Domain wall constraints on the doublet left-right symmetric model using PTA data

[arXiv: 2407.14075, to appear in Phys. Rev. D]

Introduction

Motivation

- Compelling evidence of a nHz GW background by recent PTA results (NANOGrav, EPTA, InPTA, PPTA ..).
- Some models of cosmological origin provide a better fit compared to the standard SMBHB interpretation.
- For DWs, the Bayes factor is $\mathcal{O}(10)$, with $\sigma \sim \mathcal{O}(10^5 \,\text{GeV})^3$, and $T_{\text{ann}} \sim \mathcal{O}(100) \,\text{MeV}$. Cannot come from EW scale physics.
- LRSMs with parity symmetry can produce DWs with such large tension.
- We constrain the parameter space of DLRSM using PTA data.

Doublet left-right symmetric model

• LRSM gauge group: [Senjanovic, Mohapatra, Pati, Salam ..]

 $\mathcal{G}_{LRSM} = SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times \mathcal{P}$

- Breaking pattern: $\mathcal{G}_{LRSM} \xrightarrow{v_R} \mathcal{G}_{SM} \xrightarrow{v_L,\kappa_1,\kappa_2} U(1)_{em}$
- Scalars for SSB: a bidoublet (Φ) , and 2 triplets $(\Delta_{L,R})$ (TLRSM), or a bidoublet (Φ) and 2 doublets $(\chi_{L,R})$ (DLRSM).
- Hierarchy of scales: $v_R \gg v_{\text{EW}}$, $v_L^2 + \kappa_1^2 + \kappa_2^2 = v_{\text{EW}}^2$, $v_{\text{EW}} = 246.02 \,\text{GeV}$.
- Higgs and EWPO data: EWSB in DLRSM can be much different from that in TLRSM. [Bernard et. al. 2020; Uma et.al. 2022]
- $r \equiv \frac{\kappa_2}{\kappa_1}$, $w \equiv \frac{v_L}{\kappa_1}$ are ~ 0 in TLRSM, can be larger in DLRSM.
- GW signature from FOPT was calculated for SU(2)_R × U(1)_{B−L} → U(1)_Y in DLRSM. [S. Karmakar, DR, 2024]

DLRSM potential

• Assuming $\mathcal{P}: L \leftrightarrow R, \Phi \leftrightarrow \Phi^{\dagger}$,

$$\begin{split} V &= V_{\chi} + V_{\chi\Phi} + V_{\Phi}, \\ V_{\chi} &= -\mu_3^2 \left[\chi_L^{\dagger} \chi_L + \chi_R^{\dagger} \chi_R \right] + \rho_1 \left[(\chi_L^{\dagger} \chi_L)^2 + (\chi_R^{\dagger} \chi_R)^2 \right] + \rho_2 \left[\chi_L^{\dagger} \chi_L \chi_R^{\dagger} \chi_R \right], \\ V_{\chi\Phi} &= \mu_4 \left[\chi_L^{\dagger} \Phi \chi_R + \chi_R^{\dagger} \Phi^{\dagger} \chi_L \right] + \mu_5 \left[\chi_L^{\dagger} \tilde{\Phi} \chi_R + \chi_R^{\dagger} \tilde{\Phi}^{\dagger} \chi_L \right] \\ &+ \alpha_1 \operatorname{Tr}(\Phi^{\dagger} \Phi) \left[\chi_L^{\dagger} \chi_L + \chi_R^{\dagger} \chi_R \right] + \left\{ \frac{\alpha_2}{2} \left[\chi_L^{\dagger} \chi_L \operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) + \chi_R^{\dagger} \chi_R \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right] + \mathrm{h.c.} \right\} \\ &+ \alpha_3 \left[\chi_L^{\dagger} \Phi \Phi^{\dagger} \chi_L + \chi_R^{\dagger} \Phi^{\dagger} \Phi \chi_R \right] + \alpha_4 \left[\chi_L^{\dagger} \tilde{\Phi} \tilde{\Phi}^{\dagger} \chi_L + \chi_R^{\dagger} \tilde{\Phi}^{\dagger} \tilde{\Phi} \chi_R \right], \\ V_{\Phi} &= -\mu_1^2 \operatorname{Tr}(\Phi^{\dagger} \Phi) - \mu_2^2 \left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) + \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right] + \lambda_1 \left[\operatorname{Tr}(\Phi^{\dagger} \Phi) \right]^2 \\ &+ \lambda_2 \left[\left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) \right]^2 + \left[\operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right]^2 \right] + \lambda_3 \operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \\ &+ \lambda_4 \operatorname{Tr}(\Phi^{\dagger} \Phi) \left[\operatorname{Tr}(\tilde{\Phi} \Phi^{\dagger}) + \operatorname{Tr}(\tilde{\Phi}^{\dagger} \Phi) \right], \end{split}$$

• vev structure:

$$\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} \kappa_1 & 0\\ 0 & \kappa_2 \end{pmatrix}, \ \langle \chi_L \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_L \end{pmatrix}, \ \langle \chi_R \rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\ v_R \end{pmatrix}.$$

• \mathcal{P} also imposes $g_L = g_R$.

Domain walls in DLRSM

Effective potential

- We could have an alternative hierarchy, $v_L \gg v_R, \kappa_1, \kappa_2 \sim v_{\text{EW}}.$
- Call the \mathcal{P} -breaking scale v_0 .
- In terms of background fields,

$$\begin{split} V_0 \! \equiv \! V_{\chi}(\langle \chi_L \rangle, \langle \chi_R \rangle) \! + \! V_{\chi\Phi}(\langle \chi_L \rangle, \langle \chi_R \rangle, \langle \Phi \rangle) \! + \! V_{\Phi}(\langle \Phi \rangle) \\ V_{\text{eff}} \! = \! V_0 \! + \! V_1 \! + \! V_{1T} \! + \! \cdots \end{split}$$

- DWs exist for $T_{\text{ann}} \lesssim T \lesssim v_0$, where $V_{\text{eff}}(v_L, v_R) \approx V_{\chi} = -\frac{\mu_3^2}{2} (v_L^2 + v_R^2) + \frac{\rho_1}{4} (v_L^4 + v_R^4) + \frac{\rho_2}{4} v_L^2 v_R^2$.
- For $\rho_2 > 2\rho_1$, $\mu_3^2 > 0$, there are four degenerate minima
- V_{χ} has a $Z_4 \simeq \mathcal{P} \times Z_2$ symmetry.
- Parameter set: $\{\rho_1, \rho_2, v_0\}$.

$$\nu_0 = 20 \text{ TeV}, \ \rho_1 = 0.2, \ \rho_2 = 0.6$$

Domain walls in DLRSM

- There are two types of DWs: Z_2 and LR.
- For a DW located at x = 0,

$$\mathcal{E} = \frac{1}{2} \left(\frac{dv_L}{dx}\right)^2 + \frac{1}{2} \left(\frac{dv_R}{dx}\right)^2 + V(v_L, v_R),$$
$$\sigma = \int_{-\infty}^{\infty} \mathcal{E} dx$$

- Rescale, $\hat{v}_L = \frac{v_L}{v_0}$, $\hat{v}_R = \frac{v_R}{v_0}$, $\hat{\mu}_3^2 = \frac{\mu_3^2}{v_0^2} = \rho_1$, $\hat{x} = x v_0$, $\hat{\sigma} = \frac{\sigma}{v_0^3}$.
- Kink solutions are obtained using relaxation method, for the $\rho_1 \rho_2$ plane.
- This yields the parametric dependence: $\sigma(v_0, \rho_1, \rho_2) = \hat{\sigma}(\rho_1, \rho_2)v_0^3.$

DW evolution

• Z_2 DWs are unstable, decay into two LR DWs.

- In the scaling regime, $\rho_{\rm DW} \approx \sigma H$.
- DWs annihilate when $\rho_{\rm DW}(T_{\rm ann}) \approx V_{\rm bias}$.

$$T_{\rm ann} \propto \left(V_{\rm bias}^{1/4}\right)^2 / \left(\sigma^{1/3}\right)^{\frac{3}{2}}. \label{eq:Tann}$$

- V_{bias} is introduced as a free parameter.
- $T_{\rm ann} > T_{\rm BBN}$ gives lower bound on $V_{\rm bias}$.
- Upper bound from percolation: $\frac{V_{\text{bias}}}{V_0} > \ln\left(\frac{1-p_c}{p_c}\right)$

Constraints from the PTA signal

GW background from DLRSM DWs

• GWs are produced due to DW dynamics [Vilenkin, 1981],

$$h^2 \Omega_{\rm GW}^{\rm DW}(f) \simeq 10^{-10} \tilde{\epsilon}_{\rm GW} \left(\frac{10.75}{g_*(T_{\rm ann})}\right)^{\frac{1}{3}} \left(\frac{\alpha_*}{0.01}\right)^2 S\left(\frac{f}{f_p^0}\right),$$
$$\alpha_* = \frac{\rho_{\rm DW}(T_{\rm ann})}{\rho_{\rm rad}(T_{\rm ann})}$$

- We perform MCMC using PTArcade over the NG15 data $\mathcal{H}_1: \quad h^2 \Omega^{\text{DW}}_{\text{GW}}(f; v_0, \rho_1, \rho_2, V_{\text{bias}}).$
- DLRSM DW model is considered with and without SMBHB contibution.

$$h^{2}\Omega_{\rm GW}^{\rm BHB}(f) = \frac{2\pi^{2}h^{2}A_{\rm BHB}^{2}}{3H_{0}^{2}} \left(\frac{f}{f_{\rm yr}}\right)^{5-\gamma_{\rm BHB}} f_{\rm yr}^{2},$$

 $\mathcal{H}_2: \quad h^2 \Omega_{\mathrm{GW}}^{\mathrm{DW}}(f; v_0, \rho_1, \rho_2, V_{\mathrm{bias}}) + h^2 \Omega_{\mathrm{GW}}^{\mathrm{BHB}}(f; A_{\mathrm{BHB}}, \gamma_{\mathrm{bhb}}).$

• If energy loss is purely due to GWs, $\gamma_{BHB} = 13/3$.

Results

• For DLRSM DW, the central values are, $v_0 = 4.36 \times 10^5 \text{ GeV}, \text{ V}_{\text{bias}} = 3.31 \times 10^{-4} \text{ GeV}^4.$

Parameter	Uniform prior range	Maximum Posterior		68% credible interval	
		\mathcal{H}_1	\mathcal{H}_2	\mathcal{H}_1	\mathcal{H}_2
$\log_{10} v_0/{ m GeV}$	[4, 8]	5.63	5.66	[5.52, 5.77]	[5.52, 5.79]
$\log_{10}~V_{\rm bias}/{\rm GeV^4}$	[-5, -1]	-3.47	-3.37	$\left[-3.90,-3.05\right]$	[-3.82, -2.91]
$\log_{10} \rho_1$	[-2.5, 0.5]	-0.77	-1.00	$\left[-1.90,-0.35\right]$	[-1.76, -0.23]
ρ_2	[0, 10]	6.55	6.50	[2.88, 9.16]	[3.03, 9.23]
$\log_{10} A_{\rm BHB}$	-	-	-15.44	-	$\left[-15.97, -15.02 ight]$
$\gamma_{\rm BHB}$	-	-	4.69	-	[4.35, 5.04]

NG15 is fitted with DLRSM DWs, will be detected in SKA, $\mu {\rm Ares},$ LISA, BBO and DECIGO.

- GWs from DLRSM DWs can source the PTA signal.
- There are two kinds of DWs in the initial DW network.
- Z_2 DWs have higher σ , and quickly decay into LR DWs.
- We performed Bayesian analysis using the NG15 data, for parameter estimation.
- If true, the signal would also be detected by upcoming GW detectors.
- The techniques used can be similarly applied to TLRSM.

Thank You!

GW spectrum and collider probes

• Non-runaway scenario: $h^2 \Omega_{\rm GW} \approx h^2 \Omega_{\rm sw} + h^2 \Omega_{\rm turb}$.

Left: GW spectra for 6 benchmark points. Right: Detectable points for $v_R = 20$ TeV.

- GW favours $\rho_1 \lesssim \mathcal{O}(10^{-1})$, i.e. light H_3 .
- FCC-hh at $\sqrt{s} = 100$ TeV with $\sigma \sim \mathcal{O}(fb)$ can rule out m_{H_3} upto 2 TeV. [DeV, 2016]
- HE-LHC, CLIC₃₀₀₀, and FCC-hh will improve sensitivity of κ_h to ~ 20%, 10%, and 5% respectively. Will rule out large number of points. [Dev, 2016]

Neutrino masses in DLRSM

