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Minimal surfaces in R3

Theorem (Weierstrass representation)

M a Riemann surface,
(g, η) a pair of meromorphic function and holomorphic 1-form on M

such that 0 <
(
1 + |g|2

)2
ηη̄ < ∞ on M .

=⇒ f := Re

∫ (
1− g2, i

(
1 + g2

)
, 2g

)
η

gives a minimal surface (i.e. H ≡ 0) in R3.

(g, η) the Weierstrass data, g the Gauss map.

Remark
If M is not simply connected, f might not be well-difened on M .

Per(f) :=

{
Re

∫

γ

(
1− g2, i

(
1 + g2

)
, 2g

)
η : γ ∈ H1(M,Z)

}
.
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Period problem

1 Per(f) = {0} =⇒ f : M → R3 is well-defined on M .

2 ∃v ∈ R3 \ {0} such that Per(f) ⊂ Λ1 := {nv : n ∈ Z}
=⇒ f is singly periodic.
f is well-defined in R3/Λ1 = R2 × S1.

3 ∃v1, v2 ∈ R3 (lin. indep.) such that
Per(f) ⊂ Λ2 := {

∑2
j=1 njvj : nj ∈ Z}

=⇒ f is doubly periodic.
f is well-defined in R3/Λ2 = T 2 × R.

4 ∃v1, v2, v3 ∈ R3 (lin. indep.) such that
Per(f) ⊂ Λ3 := {

∑3
j=1 njvj : nj ∈ Z}

=⇒ f is triply periodic.
f is well-defined in R3/Λ3 = T 3.
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Examples: Schwarz surfaces

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P
g = z

η =
dz

w

Schwarz D
g = z

η = i
dz

w

a = 0.1 a = (
√
3− 1)/

√
2 a = 0.9

a = 0.1 a = (
√
3− 1)/

√
2 a = 0.9
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Limits of Schwarz surfaces: a → 0

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P

Schwarz D

= →

a = 0.1 a = 0.1 catenoid

= →

a = 0.1 a = 0.1 helicoid
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Limits of Schwarz surfaces: a → 1

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P

Schwarz D

= →

a = 0.9 a = 0.9 Scherk S

→

a = 0.9 Scherk D
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Jorge-Meeks surfaces (n-noid)

M = (C ∪ {∞}) \ {z ∈ C ; zn = 1} (n ≥ 2),

g = zn−1, η =
1

(zn − 1)2
dz.

f−→

M (n = 5) f(M)
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Karcher suddle tower with 2n-ends (Singly periodic)

M = (C ∪ {∞}) \ {z ∈ C ; z2n = 1} (n ≥ 2),

g = zn−1, η =
1

z2n + 1
dz.

f−→

M (n = 3) f(M)
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Deformation

g = zn−1, η =
1

z2n − 2 cos(nϕ)zn + 1
dz (0 < ϕ ≤ π/(2n)).

ϕ = π/(2n) ϕ = π/(4n) ϕ = π/(10n)

S. Fujimori (Hiroshima U.) ZMC Surfaces ICTS 9 / 42

Limit: ϕ → 0

g = zn−1, η =
1

z2n − 2 cos(nϕ)zn + 1
dz (0 < ϕ ≤ π/(2n)).

−→

−→

ϕ = π/(2n) ϕ→ 0 JM n-noid
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Maximal surfaces in L3

L3 the Lorentz-Minkowski 3-space. ⟨ , ⟩ := dx21 + dx22 − dx23.

f : M → L3 is spacelike ⇐⇒ ⟨df, df⟩ is positive definite.

f is a (spacelike) maximal surface ⇐⇒ H ≡ 0.

Theorem (Weierstrass-type representation (O. Kobayashi, 1983))

M a Riemann surface,
(g, η) a pair of meromorphic function and holomorphic 1-form on M

such that 0 <
(
1− |g|2

)2
ηη̄ < ∞ on M .

=⇒ f := Re

∫ (
1 + g2, i

(
1− g2

)
, 2g

)
η

gives a maximal surface in L3.

(g, η) the Weierstrass data, g the Gauss map.

Remark (Calabi, 1970 / Cheng-Yau, 1976)

The only complete maximal surface is a spacelike plane.
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Examples: Enneper, catenoid, helicoid (g = z)

Min. in R3

Max. in L3

M = C M = C \ {0} M = C \ {0}

η = dz η =
dz

z2
η = i

dz

z2
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Singularities

f : M → L3 a maximal surface with Weierstrass data (g, η).
f∗ : M → L3 maximal surface with Weierstrass data (g, iη).

f∗ is called the conjugate surface of f .

Fact
f has cuspidal edge at p ∈ M ⇐⇒ f∗ has cuspidal edge at p ∈ M .

f has swallowtail at p ∈ M ⇐⇒ f∗ has cuspidal cross cap at
p ∈ M .

f has cuspidal cross cap at p ∈ M ⇐⇒ f∗ has swallowtail at
p ∈ M .

f has cone-like sing. at p ∈ M ⇐⇒ f∗ has fold sing. at p ∈ M .

f has fold sing. at p ∈ M ⇐⇒ f∗ has cone-like sing. at p ∈ M .
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Examples: Schwarz-type maximal surfaces

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P
g = z

η =
dz

w

Schwarz D
g = z

η = i
dz

w

a = 0.1 a = (
√
3− 1)/

√
2 a = 0.9

a = 0.1 a = (
√
3− 1)/

√
2 a = 0.9
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Limits of Schwarz-type surfaces: a → 0

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P

Schwarz D

= →

a = 0.1 a = 0.1 catenoid

= →

a = 0.1 a = 0.1 helicoid
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Limits of Schwarz-type surfaces: a → 1

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z8 + (a4 + a−4)z4 + 1

}
, (0 < a < 1)

Schwarz P

Schwarz D

= →

a = 0.9 a = 0.9 Scherk 1

→

a = 0.9 Scherk 2
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Jorge-Meeks type maximal surfaces

M = (C ∪ {∞}) \ {z ∈ C ; zn = 1} (n ≥ 2),

g = zn−1, η =
i

(zn − 1)2
dz.

n = 3 n = 5 n = 17

Remark

S(f) = {z ∈ M ; |z| = 1} consists of (non-deg.) fold singularities.
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Extensions of maximal surfaces with fold singularities

helicoid

max. surf. extension more extension

Scherk

max. surf. extension
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Timelike minimal surfaces, zero mean curvature surfaces

f : M → L3 is a timelike surface ⇐⇒ ⟨df, df⟩ is Lorentzian metric.

f is a (timelike) minimal surface ⇐⇒ H ≡ 0.

Remark

Graph of a function t = ϕ(x, y) in L3 is a spacelike maximal surface
(resp. timelike minimal surface) ⇐⇒ ϕ satisfies

(1− ϕ2
y)ϕxx + 2ϕxϕyϕxy + (1− ϕ2

x)ϕyy = 0 (⋆)

and 1− ϕ2
x − ϕ2

y > 0 (resp. 1− ϕ2
x − ϕ2

y < 0).

Definition

(⋆) is called the zero mean curvature equation and a graph t = ϕ(x, y)
satisfying (⋆) is called a zero mean curvature surface (in L3).
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Extension of max. surf. to zero mean curvature surf.

Definition

Regular curve σ : I(⊂ R) → L3 is called null curve if σ′(p) is lightlike
(∀p ∈ I). Null curve σ is said to be non-degenerate if σ′(p) and σ′′(p)
are linearly independent (∀p ∈ I).

Theorem (Gu, 1985 / Klyachin, 2003, cf. [FKKRSUYY])

f : M → L3 a maximal surface with fold singularities,
γ(t) (t ∈ I) : a set of fold sing. of f .
=⇒ γ̂(t) := f ◦ γ(t) is non-degenerate null curve, and

f̃(u, v) :=
1

2
(γ̂(u+ v) + γ̂(u− v))

is real analytically connected to the image of f along γ as a timelike
minimal surface.
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Analytic extensions of Schwarz D-type maximal surfaces

→

maximal surface extension

By the analytic extensions of Schwarz D-type maximal surfaces, we
have:

Theorem (FRUYY, 2014)

∀a ∈ (0, 1), ∃Σa: oriented closed 2-mfd of genus 3, Γa: 3-dim lattice,

∃fa : Σa → L3/Γa zero mean curvature embedding
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Idea of the proof of the embeddedness

Dmax := {(z, w) ∈ Ma ; |z| < 1, 0 ≤ arg z ≤ π/4},
Dmin := {(u, v) ∈ R2 ; 0 ≤ u ≤ π/4, 0 < v ≤ π/2}.

f(Dmax) ∪ f̃(Dmin)

First we show the fundamental piece f(Dmax) ∪ f̃(Dmin) is
embedded and contained some vertical prism over a isosceles right
triangle.

After a reflection w.r.t. any boundary of f(Dmax) ∪ f̃(Dmin), the
original piece and its duplicate are not intersect each other.
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Schwarz D-type zero mean curvature embeddings

a = 0.1 a = (
√
3− 1)/

√
2 a = 0.9
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Limits

= −→
a → 0

a = 0.1 a = 0.1 helicoid

−→
a → 1

a = 0.9 Scherk
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Other examples: Schwarz H-type surface

Ma :=
{
(z, w) ∈ (C ∪ {∞})2 ; w2 = z7 + (a3 + a−3)z4 + z

}
, (0 < a < 1)

Schwarz H
g = z

η =
dz

w

Schwarz
HC
g = z

η = i
dz

w

a = 0.1 a = 0.5 a = 0.9

a = 0.1 a = 0.5 a = 0.9
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Limit for Schwarz HC-type surface (a → 1)

= −→
a → 1

a = 0.9 a = 0.9 Karcher
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Other examples: Karcher-type, JM-type surfaces

ϕ = 1 ϕ = 0.5

ϕ = 0.2 ϕ = 0
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Jorge-Meeks-type surfaces

Theorem (FKKRUY, 2017)

For any n ≥ 2, the analytic extension of Jorge-Meeks type n-noids are
properly embedded ZMC surfaces.

−→

maxface (n = 5) extension
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Outline of proof

M = (C ∪ {∞}) \ {z ∈ C ; zn = 1} (n ≥ 2), g = zn−1, η =
i

(zn − 1)2
dz.

f = Re

∫ (
1 + g2, i

(
1− g2

)
, −2g

)
η = (x1, x2, x3) ,

x1 = −(r2n−1 + r) sin θ + (rn+1 + rn−1) sin(n− 1)θ

n(r2n − 2rn cosnθ + 1)

+
n− 1

n2

n−1∑

j=1

log

(
r2 − 2r cos

(
θ − 2πj

n

)
+ 1

)
sin

2πj

n
,

x2 =
−(r2n−1 + r) cos θ + (rn+1 + rn−1) cos(n− 1)θ

n(r2n − 2rn cosnθ + 1)

+
n− 1

n2

n−1∑

j=0

log

(
r2 − 2r cos

(
θ − 2πj

n

)
+ 1

)
cos

2πj

n
,

x3 =
2rn sinnθ

n(r2n − 2rn cosnθ + 1)
, where z = reiθ.
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Outline of proof

We have f(r, θ) = f(1/r, θ). Set u :=
r + r−1

2
. Then

x1 = −Tn−1(u) sin θ + u sin(n− 1)θ

n(Tn(u)− cosnθ)

+
n− 1

n2

n−1∑

j=1

log

(
u− cos

(
θ − 2πj

n

))
sin

2πj

n
,

x2 =
−Tn−1(u) cos θ + u cos(n− 1)θ

n(Tn(u)− cosnθ)

+
n− 1

n2

n−1∑

j=0

log

(
u− cos

(
θ − 2πj

n

))
cos

2πj

n
,

x3 =
sinnθ

n(Tn(u)− cosnθ)
,

where Tn(u), Tn−1(u) denote the first Chebyshev polynomials in the
variable u of degree n, n− 1, respectively.
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Domain for the analyric extension of f is defined

n = 3
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Karcher type ZMC surfaces with 2n ends (non periodic)

g = zn−1, η =
i

z2n − 2 cos(nϕ)zn + 1
dz (0 < ϕ ≤ π/(2n)).

n = 3:

ϕ = π/(2n) ϕ = π/(4n) ϕ = π/(10n) ϕ→ 0
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ZMC entire graphs

g = zn−1, η =
i

z2n − 2 cos(nϕ)zn + 1
dz (0 < ϕ ≤ π/(2n)).

n = 2, ϕ = π/(2n) n = 2, ϕ = 0

t = log(coshx/ cosh y) t = x tanh y

These surfaces were first found by O. Kobayashi (1983).
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Kobayashi surfaces

Lemma

Let 0 = α0 ≤ α1 ≤ · · · ≤ α2n−1 be 2n real numbers (n ≥ 2).
We set M = (C ∪ {∞}) \ {eiα0 , . . . , eiα2n−1}, and

g = zn−1, η = i
ei(α0+···+α2n−1)/2

∏2n−1
j=0 (z − eiαj )

dz.

=⇒ The maxface f : M → L3 with the above W-data is well-defined on
M , and the singular set S(f) = {z ∈ M ; |z| = 1} consists of (non-deg.)
fold singularities.

Definition
We call a maxface given in this lemma an order n Kobayashi surface
(of principal type), and (α0, . . . ,α2n−1) the angle data of f .
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Kobayashi surfaces

Theorem (FKKRUY, 2016)

Let f : M → L3 be an order n Kobayashi surface with the angle data
(α0, . . . ,α2n−1), and f̃ : M → L3 its analytic extension.
We set α2n = 2π.
=⇒

1 If |αj − αj+1| < 2π/(n− 1) (j = 0, . . . , 2n− 1) hold and that
α0, . . . ,α2n−1 are distinct, then f̃ is a proper immersion.

2 If |αj − αj+1| < π/(n− 1) (j = 0, . . . , 2n− 1) hold and that
α0, . . . ,α2n−1 are distinct, then f̃ gives an entire graph.

3 When n = 2, f̃ is a properly embedded.

Problem

What is the condition for f̃ to be properly embedded?
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Examples (n=2)

g = z, η = i
ei(α0+α1+α2+α3)/2

∏3
j=0(z − eiαj )

dz.

(α0,α1,α2,α3) = (0, 0, 0, 0) (α0,α1,α2,α3) = (0, 0, 0,π)

η =
i

(z − 1)4
dz η =

−1

(z − 1)3(z + 1)
dz
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Relationship to fluid mechanics [FKKRSUYY]

Consider a 2-dim flow with velocity vector field v = (u, v), density ρ,
pressure p.
Suppose the following conditions for the flow:

(1) barotropic. i.e. p depends only on ρ.
c :=

√
dp/dρ is called the local speed of sound.

(2) steady. i.e. v, ρ, p do not depend on time.

(3) no external forces.

(4) irrotational. i.e. rotv(= vx − uy) = 0.

By (2), the equation of continuity is reduced to

div(ρv) = (ρu)x + (ρv)y = 0.

Hence ∃ψ = ψ(x, y) s.t.

ψx = −ρv, ψy = ρu,

which is called the stream function of the flow.
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Relationship to fluid mechanics [FKKRSUYY]

The stream function ψsatisfies the following equation:

(ρ2c2 − ψ2
y)ψxx + 2ψxψyψxy + (ρ2c2 − ψ2

x)ψyy = 0.

When ρc = 1, this equation coincides with the ZMC equation (⋆).
Suppose now ρc = 1.
=⇒ ∃ρ0 a positive constant s.t.

p = const.− ρ−1,

ρ = ρ0|1− ψ2
x − ψ2

y |1/2, c = 1/ρ = ρ−1
0 |1− ψ2

x − ψ2
y |−1/2.

Also, v = ρ−1(ψy,−ψx).

Lemma

|v| > c (resp. |v| < c) ⇐⇒ 1− ψ2
x − ψ2

y < 0 (resp. 1− ψ2
x − ψ2

y > 0).

S. Fujimori (Hiroshima U.) ZMC Surfaces ICTS 38 / 42

Relationship to fluid mechanics [FKKRSUYY]

Theorem

σ(t) = (x(t), y(t)) ∈ R2 a locally convex curve (t an arc-length).
=⇒ ∃ψ = ψ(x, y) s.t. (x, y,ψ(x, y)) is a zero mean curvature surface
which change type across the non-degenerate null curve (x(t), y(t), t).
i.e. ψ is the stream function of some flow with ρc = 1.
Moreover, the velocity vector field v = ρ−1(ψy,−ψx) of this flow
satisfies:

|v| → ∞ as (x, y) approaches σ(t).

The flow changes from being subsonic to being supersonic across σ.

σ′′(t) points to the supersonic region.
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