the preferred magnitude of
frommean field theory, the leftover degree of freedom is a single scalar phase variable

, from which we subtract the vector potential that in general has two degrees
of freedom. For a given a vector potential , the free energy in Eq. 5.27 can achieve

minimal energy if the first term can be made to disappear. However,

if has a nonzero curl, as happens when a magnetic field is present, there does

not exist in general a single-valued function such that , which would
minimize the first gradient term in Eq. 5.27. In other words, one can’t in general
cancel out an independently fluctuating variable with two degrees of freedom with
just a single component phase field. This superconducting analog of geometrical
frustration gives rise to vortices arrayed in an Abrikosov flux lattice when there’s an
external magnetic field applied to type II superconductors [90].
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Superconductor Fluctuating sheet polymer

Goldstone modes (in-plane phonons)

Stiffness (Lamé coefficients)

Vector potential

Magnetic field (Gaussian curvature)

Linear field theory Nonlinear field theory

Table 5.1: A comparison of the
analogous quantities in the prob-
lems of superconductivity and two-
dimensional elastic sheets.

Figure 5.2: Microscopic model of
elasticity on a sheet polymer with
monomer spacing , accounting for
both surface stretching and surface
bending energies.

In the problem of the sheet polymer, the nonlinear flexural phonon term plays
the role of a matrix vector potential . We can ask again,
is it possible to make the strain tensor vanish to minimize the energy in
Eq. 5.24? Now, there are two in-plane phonon degrees of freedom associated with

, but the symmetric vector-potential-like quantity has 3 degrees
of freedom, so these two contributions cannot in general cancel out. A measure of the
frustration in the Ginzburg-Landau theory of superconductivity is the curl of the

vector potential . The analogous quantity in the theory of sheet polymers turns
out to be the determinant of , which is precisely the Gaussian curvature of an
elastic membrane [5, 67]. When these quantities are nonzero (e.g. elastic membranes
with curvature or superconductors in a magnetic field), the corresponding problems
become more intricate and harder to solve. The analogy between these two problems
is summarized in Table Table 5.1. The analogy is not perfect, because there is only
an approximate mapping of the bending energy in Eq. 5.24 onto the field energy

of a superconductor.

5.1.4 Simulation model

Asimplemicroscopicmodel is oftenused to simulate and test someof these continuum
ideas that we’ll be studying in the forthcoming sections. The idea is to triangulate
the surface of some material into a discrete lattice (if the mesh is fine enough, its
long-wavelength behavior should be the same as that in continuum system). We can
then connect each pair of neighboring sites on this lattice with permanent spring-like
bonds. This permanent connectivity will leave out defects, flows, and liquid-like
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behavior, but is not a bad approximation to a coarse-grained sheet polymer, such as
graphene. One can then assign normal unit vectors to each triangular plaquette (i.e.
the plane defined by three neighboring lattice points, see Figure 5.2), which gives
us another way to parameterize bending energy. The microscopic Hamiltonian is
then [79]

(5.28)

where here, indexes neighboring plaquettes of the triangulated sheet and
indexes the neighboring vertices. The normals can be thought of as a proxy for
classical Heisenberg spins living on a two dimensional sheet. The positions of the
mass points define a triangular lattice that is dual to the honeycomb lattice defined
by the (this triangular lattice can be regarded as a discrete approximation to the
honeycomb lattice of graphene). Nearest neighbor mass points also interact with each
other via a pair interaction , e.g. the Lenard-Jones potential,

(5.29)

equivalent for small displacements to springs with repulsive excluded volume
interactions. We will assume that the bonds do not break (on the time scale of room
temperature experiments of e.g. free standing graphene, this is certainly true), and
replace the interaction in Eq. 5.29 by a simple parabolic form

(5.30)

where is the equilibrium length of the bond between two neighboring sites at .
Monte Carlo and molecular dynamics simulations using this model have yielded
many insights over the years.

5.1.5 Low temperature statistical mechanics of the flat phase

To fix the basic ideas, we briefly recapitulate elementary aspects of the model we
have set up for the statistical mechanics of two-dimensional sheet polymers. At low
temperatures, we assume a strain-free configuration such that . Minimizing
the bending term in the free energy in Eq. 5.6 (with a summation convention on ),

(5.31)

then gives us the flat state of the sheet

(5.32)

wherewe can set the order parametermagnitude inEq. 5.10 at low temperatures.
Let us again consider deviations fromaflat state spannedby and ,with ,
specifically the energy cost of deformations from both in-plane and out-of-plane
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stretching of the sheet polymer

(5.33)

(5.34)

where we have used Eq. 5.32 and is normal to the flat state at . Note
that Eq. 5.32 assumes a broken rotational symmetry, with a preferred normal direction
given by . It remains to be seen if this flat state is stable to the low energy excitations
that give rise to the Hohenberg-Mermin-Wagner theorem in related two-dimensional
systems!

We can now calculate the stretching in a small reference line element

(5.35)

Because the line element is typically stretched or compressed when mapped onto
, the energy will increase. The stretching is described by the squared length

(5.36)

where the strain tensor is

(5.37)

The free energy of a nearly flat sheet polymer is thus composed of a bending energy
and a stretching energy,

(5.38)

where is the bending rigidity and are the Lamé elastic coefficients. the first
term describes the bending energy

(5.39)

which has a “soft” energetic penalty ( in Fourier space) that keeps the
polymer approximately flat. The second term is the stretching energy quadratic in the
strain tensor, made up of two distinct terms one can make out of a 2 by 2 strain tensor
that are invariant to rotations of the coordinates: (tracing over the strain tensor
and then squaring it), and (squaring the strain tensor and then tracing it). Note
that the trace operation for a matrix is invariant to rotations of the coordinates

. As mentioned previously, the strain matrix is
frustrated (i.e. nonzero): given a flexural phonon configuration , since we
can’t in general cancel the 3-component matrix with two in-plane
phonon fields .

In the following sections, we’ll study this model in two limits:

1. : This allows us to set the out-of-plane field to 0, making the sheet
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polymer flat with only in-plane elastic distortions.
2. : This might sound like a strange thing to do, but it in fact describes

liquid membranes (e.g. lipid bilayers, which are the primary components of
animal cell membranes).

5.2 In-plane elasticity of flat sheet polymers

When , bending is too costly, so we can set the out-of-plane gradients of the
sheet to . The free energy is then,

(5.40)

where the strain tensor is now linear in the sheet displacement fields. We can study
the phonon modes in this system by going to Fourier space, being careful to treat the
finite momentum and zero momentum degrees of freedom separately.
As we’ll show, there are 2 normal modes for distortions and 3 normal modes
for distortions.

5.2.1 Case I: finite momentum modes

Let be the areal mass density of the sheet polymer. If we take a small part of the sheet
and locally distort it away from its ground state with in-plane phonon displacements,
there will be a restoring force leading to the following equation of motion,

(5.41)

which is a wave equation that exhibits both transverse and longitudinal sound modes,
andunderscore tildes again indicate two-dimensional vectors in the three-dimensional
embedding space.

The longitudinal sound (compressional) displacements are parallel to the phonon
displacements ( ), and are described by,

(5.42)

where is a constant amplitude and is the characteristic frequency of
the longitudinal sound with the following dispersion relation (as can be checked
from Eq. 5.41),

(5.43)

The transverse sound displacements, perpendicular to phonon wavevector , are

(5.44)



5 Statistical mechanics of freely fluctuating elastic sheets 180

where is a constant shear amplitude and the dispersion relation for
following from Eq. 5.41 is given by

(5.45)

The above results are quite familiar from standard 2d continuum elasticity theory
dating back to the 19th century. We will now write them in a useful alternate way,
using longitudinal and transverse projection operators. On going to Fourier space in
two dimensions

(5.46)

the free energy can be expressed as a quadratic form for every wave vector ,

(5.47)

where is the matrix phonon Green’s function, expressed in terms of the
projection operators as

(5.48)

Recall the important properties of the projection operators

(5.49)

which allow us to invert the phonon Green’s function just by inspection

(5.50)

5.2.2 Case II: zero momentum modes

We can separate out the zero-momentum component in the Fourier expansion of the
strain tensor (somewhat like the separation used to treat Bose-Einstein condensa-
tion [91]),

(5.51)

The symmetric uniform field corresponding to describes homogeneous
long wavelength stretching and shearing of the elastic sheet, and has three degrees
of freedom, while the second term for has two degrees of freedom. How will
this separation play out? There are many precedents in physics for separating out
the and modes. We can take the infinite volume limit at the end and
sometimes, the distinction matters, while other times, it does not. In this case, for the
statistical mechanics of elastic sheets, we do have to be careful at and allow 3
degrees of freedom instead of 2.
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Figure 5.3: The three modes of uni-
form strain: dilation/compression,
diagonal shear, and vertical/horizon-
tal shear.

The in-plane displacement field corresponding to the first of the three zero-
momentum modes shown in Figure 5.3 is

(5.52)

which describes a uniform dilation if (and a compression if ). The
corresponding strain matrix is

(5.53)

The free energy of the dilation corresponding to Eq. 5.40 is thus proportional to the
area and the dilation magnitude squared

dilation (5.54)

where is the two-dimensional bulk modulus.

The second normal mode describes diagonal shearings,

(5.55)

and the shearing energy is

(5.56)

where is the shear modulus.

Finally, the third mode describes vertical/horizontal shearing

(5.57)
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(a) (b)

Figure 5.4: (a) Tangential forces
applied to the top and bottom of
a square elastic sheet, described by
Eq. 5.61. (b) Pulling/elongating the
solid along the direction with a
force , described by Eq. 5.62.

with energy

(5.58)

Note that the strain matrices for both the diagonal and the vertical shearing modes
are traceless.

These three modes are summarized in Figure 5.3. The most general zero momen-
tum strain matrix we can write then has three independent components, ,

(5.59)

which makes sense since is a symmetric 2 by 2 matrix. (We leave the reader to
check that a rigid rotation leads to an antisymmetric component of the strain matrix
and hence costs zero elastic energy.)

5.2.3 Response of planar crystals to external forces

Forces applied to the edge of a planar sheet polymer can be understood by looking at
the edge normals, which also live in the plane. When projected along the normals,
the forces applied at the edge are the work done to move the displacement field at
the surface by . If is the normal at the boundary of a 2d planar crystal, the
resulting energy is

(5.60)

where is the stress tensor acting on the edge, such that is the -th
component of force acting on a direction perpendicular to the sheet normal .

A stress tensor that produces a pure shear deformation is

(5.61)

while an elongational deformation is produced by

(5.62)

Equation 5.61 represents tangential forces applied to the top and bottom of a
square elastic sheet (see Figure 5.4), while Eq. 5.62 describes pulling/elongating
the solid along the direction with a force . When you pull on an elastic solid, it
typically elongates in the direction you’re pulling and shrinks in the perpendicular
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direction. How much it elongates along the direction pulled is determined by the
Young’s modulus . How much it shrinks is determined by the Poisson’s ratio . In a
similar fashion (as we shall see below), the displacements under the shear forces in
Eq. 5.61 are determined by the shear modulus .

Upon converting the line integral in Eq. 5.60 into an area integral, we obtain

(5.63)

Let be the stress corresponding to elongation in the -direction and
be the symmetric linear uniform strain tensor in with three

independent components,

(5.64)

Upon minimizing the free energy in Eq. 5.63, we find the three independent strain
components to be

(5.65)

where is the two-dimensional Poisson ratio and is the Young’s
modulus

(5.66)

Here, describes the relative elongation of the undeformed sheet length along
,

(5.67)

while describes the relative shrinkage along ,

(5.68)

Note that the Poisson ratio is typically positive (object shrinks in one direction when
you pull on it in the transverse direction), but can also be negative for some special
materials called auxetics (when you pull on the material in one direction, it expands
in the transverse direction). For a simple example of auxetic behavior, try pulling on
a wrinkled but approximately flat piece of paper: when you pull on one direction, it
releases stored projected area to expand in the other direction!

If we insert the shear stress in Eq. 5.61 to Eq. 5.63, we find (for an elastic
square),

(5.69)

which is minimized when , and

(5.70)
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Figure 5.5: Schematic of a phospho-
lipid bilayer, comprising the mem-
brane of animal cells. The constituent
molecules have polar, hydrophilic
head groups, and hydrocarbon, hy-
drophobic tails.

which defines the shear modulus .

5.3 Pure out-of-plane elasticity: “liquid” sheets (e.g. lipid

bilayers)

Having discussed the limiting cases of perfectly flat membranes in the limit ,
we now discuss membranes which bend but have liquid-like in-plane elasticity. We
can think of sheet polymers with out-of-plane fluctuations in the limit as
liquid sheets, where the in-plane phonon displacements have zero cost such that
atoms, as in a liquid, can wander around freely in response to forces. When these
in-plane strains are eliminated, we’re left with is the bending energy

(5.71)

and the membrane now resists only out-of-plane displacements

(5.72)

with the local tangents being

(5.73)

In other words, even for a liquid sheet, out of plane fluctuations are resisted, since
they incur an important bending energy cost. A good example is the lipid bilayer
wall surrounding all animal cells, which is typically in a 2d liquid phase (see Figure
5.5).

For a liquid membrane whose reference state is in the xy-plane, the unit surface
normal in three dimensions is given by

(5.74)

On assuming spontaneous broken symmetry and long range order in the normals
of the liquid membrane, the excitations about the ground state, analogous to spin
waves in low-temperature magnets, are then undulations of the normals about its
preferred direction. The thermally averaged component of the normal along the
-direction, given by

(5.75)

must be close to 1 at low temperatures, where is the angle of relative to .
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Fluctuations in the tilt angle are thus controlled by

(5.76)

The bending free energy in Eq. 5.71 can be written in terms of Fourier components
as,

(5.77)

Upon applying the equipartition theorem , Eq. 5.76 becomes,

(5.78)

which diverges logarithmically with system size.

Thus, the normals for these liquid sheets fluctuate much like the spins of a
classical 3-component Heisenberg model in two dimensions! We find a logarithmic
divergence in the tilt angle fluctuations for this two-dimensional problem upon
assuming continuous broken symmetry in the direction of the normal. So for a big
enough system, long range order is impossible for liquid membranes, destroyed by
thermal tilt angle undulations, much like the Hohenberg-Mermin-Wagner theorem
applied to Heisenberg spins.

You may ask, how can a red blood cell surrounded by a lipid bilayer exist if long
range order cannot persist in two-dimensional liquid membranes? If you work out
the persistence length associated with the divergence in Eq. 5.78 i.e. the size such that

, youwould get, using lipid bilayer bending rigidities, , a size
much larger than the size of the red blood ( ). So although these undulations
are important for these red blood cells (they flicker when viewed under a light
microscope), they’re not enough to crumple in a way similar to a very long linear
polymer. This physical argument does place an upper limit on how big a stable red
blood cell with a given bending rigidity can be.

5.4 General treatment

Having studied the and limits, we now return to the full expression
for the free energy of a nearly flat sheet polymer,

(5.79)

with the nonlinear strain tensor given as usual by,

(5.80)

Note that the nonlinearity in the strain tensor only comes about when we allow the
sheet to go into the third dimension. This problem, with three elastic constants, is
actually similar to a massless field theory right at the critical point. Why is that? In
Landau theory for magnets, the coefficient of the quadratic term disappears at
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the critical temperature . Here, all we have are gradients and nonlinear
terms in a Landau theory. In the field theory immediately above, there is no “mass”
associated with the tipping vector of the normal. We could get away from
this “self-organized criticality,” a consequence of the rotational and translational
invariance of the elastic sheet, by changing the boundary conditions of the sheet
via introducing an edge tension, similar to a taut drum head. With free boundary
conditions, however, we’ll get critical phenomena without having to adjust any
parameters and and fluctuations will be very important.

5.4.1 Integrating out the in-plane phonons

Since we will focus primarily on the out-of-plane behavior of the sheets (flexural
phonons associated with crumpling and wrinkling), we’ll trace out the in-plane
phonons to obtain a new effective free energy

(5.81)

Although somewhat subtle (see below!), this tracing out is possible because the
in-plane phonon degrees of freedom only appears quadratically in Eq. 5.79. We’ll
denote the nonlinear piece of the strain field as

(5.82)

where are now being used to index the directions . As mentioned above, this
matrix vector potential is the source of geometric frustration in Eq. 5.80, because one
cannot in general choose a two component displacement field to cancel out the
three components of to produce a vanishing strain energy.

We now decompose the strain field into more general Fourier components,

(5.83)

where thefinite andzero components of the vector potential are treated separately

(5.84)

To motivate what comes next, recall from studies of, say, electricity and magnetism,
that any arbitrary vector field can be decomposed into a longitudinal part (the
gradient of a scalar field), a solenoidal part (the curl of a vector field), up to an additive
constant,

(5.85)

Our matrix vector potential can be written the same way, by noting that any 2 2
symmetric tensor can be decomposed into a symmetrized longitudinal part

longitudinal transverse

(5.86)
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where the transverse projection operator (to eventually be treated in Fourier space)
is

(5.87)

We can in fact calculate the transverse part of this decomposition by applying to
project away the longitudinal part of Eq. 5.86

(5.88)

where the trace of the square of the transverse projection operator and its square are
1, in two dimensions,

(5.89)

This result also follows from the eigenvalues of the 2 2 projection operator, which
are 1 and 0. Recall from Eq. 5.74 that the derivatives describe the tilt of the surface
normal undulations, analogous to periodic tiltings that lead to spin waves in the
Heisenberg model. We’ll soon see that in Eq. 5.88 leads to quartic interactions
between tilts of the surface normals.

On substituting the decomposition Eq. 5.86 into Eq. 5.83, we can express the strain
tensor as

(5.90)

where and are the new shifted variables, and is the Fourier transform of

(see Eq. 5.93). Here, is the sum of the zero momentum component of the
original strain tensor and the nonlinear strain tensor , while is the sum of
the displacement fields correspond to the symmetrized derivatives of the in-plane
phonon displacement and longitudinal part of the nonlinear strain tensor:

(5.91)

We don’t need the actual functions (straightforwardly obtained by applying a
longitudinal projection operator to Eq. 5.86), since we’ll be integrating out the
modes anyway. Here, the transverse projector in Fourier space is

(5.92)

and the Fourier transformed vector potential is

(5.93)

where is the area of an membrane.

It is straightforward now to integrate over the shifted variables, and
, to get a new effective free energy

(5.94)
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Note first that the elastic (non-bending) part of the free energy in Eq. 5.79 is

(5.95)

Since the cross terms linear in in the pieces vanish because
for , the elastic free energy becomes

(5.96)

where we have used . Note that the first term integrates out

in Eq. 5.94 to produce an overall constant contribution to . Upon separating out the
terms quadratic in and linear in , we have

(5.97)

For each , we need to do a two-dimensional integral of the form

(5.98)

where

(5.99)

(5.100)

(5.101)

On carrying out the functional integrals in Eq. 5.94, we find (including the first term
of Eq. 5.97),

const.

const.

(5.102)

const. (5.103)
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Figure 5.6: Excitations where the
surface normal varies longitudinally
along the direction of change (left)
cost much less energy than excita-
tions where the variation in the sur-
face normal is transverse to the di-
rection of change, which would re-
quire stretching or tearing the sur-
face (right).

where is the Young’s modulus. On returning to real space,

(5.104)

we have

const.

(5.105)

Thus, the overall effective energy simplifies to,

const. (5.106)

We’ve now reduced a three-coupling-constant free energy to a two-coupling-constant
field theory, with the Young’s modulus that controls the
nonlinear interactions and the bending rigidity .

Notice the couplings between flexural phonons embodied in the second term.
We’re now ready to answer the question: What happens when we take the liquid
membrane Gaussian field theory in Sec. 5.3 and add nonzero to impose the
constraint of a nonzero shear modulus? On returning to Fourier space,

(5.107)

the effective free energy becomes

(5.108)
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What is the physical meaning of the second, nonlinear, term in the free energy? As
mentioned earlier in this chapter, we can think of the derivatives of with respect to

and as vectors associated with the normals tipping away from the -direction.
This second term gives a strong penalty for certain types of tipping. For example, if
the tipping varies longitudinally along the direction of change (like longitudinal spin
waves), then the non-linear interactions are not activated at all due to the transverse
projection operator. On the other, if the change in tipping is transverse to the direction
of change, that will incur a severe penalty associated with the Young’s modulus

in the second term (see Figure 5.6). In fact, the only way
this type of transverse spin wave can happen is if the surface stretches or tears. The
nonlinear terms give us the interactions between spin-waves, with a quartic vertex
represented by the following,

(5.109)

where the slashes represent derivatives and each pair of connected solid lines
carries a transverse projection operator. We can now do perturbation theory in (no
renormalization group yet, but that’s coming later). Graphically, the bending rigidity
is renormalized as

(5.110)

Note that the following Feynman graph vanishes,

(5.111)

because the internal loop includes a transverse projection operator, which has to be
evaluated for . However, momentum conservation at the vertex of the
graph requires .

Let’s evaluate the lowest order correction to the bending rigidity in Eq. 5.110 in
more detail:

(5.112)

Note that the first order correction is positive, so thermal fluctuations stiffen the sheet
polymer. In fact, this correction diverges in an infinite system due to the momentum
factors in the denominator. Let’s study this diverging correlation length in more
detail. On taking the limit of the external momentum vanishing and noting

that where is the angle between and , Eq. 5.112 becomes,
after carrying out an angular average,

(5.113)

where , the linear size of the sheet polymer, provides an infrared cut off and is a
microscopic monomer spacing. On a positive note, for this perturbative calculation,
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we expect (for e.g. graphene at room temperature). In
addition, the numerical, factor . However, the third factor (the dimensionless
Foppl-von-Karmen number characterizing a thin elastic sheet), using m and
elasticity parameters extracted from graphene experiments, turns out to be huge

(5.114)

and completely overwhelms the smallness of the other two factors. So simple
perturbation theory explodes in the large (i.e. large sample size) limit. By looking
at when the correction becomes comparable to unity, one can get a Ginzburg-like
criterion for the size of the system beyond which thermal fluctuations start to matter.
For example, how big can our piece of graphene be before these thermal fluctuations
at room temperature take over? The answer (as discussed in more detail below) turns
out to be only 3 Angstroms!

There are two things we can do in the face of this problem. One is a self-consistent
graphical resummation. Although this approach is useful, we know from the earlier
parts of this book that the ultimate solution will be to use the renormalization group
methods!

5.4.2 Self-consistent theory

As we saw in Eq. 5.110, there’s a whole tower of strongly diverging Feynman graphs
at each order of perturbation theory. It turns out that summing up the most divergent
of these higher-order graphs is equivalent to doing propagator renormalization in
the denominator of this integral [92]. We can solve for self consistently by
replacing with in the denominator of the integral in Eq. 5.112,

(5.115)

We’re going to take a different limit. Instead of directly letting right away,
we’ll first take limit while fixing , and take later. The fixed external
provides an alternative way to cut off infrared divergence in the integral in Eq. 5.115
and prevent it from diverging,

const. const (5.116)

Note that the correction is still positive (the membrane is stiffening under thermal
fluctuations) but no longer diverging provided . When , we can solve the
algebraic equation for . If we focus on the long wavelengths limit , the
second term dominates and the first term drops out, leading to [89],

(5.117)

Thus, the bending rigidity is scale dependent and diverges at long wavelengths.
This is a breakdown of Hooke’s law, where elastic constants at long wavelengths
are expected to be truly constant. Here, instead, the bending rigidity is a strong
function of the system size ! Note that the nonzero elasticity constants, in
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particular the Young’s modulus , as well as thermal fluctuations and associated
entropic effects, play a key role here. We would not find the same stiffening effect
with increasing system sizes for e.g. a liquid membrane, where : Indeed,
the renormalized bending rigidity of liquid membrane softens logarithmically for
large system sizes [93].

5.5 Renormalization group treatment

In general, it is often conveninent to study -dimensional elastic manifolds embedded
in dimensions and do iterative renormalizations using perturbation theory
in [94]. However, we can also work with Eq. 5.108 directly in and

using an approximate momentum shell renormalization group [95]. In line
with the renormalization group procedure developed in this book, we’ll have a
flexural phonon rescaling factor and a spatial rescaling factor , with

(5.118)

To one loop order, the coupling constants get modified by the diagrams such as the
following:

renormalizes (5.119)

renormalizes (5.120)

For notational convenience, we will absorb the temperature into the elasticity
couplings and set . The renormalization recursion relations
that follow from the momentum shell version of the diagrams in Eq. 5.119 and 5.120
are then

(5.121)

(5.122)

so the bending rigidity is enhanced by the nonlinearities while the Young’s modulus
softens. We now choose , the flexural phonon rescaling factor, to keep fixed,
which leads to

(5.123)

This choice transforms the recursion relation for into [95],

(5.124)
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Figure 5.7: Renormalization group
flow diagram of the Young’s modu-
lus of a thermally fluctuating sheet.

Thus, as shown in Figure 5.7, within this perturbative renormalization group theory,
the physics of a elastic sheet fluctuating in dimensions always flows to a
nontrivial fixed point with , whether the bare value of “starts
out” big or small. The flexural phonon rescaling factor at this attractive fixed point is
given by

(5.125)

It is interesting to note that this new sheet polymer critical exponent (the self-
consistent theory of Ref. [92] gives ) also describes how flexural phonons couple
to the quantum Dirac electrons in the fluctuating graphene sheet [96, 97].

Why does the momentum shell renormalization group work here? If we look
at the recursion relation in Eq. 5.124 for the Young’s modulus in terms of the bare
coupling constants and , we have

(5.126)

where we have set . Because and for
graphene, the correction is small.

We can now study how the renormalized bending rigidity,

(5.127)

changes under the renormalization group. If we calculate the RHS of this equation
using the Gaussian ensemble without interactions, we have from
the equipartition theorem, and the renormalized bending rigidity would be equal
to the bare bending rigidity . For the more general case including in-plane
elasticity, we can use the renormalization group to map this hard problem (diverging
Feynman graphs for small ) onto an easy problem, at large values of ,

(5.128)

Because , as usual for momentum shell renormalization groups, small
wavevectors aremapped to largewavevectorswhere the integrals describingnonlinear
corrections don’t diverge as badly. The exponent in the prefactor, if we go to long
enough wavelengths, is determined by the value at the fixed point (Eq. 5.125)

(5.129)

Putting everything together, we arrive at

(5.130)

where is providing a cutoff to the infrared divergence. We see that the bending
rigidity is again strongly wave vector dependent. Since the wave vector at long
wavelengths for an sheet is , we have, again, a scale-dependent
renormalized elastic constant:

(5.131)
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Note that here, unlike that of typical problems in conventional critical phenomena,
is not tiny but has a value of (a more accurate approximation is [98]).
It turns out, as we’ll show shortly, that this is easily large enough to give us long
range order in the normals of a two-dimensional elastic sheet, thus escaping the
Hohenberg-Mermin-Wagner theorem.

To see that the diverging implies long range order in the normals of the
sheet, let’s again assume symmetry breaking and long range order in the normals
and see if the fluctuations about this state are small. If the fluctuations diverge, then
the assumption of long range order is untrue. If the fluctuations remain finite, then
we indeed have long range order. As in our discussion of liquid membranes, the
normals are given by

(5.132)

and the projection of the normals along the “preferred” -axis direction is

(5.133)

Upon expanding both the cosine and square root in the above expression, we now
find the fluctuations in the tipping angle to be

(5.134)

This integral would diverge if was replaced by the bare bending rigidity (as
we did for liquid membranes). However, with the renormalized bending rigidity

, we have

if (5.135)

and the angle fluctuations are prevented from diverging since . Thus, we
have long range order in the normals of fluctuating elastic sheet polymers in .

In summary, although tethered surfaces (another name for elastic sheet polymers)
are asymptotically flat at low temperatures, the thermally-induced wrinkles stiffen
the bending rigidity in a scale-dependent way. The study of “tethered surfaces” found
initial motivation in biological systems, such as the fishnet-like spectrin skeleton of red
blood cells [85]. However, starting in the 1980’s, there have been searches for covalent
analogs of flexible sheet polymers. Examples include graphite oxide membranes[13],
the rag phase of MoS2[12], and most recently, free-standing graphene[14]. In the
following sections, we provide an overview of recent developments in the study of
tethered surfaces. We’ll see that both surface topology and a fluctuating metric tensor
will play very important roles in the physics.
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5.6 Overview of the statistical mechanics of atomically thin

plates

In problems of elastic sheets where both bending and stretching energies play an
important role, one dimensionless number is of particular importance: the Foppl-
von Karman number vK. Given that there are now evidence for a flat phase of
graphene [14], one challenge is to see if we can access a crumpled phase as well. If the
latter case occurs for materials like graphene, what will happen to the Dirac graphene
electrons that would inhabit this crumpled landscape? One way we may be able to
access the crumpled phase through perforations. If the graphene becomes lacy or
tenuous enough, it might be able to undergo a crumpling transition [84].

5.6.1 Nonlinear Foppl-von Karman equations at

The zero temperature theory sketched above, which we have promoted to the finite
temperature statistical mechanics of elastic membranes, goes back to Foeppl and von
Karman in 1904. We have already encountered this energy in our studies of the elastic
sheet,

bending energy stretching energy

(5.136)

As we have seen, these out-of-plane (flexural) phonons that appear in the strain tensor
in Eq. 5.80 can escape softly into the third dimension, where the “soft” terminology
emphasizes that the bending term is quartic in the wave vector when passing to
Fourier space. As we have found at finite temperatures, this soft escaping plays an
important role in the statistical mechanics, giving rise to a nonlinear critical field
theory without needing to tune to the temperature to some special value.

To put the results for thermalized membranes into context, we now discuss the
nonlinear Foppl-von-Karman equations obtained by taking functional derivatives
of Eq. 5.136, and minimizing Eq. 5.136 at . Given a set of forces applied to an
elastic sheet described by a stress tensor and a strain tensor , we expect they
are connected via a (nonlinear) Hooke’s law, as in the first part of Eq. 5.138 below.
On requiring the forces to balance at every point at a static functional minimum, the
nonlinear stress tensor have to satisfy the zero divergence condition due to force
balance

(5.137)

In electrostatics, when we require , we can write the magnetic field as a

the curl of some vector potential . The analogous simplification here is to
write the strain via the following ansatz

(5.138)

which automatically satisfies Eq. 5.137 and where is known as the Airy stress
function, analogous to the scalar potential in electrostatics [88]. We can take this
ansatz and substitute it back into the energy, and do a functional minimization of the
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free energy over and to get the ground state at zero temperature, subject to
various boundary conditions, as discussed in Ref. [88].

On minimizing the energy in Eq. 5.136 over and , we get the Foppl-von
Karman equations

(5.139)

Gaussian curvature

The Lamé elastic coefficients again get bundled together in the Young’s modulus ,

(5.140)

whose reciprocal enters in front of the Laplacian squared acting on in the second
equation. These equations are highly nonlinear; the first equation is bilinear in
and on the right hand side. The quadratic terms in in the second equation act
as a source term for , a biharmonic analog of the electrostatic potential. These
equations can be thought of as a two-dimensional relative of general relativity (in fact,
they preceded the theory of general relativity by about a decade), and complicated
via the first equation by their dependence on the extrinsic curvature in addition to
the intrinsic Gaussian curvature. The later acts as a source term for the Airy stress
function in the second line of Eq. 5.139. Note also that , which is typically quite
small for sheet polymers like graphene, multiplies the highest derivative in the first
line. Similarly, the stiff Young’s modulus of materials like graphene means another
small parameter, , multiplies the highest derivative in the second equation. Such
combinations are often a sign of singular behavior in nonlinear partial differential
equations. Exact solutions to Eqs. 5.139 were only available in special cases.

The parameter that controls the physics at zero temperature is the Foppl-von-
Karman number vK (analogous to a Reynolds number in fluid
mechanics), where is the linear system size. This number has to come in when we
non-dimensionalize the equations. For a sheet of size , upon scaling the vertical

displacement and , the Foppl-von-Karman equations in Eq. 5.139
can be written more compactly as,

(5.141)

(5.142)

where the dimensionless Foppl-von-Karman number is the only parameter present;
its inverse multiplies the biharmonic operator in the first equation. Note that in
most 2d systems, is huge. For example, a crumpled aluminum foil or paper of size
, thickness , and two-dimensional Poisson ratio has the following

parameters: in, mm, 0.25. The Foppl-von-Karman number
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follows from [88],

(5.143)

(5.144)

isotropic Young’s modulus (5.145)

(5.146)

Note that vK scales as !

For a square of graphene, is even larger. Upon inserting the estimates
from Ref. [14],

(5.147)

(5.148)

we obtain

(5.149)

where the estimates of and can be obtained using quantum mechanical
density functional theory (DFT). Note than when the sheet is wrinkled due to thermal
fluctuations or crumpling, shoots up, but is multiplied only by a very small
prefactor in Eq. 5.141. This combination leads to rich physics even when , much
like the Navier-Stokes equations at high Reynolds numbers.

5.6.2 Thin solid shells and structures

The FvK equations at zero temperature have many interesting applications, such as in
the physics of thin solid sheets and shells [88]. They control the growth and shape of
plant leaves and flower petals, the strength of egg shells, and the stability of cylindrical
shells used in space rockets. NASA scientists had to solve the FvK equations to find
the vertical acceleration threshold at which a rocket fuselage would collapse. The
FvK equations also find many applications in nanoscience. We’ve already mentioned
graphene and the cytoskeleton of red blood cells. Other examples include bacterial
cell walls and viral capsids, which must resist osmotic pressure. These objects are
small enough that Brownian motion due to thermal agitation is important, as we
explore in more detail below.

Recall that the phonon fields in the original free energy are only quadratic in .
We could thus integrate them out, leaving only the out-of-plane field. As discussed
above, we can then do perturbation theory at low temperatures and find
the first order correction in the infrared limit to be dependent on the system size
through the vK number ,

(5.150)

However, since the FvK number is huge even for relatively small -sized sheets
and diverges with system size, first order perturbation theory is not enough. As we
have seen, we could try to sum up all diverging higher order graphs (essentially
calculating the self energy via propagator renormalization). If we assume that the
Young’s modulus is a scale-independent constant, we can solve for self
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consistently to obtain [92]. Thus, the system becomes stiffer and stiffer
as we go to longer wavelengths, allowing for long range order and the existence of
a flat phase, even in the presence of thermal fluctuations. Alternatively, we could
carry out the simplified renormalization group calculation for a membrane directly
in , as we have seen in Eq. 5.130, which gives with .

By a slight extension of the calculations in the previous section, given that
it can be shown that the normal-normal correlation function at

finite temperature decays to a nonzero constant as a power law [95],

(5.151)

Note that the decay to a constant for large is controlled by the exponent
. Recall that in the self consistent approximation, but using our
renormalization group calculations directly for a elastic manifold embedded
in . As we have discussed, the thermal length scale can be estimated from
when in Eq. 5.150 is big enough so that the correction to is comparable
to its bare value,

(5.152)

5.6.3 A more sophisticated renormalization group for thermalized
membranes

One can alsowork out amore complete and accurate renormalization group theory for
elastic sheetswithout integrating out the in-plane-phonons for general -dimensional
elastic manifolds embedded in dimensions with energy.

(5.153)

(5.154)

with the full partition function [94]

D D (5.155)

Aronovitz and Lubensky defined rescaled running dimensionless coupling con-
stants, similar in spirit to those in the calculations we’ve been doing [94],

(5.156)

and the scale dependent Young’s modulus

(5.157)

The renormalization group flows in Figure 5.8 show a Foeppl-von Karman (FvK)
fixed point at zero temperature. However, at any finite temperature, the system
crossees over to a stable thermal FvK fixed point, with a set of critical exponents
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FvK 
fixed point

Thermal FvK 
fixed point

Figure 5.8: Renormalization group
flows for thermally excited thin
plates. and are the renor-
malized 2D Lamé coefficients de-
fined in Eq. 5.156.

given below. As discussed above, it will be important to look at these RG flows for
elastic sheets with dimensions . Aronovitz and Lubensky originally did their
calculations with manifold dimension and fixed embedding dimension ,
and set and . The other two hyperbolic fixed points are probably tricritical
points, beyond which there likely exist first order phase transitions. Note that the
stable fixed point leads to a renormalized Poisson ratio , which
is negative. Thus, at this fixed point, is not arbitary but assumes the universal
value of to lowest order in . Note that this universal value is negative! As
mentioned above, this strange behavior is qualitatively consistent with the response
of wrinkled paper: when we pull out the wrinkled piece of paper in one direction, it
also expands in the other direction. The wrinkles can be thought of as a proxy for
thermal fluctuations.

The most accurate calculations for thermally excited elastic membranes are
probably those made using the self-consistent screening approximation. [98, 99]. The
results can be summarized in terms of running scale-dependent coupling constants
with two critical exponents,

(5.158)

(5.159)

(5.160)

It can be shown that these two exponents are related by rotational invariance of
the elastic manifold, [94]. Note that the bending rigidity gets stiffer
at long length scales, while the Young’s modulus gets softer at long length scales.
Thus, the elastic “constants” and are not constants, but depend instead on
the length scale of the measurement. (Analogous things happen in metallic wires
and sheets with quenched random disorder, where a simple, scale-independent
Ohm’s law parametrized by a resistivity no longer describes the physics at long
wavelengths [100].)
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(a) (b)

Figure 5.9: Experimental setup for
measuring the spring constant of
graphene. Scale bar in (a) indicates
10 m. Figure adapted from Ref. [14].

Figure 5.10: The surface of a ribbon
(with height , width and length
) can be characterized by a triad of

orthonormal vectors that vary as a
function of arc length .

5.6.4 Experiments on graphene cantilevers

Some of the ideas discussed abovewere recently testedwith graphene [14]. Atomically
thin graphene cantilevers can be attached to a soft gold pad, which one can stab and
move around in a water-based solvent at room temperature. Surfactants are typically
needed to prevent the graphene from sticking to itself.

Free standing graphene is the ultimate 2d crystalline membrane: It is one atom
thick, and at has a large in-plane stiffness ( ) and bending rigidity
is . Let us assume a cantilever width of . Then, with graphene, we
have reached the “Moore’s Law” limit of thinness, with huge FvK numbers !
As mentioned above, the thermal length at room temperature is th nm. Any
graphene cantilever whose width exceeds this size will experience significant thermal
effects [14].

One can extract the bending rigidity of graphene cantilevers by either looking
at the gravitation deflection of the cantilevers or extracting the root mean square
fluctuations of the end positions [14]. The bending rigdity can then be extracted by
varying the cantilever length at fixed width . The result of such measurements
is that the bending rigidity increases 3000 fold over its value, consistent
with renormalization group calculations th (where and

th nm for graphene, see Figure 5.9). Additional tests of the theory could be
provided by varying both temperature and the widths of the cantilevers. There
may also be a contribution to the remarkable -fold stiffening from quenched
random disorder [101].

5.6.5 Path integrals for long graphene ribbons

What about an extremely long graphene ribbon, which we can regard as an unusual,
highly anisotropic polymer? The linear persistence length for a long ribbon is

, where is the width of the ribbon and is the lenght of the
ribbon. This remarkable ribbon has an aspect ratio of 50,000!

Suppose we now go to scales large compared to the width of the ribbon. We can
now pass to a limit where the ribbon is quasi-one-dimensional. Recall from Chapter
4 that the statistical mechanics of linear polymer chains maps onto the quantum
mechanics of a quantumparticle in imaginary time. Aswe nowdescribe, the statistical
mechanics of long ribbons maps onto the quantum mechanics of zero-dimensional
rigid rotors! The free energy of a ribbon depends on the orientation of a orthonormal
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triad attached to the tangent plane of the ribbon, which describes the orientation of
the ribbon [88],

(5.161)

where is a vector of rotation angles about , which vary along the arc

lengths of the ribbon (see Figure 5.10). We can easily calculate the
three possible derivatives of these rotations with respect to arc length,

(5.162)

Eq. 5.161 can be viewed as the quantum mechanical kinetic energy of a highly
anisotropic rigid rotor in imaginary time, where the arc length is a time-like vari-
able [101].

There are various interesting limits of these results. One limit is the flexible circular
limit, describing an elastic rod with circular cross section (like a wire). The angles
then describe the twist and bending of the wire. Due to the circular symmetry, the
bending terms simplify,

(5.163)

and the free energy in Eq. 5.161 becomes

(5.164)

Upon integrating out the twist degrees of freedom , we have a 1d Heisenberg
model, with the tangent along the wire axis as the order parameter.

Another limit is an untwistable stiff belt, so the only distortion the ribbon can
experience is a tilt of the normal unit vector . Upon taking the stiff limit,

(5.165)

the free energy in Eq. 5.161 becomes

(5.166)

which describes a 1d XY model, with an order parameter given by the normal to the
untwistable belt.

The full theory, however, is much more rich and complicated [101]. As mentioned
above, its statistical mechanics maps onto the path integral for a point-like quantum
rotor in imaginary time. If, similar to our analysis of simpler linear polymer chains,
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(a) (b)

Figure 5.11: (a) Snapshots of ther-
malized configurations of perforated
(red) and unperforated (teal) sheets.
(b) Crumpling temperature as
a function of the fraction s of re-
moved area. Figures from Ref. [84].

we subject the ribbon to a force along the -direction, we have [88, 101],

(5.167)

(5.168)

(5.169)

where the last inequality reflects the parameters of a m graphene ribbon
and is the Poisson ratio. The mode (bending) and mode (twist) are both soft,
but (stretching) is very large. When a force along the -axis is added, we can
map the statistical mechanics onto the quantum mechanics of a rigid rotor in an
external gravitational field. For wide m graphene ribbons, one needs to use
renormalized parameters such as and in
this model [101].

Can the extreme mechanics of flexural phonons be coupled to the quantum
mechanics of graphene be amplified even further? One way to dramatically amplify
their effects is to force the graphene to crumple, thus overcoming the diverging
bending rigidity and long range order in the normals. At low temperatures, we expect
a thermally wrinkled flat phase. At high enough temperature, however, a crumpling
phase transition has been conjectured [79]. To estimate this temperature for graphene,
recall our result for the normal-normal correlation function,

(5.170)

so that

(5.171)

where the last equation assumes , the graphene lattice spacing. The crumpling
transition temperature should be given approximately by the temperature at which

vanishes. Unfortunately, this temperature for graphene is Kelvin,
well above the temperature at which the carbon-carbon bonds of graphene fall
apart! However, we could bring down this transition temperature by perforating the
graphene. If we remove 80 of the area with a regular pattern of holes [84], then the
crumpling temperature can be lowered from 20000 Kelvin to 1600 Kelvin (see Figure
5.11).


