Nonorientable maximal surfaces with one end in the Lorentz-Minkowski 3-space

Shoichi Fujimori

Hiroshima University

joint work with Francisco J. López and Shin Kaneda

September 3, 2024

Discussion meeting on zero mean curvature surfaces

ICTS-TIFR

Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Period problem

M a Riemann surface. g a merom. fct on M, η a holom. 1-form on M such that $(1 + |g|^2)^2 |\eta|^2$ gives a complete Riemannian metric of finite total curvature on M. If M is not simply connected, then

$$f = \operatorname{Re} \int (1 - g^2, i(1 + g^2), 2g) \eta$$

might not be well-defined on M.

Period problem

S. Fujimori (Hiroshima Univ.)

 $f: M \to \mathbb{R}^3$ is well-defined on $M \iff$ $\operatorname{Re} \oint_{\gamma} \left(1 - g^2, i\left(1 + g^2\right), 2g\right) \eta = (0, 0, 0) \quad \forall \gamma \in H_1(M, \mathbb{Z})$

Minimal surfaces in \mathbb{R}^3

Theorem (Weierstrass representation)

M a Riemann surface, $f:M\to \mathbb{R}^3$ a minimal surface (i.e. $H\equiv 0).$ Then

 $\exists \mathbf{a} \text{ merom. function } g \text{ and a holom. 1-form } \eta \text{ on } M \text{ such that }$

$$f = \operatorname{Re} \int (1 - g^2, i(1 + g^2), 2g) \eta, \quad ds^2 = (1 + |g|^2)^2 |\eta|^2.$$

 (g,η) the Weierstrass data of f, g is called the Gauss map of f.

Theorem (Huber (1957) / Osserman (1963))

 $f: M \to \mathbb{R}^3$ a complete minimal surface of f.t.c. with the W-data (g, η) . Then $\exists \overline{M}$ a cpt Riem. surf., $\exists p_1, \ldots, p_n \in \overline{M}$ such that

- $M = \overline{M} \{p_1, \dots, p_n\}$ (biholom.).
- g, η extend meromorphically to \overline{M} .
- $2 \deg g \ge -\chi(\overline{M}) + 2n$.

Nonorientable minimal surfaces

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

M' a nonorientable surface.

 $f': M' \to \mathbb{R}^3$ a nonorientable minimal surfaces : \iff the mean curvature w.r.t. a unit normal vanishes identically.

 $f': M' \to \mathbb{R}^3$ a complete nonorientable minimal surface of f.t.c. Take a double cover $\pi: M \to M'$ (*M* a orientable surface), then $f := f' \circ \pi: M \to \mathbb{R}^3$ is an orientable minimal surface.

 \longrightarrow one can apply the Weierstrass rep.

 (g,η) : the Weierstrass data of f.

 $I: M \rightarrow M$ the anti-holomorphic deck transf w.r.t. $\pi.$ Then,

$$f \circ I(p) = f(p) \qquad (\forall p \in M).$$

Lemma

$$f \circ I = f \iff g \circ I = -\frac{1}{\overline{g}} \text{ and } I^* \eta = \overline{g^2 \eta}.$$

ICTS

2/31

Nonorientable maximal surfaces

ICTS

ICTS 1 / 31

The Gauss map

 $f': M' \to \mathbb{R}^3$ a complete nonorientable minimal surface of f.t.c. $g: M \to \mathbb{C} \cup \{\infty\}$ the Gauss map of $f = f' \circ \pi$. $I: M \to M$ the anti-holomorphic deck transf w.r.t. π . Then, $\exists 1 \ \hat{g}: M' \to \mathbb{RP}^2$ s.t. the following diagram is commutative.

$$\begin{array}{ccc} M & \stackrel{g}{\longrightarrow} & \mathbb{C} \cup \{\infty\} \\ \pi & & & \downarrow^{p_0} \\ M' & \stackrel{\hat{g}}{\longrightarrow} & \mathbb{RP}^2 \end{array}$$

where $p_0 : \mathbb{C} \cup \{\infty\} \to \mathbb{RP}^2 = (\mathbb{C} \cup \{\infty\})/\langle I_0 \rangle$ is the natural projection, $I_0(z) := -1/\overline{z}$.

Definition

The above \hat{g} is called the Gauss map of a nonorientable minimal surface $f': M' \to \mathbb{R}^3$.

Remark. Since $\deg(\pi) = \deg(p_0) = 2$, can define $\deg \hat{g}$: $\deg \hat{g} = \deg g$. S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces ICTS 5/31

$\deg \hat{g}$

Corollary (Meeks, 1981)

 $f':M'\to\mathbb{R}^3$ a complete nonorientable minimal surface of f.t.c. \hat{g} the Gauss map of f'. Then,

$\deg \hat{g} \geq 3.$

(Proof) Let $\pi: M \to M'$ the double cover.

$\deg \hat{g}$

Theorem (Meeks, 1981)

 $f':M'\to\mathbb{R}^3$ a complete nonorientable minimal surface of f.t.c. \hat{g} the Gauss map of f'. Then,

$$\log \hat{g} \equiv \chi(\overline{M'}) \pmod{2}$$

Lemma (Meeks, 1981)

 M_j a compact 2-mfd such that $\partial M_j = \emptyset$ (j = 1, 2). $p: M_1 \to M_2$ a branched covering.

- $\chi(M_2)$ is even $\Longrightarrow \chi(M_1)$ is even.
- $\chi(M_2)$ is odd $\Longrightarrow \chi(M_1) \equiv \deg p \pmod{2}$.

d

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

ICTS 6 / 31

Example: Möbius strip $(\deg \hat{g} = 3)$

$$M = \mathbb{C} - \{0\}, I(z) = -1/\overline{z}, M' = M/\langle I \rangle = \mathbb{RP}^2 - \{\pi(0)\},$$
$$g = z^2 \frac{z+1}{z-1}, \qquad \eta = i \frac{(z-1)^2}{z^4} dz.$$

Theorem (Meeks, 1981)

This is the unique example with $\deg \hat{g} = 3$.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Remark. There exists a Möbius strip with deg \hat{g} is odd (≥ 5).

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

ΓS 7/31

Example: Klein bottle– $\{1 \text{ pt}\}$ (López, deg $\hat{g} = 4$)

$$M = \left\{ (z, w) \in (\mathbb{C} \cup \{\infty\})^2 ; \ w^2 = z \frac{rz - 1}{z + r} \right\} - \{(0, 0), (\infty, \infty)\},$$
$$(r \in \mathbb{R} - \{0\}), \ I(z, w) = \left(-\frac{1}{\bar{z}}, \frac{1}{\bar{w}}\right), \ g = w \frac{z + 1}{z - 1}, \ \eta = i \frac{(z - 1)^2}{z^2 w} dz.$$

Theorem (López, 1996)

This is the unique example with deg $\hat{g} = 4$. S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Maximal surfaces in \mathbb{L}^3

 \mathbb{L}^3 the Lorentz-Minkowski 3-space. $\langle\ ,\ \rangle:=dx_1^2+dx_2^2-dx_3^2.$ M a 2-dim. mfd.

- $f: M \to \mathbb{L}^3$ is a spacelike if $\langle df, df \rangle$ is positive definite.
- A maximal surface is a spacelike surface with $H \equiv 0$.

Theorem (O. Kobayashi, 1983 / L. McNertney, 1980)

M a Riemann surface, $f:M\to\mathbb{L}^3$ a maximal surface. Then $\exists a$ merom. function g and a holom. 1-form η on M such that

$$f = \operatorname{Re} \int \left(1 + g^2, i\left(1 - g^2\right), 2g\right) \eta. \quad ds^2 = \left(1 - |g|^2\right)^2 |\eta|^2.$$

 (g,η) the Weierstrass data of f, g is called the Gauss map of f.

- Complete maximal surface is a plane (Calabi, 1970).
- $\not\exists$ nonorientable spacelike surface.

Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Example: Higher genus (López-Martín, deg $\hat{g} = 3k + 1$)

$$M = \left\{ (z, w) \in (\mathbb{C} \cup \{\infty\})^2 ; \ w^{k+1} = \frac{z(z-r)}{rz+1} \right\} - \{(0, 0), (\infty, \infty)\},$$

$$k \in \mathbb{Z}_{>0}, \ I(z, w) = \left(-\frac{1}{\bar{z}}, \frac{1}{\bar{w}}\right), \ g = w^k \frac{z-1}{z+1}, \ \eta = i \frac{(z+1)^2}{z^2 w^k} dz.$$

$$\exists 1r : \int_0^1 \left(\left(k + (k+1)r\right)r^2 + \left(k + (2k+1)r\right)t \right) \left(\frac{1-t}{t(t+r^2)}\right)^{\frac{1}{k+1}} dt = 0$$

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces ICTS 10/5

Maxfaces

9 / 31

Definition (Umehara-Yamada, 2006)

- $f: M \to \mathbb{L}^3$ is a maxface : \iff
 - $\exists W \subset M$ (open dense) s.t. $f|_W$ a conformal maximal immersion,
 - $df_p \neq 0 \ (\forall p \in M).$

For a maxface, $(1 + |g|^2)^2 |\eta|^2$ is always positive definite. The set of singular points of f is $\{p \in M \mid |g(p)| = 1\}$.

Definition (Umehara-Yamada, 2006)

A maxface $f: M \to \mathbb{L}^3$ is complete if $\exists C \subset M$, \exists symmetric (0, 2)tensor $T \in \Gamma(T^*M^2 \otimes T^*M^2)$ such that $T \equiv 0$ on M - C and $ds^2 + T$ is a complete Riemannian metric.

Ossermn-type inequality

Theorem (Umehara-Yamada, 2006)

 $f: M \to \mathbb{L}^3$ a complete maxface, (g, η) the Weierstrass data of f. Then $\exists a \text{ cpt Riem. surf. } \overline{M}, \exists p_1, \dots, p_n \in \overline{M}$ such that

- $M = \overline{M} \{p_1, \dots, p_n\}$ (biholomorphic).
- g, η extend meromorphically to \overline{M} .

 p_1, \ldots, p_n are the ends of f ($\not\exists$ compact maxface).

Theorem (Umehara-Yamada, 2006)

 $f: M = \overline{M} - \{p_1, \dots, p_n\} \to \mathbb{L}^3$ a complete maxface, (g, η) the Weierstrass data of f. Then

- $2 \deg g \ge -\chi(\overline{M}) + 2n.$
- "=" \iff each end is properly embedded.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Gauss map

 $\begin{aligned} f': M' \to \mathbb{L}^3 \text{ a nonorientable maxface,} \\ \pi: M \to M' \text{ the double cover.} \\ g: M \to \mathbb{C} \cup \{\infty\} \text{ the Gauss map of } f = f' \circ \pi, \\ A: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}, A(z) := 1/\bar{z}. \\ p_0: \mathbb{C} \cup \{\infty\} \to (\mathbb{C} \cup \{\infty\})/\langle A \rangle \text{ the projection. Then, } \exists \text{1the conformal} \\ \max \hat{g}: M' \to (\mathbb{C} \cup \{\infty\})/\langle A \rangle \text{ such that } \hat{g} \circ \pi = p_0 \circ g. \end{aligned}$

$$\begin{array}{ccc} M & \stackrel{g}{\longrightarrow} & \mathbb{C} \cup \{\infty\} \\ \pi & & & \downarrow^{p_0} \\ M' & \stackrel{\hat{g}}{\longrightarrow} & (\mathbb{C} \cup \{\infty\})/\langle A \rangle \end{array}$$

Definition

The above \hat{g} is called the Gauss map of $f': M' \to \mathbb{L}^3$.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Remark. If f' is complete, we can define deg \hat{g} . deg $\hat{g} = \deg g$.

S _15 /_:

13 / 31

Nonorientable maxface

Definition

• M' a nonorientable surface. $f': M' \to \mathbb{L}^3$ is a nonorientable maxface if \exists a Riemann surface M, \exists the double cover $\pi: M \to M'$ such that $f = f' \circ \pi: M \to \mathbb{L}^3$ is a maxface.

2 $f': M' \to \mathbb{L}^3$ is complete if $f = f' \circ \pi : M \to \mathbb{L}^3$ is complete.

 (g,η) the Weierstrass data of $f.\ I:M\to M$ the anti-holom. order 2 deck transf. associated to $\pi.$ Then,

$$f \circ I(p) = f(p) \qquad (\forall p \in M).$$

Lemma

$$f \circ I = f$$
 iff $g \circ I = \frac{1}{\overline{q}}$ and $I^* \eta = \overline{g^2 \eta}$.

ICTS 14 / 31

Degree of the Gauss map

Theorem (Fujimori-López, 2010)

 $f': M' \to \mathbb{L}^3$ a complete nonorientable maxface, $\hat{g}: M' \to (\mathbb{C} \cup \{\infty\})/\langle A \rangle$ the Gauss map of f'. $\Longrightarrow \deg \hat{g}$ is even and greater than 2.

Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Lemma (Ross, 1992)

 \overline{M} a cpt Riem. surf., $I: \overline{M} \to \overline{M}$ anti-holom. invol. without fixed pt. $\implies \exists h: \overline{M} \to \mathbb{C} \cup \{\infty\}$ such that $h \circ I = -1/\overline{h}$.

(Proof of Thm) Define $G: \overline{M} \to \mathbb{C} \cup \{\infty\}$ by $G(p) = g(p)h(p) \ (p \in \overline{M})$. Since $G \circ I = (gh) \circ I = (g \circ I)(h \circ I) = (1/\overline{g})(-1/\overline{h}) = -1/\overline{G}$, Meeks' lemma yields $\chi(\overline{M}') \equiv \deg G \pmod{2}$. Also, $\chi(\overline{M}') \equiv \deg h \pmod{2}$. Since $\deg G = \deg(gh) = \deg h + \deg g$,

 $\deg h \equiv \deg h + \deg g \pmod{2}$. Hence $\deg g = \text{even}$.

Moreover it is easy to verify that $\deg g$ cannot be 2. S. Fuimori (Hiroshima Univ.) Nonorientable maximal surfaces 16 / 31

Möbius strip $(\deg \hat{g} = 4)$

Left: g is branched at the ends. Right: g is not branched at the ends.

Theorem (Fujimori-López, 2010)

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Möbius strip with deg $\hat{g}=4$ are the LHS one or one of the 2-parameter family of the RHS one.

Remark. For minimal Möbius strip (deg $\hat{g} = 3$), g must be branched at the ends (Meeks, 1981).

Example: Two-ended projective plane $(\deg \hat{g} = 4)$

$$\begin{split} M &= \mathbb{C} - \{0, \pm 1\}, \, I(z) = -1/\bar{z}, \, M' = M/\langle I \rangle = \mathbb{RP}^2 - \{\pi(0), \pi(1)\}, \\ g &= \frac{z(z-\alpha)(z-\beta)(z-\gamma)}{(\bar{\alpha}z+1)(\bar{\beta}z+1)(\bar{\gamma}z+1)}, \qquad \eta = i\frac{(\bar{\alpha}z+1)^2(\bar{\beta}z+1)^2(\bar{\gamma}z+1)^2}{z^2(z^2-1)^3}dz, \end{split}$$

where $\alpha, \beta, \gamma \in \mathbb{C}$.

Lemma (Kaneda, 2023) $\exists 1\{\alpha, \beta, \gamma\}$ such that $f: M \to \mathbb{L}^3$ is well-defined on M.

$$\begin{split} &\alpha \approx 0.929495 - 2.31357i, \\ &\beta \approx -1.48442 + 1.9773i, \\ &\gamma \approx 0.554922 + 0.336273i. \end{split}$$

ICTS 17 / 31

Theorem (Kaneda, 2023)

This is the unique example with this topology and deg $\hat{g} = 4$.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Weierstrass data of Möbius strip $(\deg \hat{g} = 4)$

$$\begin{split} M &= \mathbb{C} - \{0\}, \, I(z) = -1/\bar{z}, \, M' = M/\langle I \rangle = \mathbb{RP}^2 - \{\pi(0)\}, \\ \bullet \ (\text{Left}) \ g &= z^3 \frac{z+1}{z-1}, \, \eta = i \frac{(z-1)^2}{z^5} dz. \\ \bullet \ (\text{right}) \ g &= z \frac{(rz-1)(sz-1)(tz-1)}{(z+r)(z+\bar{s})(z+\bar{t})}, \\ \eta &= i \frac{(z+r)^2(z+\bar{s})^2(z+\bar{t})^2}{z^5} dz, \\ \text{where} \ r &> 0, \, s, t \in \mathbb{C} - \{0\}. \end{split}$$

One-ended Klein bottle (deg $\hat{q} = 4$)

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Theorem (Fujimori-López 2010)

One-ended Klein bottle with deg $\hat{g} = 4$ and a certain symmetry must be one of them.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

ICTS 18 / 31

W-data of one-ended Klein bottle (deg $\hat{g} = 4$)

$$M = \left\{ (z, w) \in (\mathbb{C} \cup \{\infty\})^2 ; \ w^2 = \frac{z(z-r)}{rz+1} \right\} - \{(0, 0), (\infty, \infty)\},$$
$$(r \in \mathbb{R} - \{0, 1\}),$$

$$I(z,w) = \left(-\frac{1}{\bar{z}}, \frac{1}{\bar{w}}\right), \qquad g = \frac{w(z+1)}{z(z-1)}, \qquad \eta = i\frac{(z-1)^2}{zw}dz.$$

(Left) $r \approx 0.17137$, (Right) $r \approx 0.691724$.

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

ICTS 21 / 31

23 / 31

Outline of Proof: Divisors

S. Fujimori (Hiroshima Univ.)

$$\begin{split} M &= \left\{ (z,w) \in (\mathbb{C} \cup \{\infty\})^2 \; ; \; w^{k+1} = \frac{z(z-r)}{rz+1} \right\} - \{(0,0),(\infty,\infty)\}, \\ I(z,w) &= \left(-\frac{1}{\bar{z}},\frac{1}{\bar{w}}\right), \; g = \frac{w^k(z+1)}{z(z-1)}, \; \eta = i\frac{(z-1)^2}{zw^k}dz \; (r \in \mathbb{R} - \{0,1\}). \\ \\ &\frac{(z,w) \mid (-1,*) \quad (-1/r,\infty) \quad (0,0) \quad (1,*) \quad (r,0) \quad (\infty,\infty)}{g \mid 0^1 \quad \infty^k \quad \infty^1 \quad \infty^1 \quad 0^k \quad 0^1 \\ \eta \mid - \quad 0^{2k} \quad \infty^{k+1} \quad 0^2 \quad - \quad \infty^{k+3} \\ g\eta \mid 0^1 \quad 0^k \quad \infty^{k+2} \quad 0^1 \quad 0^k \quad \infty^{k+2} \\ g^2\eta \mid 0^2 \quad - \quad \infty^{k+3} \quad - \quad 0^{2k} \quad \infty^{k+1} \end{split}$$

 $\deg g = 2k + 2.$

Nonorientable maximal surfaces

Higher genus version $(\deg \hat{g} = 2(k+1), k \in \mathbb{Z}_{>0})$

$$M = \left\{ (z,w) \in (\mathbb{C} \cup \{\infty\})^2 ; \ w^{k+1} = \frac{z(z-r)}{rz+1} \right\} - \{(0,0), (\infty,\infty)\},$$
$$I(z,w) = \left(-\frac{1}{\bar{z}}, \frac{1}{\bar{w}}\right), \ g = \frac{w^k(z+1)}{z(z-1)}, \ \eta = i\frac{(z-1)^2}{zw^k}dz \ (r \in \mathbb{R} - \{0,1\}).$$

Main Theorem (Fujimori-Kaneda, 2023)

For each $k \in \mathbb{Z}_{>0}$, there exist exactly two r for which the maxface $f: M \to \mathbb{L}^3$ is well-defined and induces a one-ended complete nonorientable maxface $f': M' = M/\langle I \rangle \to \mathbb{L}^3$ of genus k + 1.

Remark. $k = 1 \implies$ One-ended Klein bottle by Fujimori-López.S. Fujimori (Hiroshima Univ.)Nonorientable maximal surfacesICTS22 / 31

Outline of Proof: Symmetry

$$f = \operatorname{Re} \int \Phi, \qquad \Phi = \begin{pmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{pmatrix} = \begin{pmatrix} (1+g^2)\eta \\ i(1-g^2)\eta \\ 2g\eta \end{pmatrix}$$

Define conformal maps $\kappa_j : \overline{M} \to \overline{M} \ (j = 1, 2)$ as follows:

$$\kappa_1(z,w) = \left(z, e^{\frac{2\pi i}{k+1}}w\right), \qquad \kappa_2(z,w) = (\bar{z}, \bar{w}).$$

Then we have the following:

$$\kappa_1^* \Phi = K_1 \Phi, \qquad \kappa_2^* \Phi = K_2 \overline{\Phi},$$

where

S. Fu

$$K_1 = \begin{pmatrix} \cos\frac{2\pi}{k+1} & \sin\frac{2\pi}{k+1} & 0\\ -\sin\frac{2\pi}{k+1} & \cos\frac{2\pi}{k+1} & 0\\ 0 & 0 & 1 \end{pmatrix}, \qquad K_2 = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

import (Hiroshima Univ.) Nonorientable maximal surfaces ICTS 24

/ 31

Outline of Proof: Homology basis of \overline{M}

Let γ_1 and γ_2 be two loops in \overline{M} whose projections to the z-plane are as above. Then

$$\left\{\kappa_{j}^{m}\circ\gamma_{l}\; ;\; j,l\in\{1,2\}, \;\; m\in\{1,\ldots,k+1\}\right\}$$

contains a homology basis of \overline{M} . S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Since $\phi_1 = (1 + g^2)\eta$, $\phi_2 = i(1 - g^2)\eta$, the period problem is

$$\oint_{\gamma_1} \eta = \oint_{\gamma_1} g^2 \eta = 0.$$

Since $\oint_{\gamma_1} \eta = \oint_{I_*(\gamma_1)} I^* \eta = \oint_{\gamma_1} \overline{g^2 \eta}$, the period problem is

$$\oint_{\gamma_1} g^2 \eta = \oint_{\gamma_1} \frac{w^k (z+1)^2}{z^3} dz = 0$$

We set $F = \frac{(k+1)(z-r)(2rz^2 - ((k+1)r^2 - 2(k+2)r + k)z + r)}{(k+2)rwz}$, then we have

$$\frac{w^k(z+1)^2}{z^3}dz + dF = \frac{a(r) + 2(2k+1)rz}{(k+2)rw}dz,$$

where $a(r) = -(k+1)(k+2)r^2 + 2k(k+2)r - k(k-1)$. Thus

$$f$$
 is well-defined on $M \iff \psi(r) := \int_{-1/r}^{0} \frac{a(r) + 2(2k+1)rz}{r|w|} dz = 0.$
S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Period Problem

$$\operatorname{Re} \oint_{\gamma_l} \phi_j = 0, \qquad j = 1, 2, 3, \ l = 1, 2.$$

Since $\phi_3 = 2g\eta = d\left(\frac{2i(z^2+1)}{z}\right)$ is exact, $\oint_{\gamma} \phi_3 = 0$ for any γ . Since $\oint_{\gamma} \phi_j = \oint_{I_*(\gamma)} I^*(\phi_j) = \oint_{I_*(\gamma)} \overline{\phi_j}$, the period problem reduces to

$$\oint_{\gamma_l + I_*(\gamma_l)} \phi_j = 0, \qquad j = 1, 2, \ l = 1, 2$$

Lemma

25 / 3

$$I_*(\gamma_1) = \gamma_1, \qquad I_*(\gamma_2) = \gamma_1 - \gamma_2 + (\kappa_1)_*^k(\gamma_1).$$

Thus the period problem reduces to

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

$$\oint_{\gamma_1} \phi_j = 0, \qquad j = 1, 2.$$

Roots of $\psi(r)$

We set t = -rz, then

$$\psi(r) = |r|^{\frac{-2k}{k+1}} \int_0^1 \left(a(r) - 2(2k+1)t \right) \left(\frac{1-t}{t(t+r^2)} \right)^{\frac{1}{k+1}} dt.$$

$$\lim_{r \to -\infty} \psi(r) < 0, \quad \lim_{r \to 0} \psi(r) = -\infty, \quad \lim_{r \to +\infty} \psi(r) < 0.$$

Lemma

$$\psi(k/(k+1)) > 0, \qquad \psi(1) < 0.$$

Therefore, $\psi(r)$ has at least two roots in (0, 1). Moreover, by considering the signs of $\psi'(r)$ and $\psi''(r)$ near the roots of $\psi(r)$, we see that $\psi(r)$ has exactly two real roots on $\mathbb{R} - \{0, 1\}$.

ICTS 26 / 31

Example: Higher genus $(\deg \hat{g} = 2(k+1), k \in \mathbb{Z}_{>0})$

Singularities

The singular set of f' $(k = 2, r = r_1 \approx 0.478169)$. The thick curves indicate the singular points. \bigcirc indicates a cuspidal cross cap and \triangle indicates a swallowtail. The other singularities are cuspidal edges. S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces ICTS 30/31

References

 Shoichi Fujimori and Francisco J. López, Nonorientable maximal surfaces in the Lorentz-Minkowski 3-space, Tohoku Mathematical Journal, 62 (2010), 311–328.

Shoichi Fujimori and Shin Kaneda,

S. Fujimori (Hiroshima Univ.) Nonorientable maximal surfaces

Higher genus nonorientable maximal surfaces in the Lorentz-Minkowski 3-space, Tohoku Mathematical Journal, **75** (2023), 1–14.

Shin Kaneda,

Some new examples of nonorientable maximal surfaces in the Lorentz-Minkowski 3-space, Hiroshima Mathematical Journal, **53** (2023), 311–334.

ICTS 29 / 31

$$\frac{lem}{lem} \text{ If } r_{0} \in \mathbb{R} \text{ satisfies } \Psi(k_{0}) = 0 \qquad (i)$$

$$\implies 0 \leq r_{0}^{-} \langle V_{0} \qquad r_{0}^{-} := \frac{k(k+2) - \sqrt{k(k+2)(2k+1)}}{(k+1)(k+1)}$$

$$\frac{lem}{lk_{NS}} \quad r_{0} \in (\infty, \infty) \qquad satisfies \qquad \Psi(r_{0}) = 0$$

$$\implies \int \Psi'(r_{0}) = \frac{k(k+1) V_{0} - \frac{k+1}{k+1}}{(k+1)(k^{2}+1)} \quad A_{0}(r_{0})$$

$$\frac{\Psi''(r_{0})}{\mu''(r_{0})} = \frac{k(k+1) V_{0} - \frac{k+1}{k+1}}{(k+1)(k^{2}+1)} \quad A_{0}(r_{0})$$

$$A_{0}(r_{0}) > 0, \quad P_{1}(r_{1}), \quad P_{2}(r_{1}) \quad are \quad poly. \quad of \quad oldgree \ 4$$

$$= F_{0Y} \quad Y_{0} \in (Y_{0}^{-}, S_{1}) \quad \frac{\psi'(Y)}{\psi(Y)}$$

$$= \frac{1}{1} \int_{Y_{0}}^{Y_{0}} \int_{Y_{0}}^{Y$$

$$\frac{L_{em}}{l_{1}(v) < 0} = \frac{q''(r) < 0}{l_{1}(r_{0}) > v} = \frac{q''(r) < 0}{r_{0}} = \frac{q''(r)}{r_{0}} > v = \frac{q''(r)}{r_{0}} < 0$$

$$\frac{1}{2} |s_{0} \in (0, r_{0}) = \frac{1}{r_{1}(r_{0})} = \frac{1}{r_{0}} = \frac{$$

