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malization [2]. In this work, we focus on symmetries, which shape the modern understanding of

developed turbulence: the Galilean and spatiotemporal scaling groups [3, 4]. Symmetry consid-

erations are central in Kolmogorov’s theory of 1941 [5], which assumes a homogeneous, isotropic

and scale invariant stationary state. These symmetries are understood in the statistical sense, i.e.,

being satisfied by probabilistic quantities rather than exact solutions of equations of motion. This

is an important distinction, since probabilistic formulations may lead to additional symmetries; see

e.g. [6–9]. Whether or not, and in which sense solutions are symmetric is an important issue, both

for the theory and applications. For example, the broken scale invariance of statistically stationary

solutions underlines the still not well understood phenomenon of intermittency in turbulence [3].

In this work, we investigate the particular role of symmetries that do not commute with the

flow (evolution) operator �t. The two fundamental symmetries of this kind are temporal scalings

and Galilean transformations. Their commutation with �t relates states at di↵erent times or

translated in physical space. We prove that such noncommutativity is responsible for the existence

of sophisticated “hidden” symmetries of statistical solutions: these symmetries are broken in the

original formulation but can be restored using equivalence relations.

A. Spatiotemporal symmetries

Let us introduce a group of space-time symmetries of interest by examining the Euler system,

which describes a flow of ideal incompressible fluid. Its equations have the form

@u

@t
+ u ·ru = �rp, r · u = 0, (I.1)

where u(r, t) 2 Rd is the velocity field and p(r, t) 2 R is the pressure in physical space r 2 Rd of

dimension d. Given a solution u(r, t) the following relations generate new solutions as

temporal translation: u(r, t) 7! u(r, t0 + t), t
0
2 R;

spatial translation: u(r, t) 7! u(r+ r0, t), r0 2 Rd;

rotation: u(r, t) 7! Q�1u(Qr, t), Q 2 O(d);

Galilean transformation: u(r, t) 7! u(r+ vt, t)� v, v 2 Rd;

temporal scaling: u(r, t) 7! u(r, t/a)/a, a > 0;

spatial scaling: u(r, t) 7! bu(r/b, t), b > 0,

(I.2)

where O(d) is the orthogonal group; the pressure is not included because it can be expressed through

velocity [3]. Transformations (I.2) generate the sum of Galilean and spatiotemporal scaling groups.
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TABLE I. Commutation relations among the flow �t and symmetry mappings (I.3); the primes are dropped

for simplicity. In these relations, the left-hand side is understood as (row map) � (column map) and the

right-hand side is given in the main part of the table. For the diagonal elements, one assumes the index 1

for the row and 2 for the column.

We now write transformations (I.2) in terms of the evolution operator (flow) �t and mappings

acting on velocity fields at a fixed time. In this description, points of the configuration space X

are time-independent velocity fields x = u(r), and the flow �t : X 7! X relates velocity fields at

di↵erent times with the property �t1+t2 = �t1 ��t2 for any t1 and t2. The flow �t is associated with

temporal translations, and remaining relations in (I.2) taken at t = 0 yield the maps s : X 7! X as

s
r0
s : u(r) 7! u(r+ r0), r0 2 Rd

, (spatial translation)

s
Q
r : u(r) 7! Q�1u(Qr), Q 2 O(d), (rotation)

s
v
g : u(r) 7! u(r)� v, v 2 Rd

, (Galilean transformation)

s
a
ts : u(r) 7! u(r)/a, a > 0, (temporal scaling)

s
b
ss : u(r) 7! bu(r/b), b > 0. (spatial scaling)

(I.3)

Table I describes commutation relations for the flow �t and all mappings in (I.3) in agreement

with time-dependent transformations (I.2). In our study, we consider Tab. I as a definition: we

assume the existence of flow �t and other maps from Tab. I acting on some configuration space X

and generating a group with the composition operation. This definition is based on fundamental

physical properties of space and time, and it helps to bypass the issue of lacking the global-in-time

existence and uniqueness results for particular systems of interest [10, 11], which are necessary for

introducing a flow (or semiflow) operator.

Focusing on statistical properties of the flow, we consider an invariant probability measure µ

11

FIG. 2. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

Ets(x). The equivalence relation x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not

equivalent as shown by the dotted line. The equivalence can be restored by choosing a di↵erent time t0 = at

for x
0. Such construction is introduced globally by synchronizing the flow with respect to a representative

set Y, which contains a single state from every equivalence class. This yields a normalized flow  ⌧ in Y.

Hence, the equivalence relation is not preserved by the flow: the states �t(x) and �t(x0) are

generally not equivalent at the same time t > 0. However, the equivalence can be restored by

considering a di↵erent time t
0 = at for the state x

0, which yields �t
0
(x0) ⇠ �t(x); see Fig. 2. Such

time synchronization requires a choice of a representative element x in the equivalence class, and

can be introduced globally using a representative set consisting of these elements.

Definition 2. We call Y ⇢ X a representative set (with respect to the group Hts), if the following

properties are satisfied. For any x 2 X , there exists a unique value a = A(x) > 0 such that

h
a(x) 2 Y. The function A : X 7! R+ is measurable with

R
Adµ < 1.

Thus, a representative set Y contains a single state within every equivalence class. From Defi-

nition 2 and relation (II.3) it follows that the function A(x) has the property

A � h
a(x) =

A(x)

a
, A(y) = 1 (II.9)

for any h
a
2 Hts, x 2 X and y 2 Y. We introduce a measurable projector P : X 7! Y as

P (x) = h
A(x)(x). (II.10)

We will need the following known property of invariant measures under a change of time.

Proposition 1 ([14]). For a positive measurable function A(x), one can introduce a new flow �⌧

A

with a new time ⌧ 2 R defined by the relations

�⌧

A(x) = �
t(x), ⌧ =

Z
t

0
A � �s(x)ds. (II.11)

Configuration space:

Flow (evolution) operator:
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D. Structure of the paper

In Section II, we consider a simpler quotient construction by excluding Galilean transformations,

i.e., the equivalence relation is considered only with respect to temporal scalings. We introduce

the representative set Y, the normalized flow  ⌧ , the invariant normalized measure ⌫ and the

group action g?, and investigate their basic properties. In Section III, this procedure is carried out

explicitly for a shell model of turbulence, providing the evidence of hidden scaling symmetry.

Section IV presents our central application. It shows that the hidden scaling symmetry implies

asymptotic scaling laws for structure functions. The scaling exponents are obtained in terms of

Perron–Frobenius eigenvalues by exploiting the symmetry of the normalized measure ⌫. The results

are confirmed numerically for anomalous exponents of intermittent statistics in a shell model.

Section V develops a quotient construction for the equivalence relation with respect to Galilean

transformations. We show that this construction is possible assuming additional properties of the

measure µ. Remarkably, these properties have the physical meaning of spatial homogeneity and

incompressibility, and the resulting normalized system is analogous to a mixed Lagrangian–Eulerian

description in fluid dynamics. In Section VI, we develop the final quotient construction, in which

the equivalence takes into account both Galilean transformations and temporal scalings. We show

how this construction can be applied to the study of turbulence in the Euler and Navier–Stokes

systems. The Conclusion section contains a short summary. Some technical details of numerical

simulations are gathered in the Appendix.

II. QUOTIENT CONSTRUCTION WITH TEMPORAL SCALINGS

Let us consider an infinite-dimensional probability measure space (X ,⌃, µ) with a flow operator

�t : X 7! X . By definition [14], the flow �t is a one-parameter group of one-to-one measurable

maps such that �t1 � �t2 = �t1+t2 for all times; the flow is also measurable as a function of

(x, t) 2 X ⇥ R. We will use the following notions.

Definition 1. A probability measure µ is said to be invariant for the flow �t if the push-forward

(image) �t

]
µ = µ for all times. We call a one-to-one measurable map s : X 7! X symmetry, if

the invariance of a measure µ implies the invariance of s]µ. A set of symmetries s 2 S with a

group operation given by composition s1 � s2 is called a symmetry group. A measure µ is said to be
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i.e., the equivalence relation is considered only with respect to temporal scalings. We introduce

the representative set Y, the normalized flow  ⌧ , the invariant normalized measure ⌫ and the

group action g?, and investigate their basic properties. In Section III, this procedure is carried out

explicitly for a shell model of turbulence, providing the evidence of hidden scaling symmetry.

Section IV presents our central application. It shows that the hidden scaling symmetry implies

asymptotic scaling laws for structure functions. The scaling exponents are obtained in terms of

Perron–Frobenius eigenvalues by exploiting the symmetry of the normalized measure ⌫. The results

are confirmed numerically for anomalous exponents of intermittent statistics in a shell model.

Section V develops a quotient construction for the equivalence relation with respect to Galilean

transformations. We show that this construction is possible assuming additional properties of the

measure µ. Remarkably, these properties have the physical meaning of spatial homogeneity and

incompressibility, and the resulting normalized system is analogous to a mixed Lagrangian–Eulerian

description in fluid dynamics. In Section VI, we develop the final quotient construction, in which

the equivalence takes into account both Galilean transformations and temporal scalings. We show

how this construction can be applied to the study of turbulence in the Euler and Navier–Stokes

systems. The Conclusion section contains a short summary. Some technical details of numerical

simulations are gathered in the Appendix.
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TABLE I. Commutation relations among the flow �t and symmetry mappings (I.3); the primes are dropped

for simplicity. In these relations, the left-hand side is understood as (row map) � (column map) and the

right-hand side is given in the main part of the table. For the diagonal elements, one assumes the index 1

for the row and 2 for the column.

We now write transformations (I.2) in terms of the evolution operator (flow) �t and mappings

acting on velocity fields at a fixed time. In this description, points of the configuration space X

are time-independent velocity fields x = u(r), and the flow �t : X 7! X relates velocity fields at

di↵erent times with the property �t1+t2 = �t1 ��t2 for any t1 and t2. The flow �t is associated with

temporal translations, and remaining relations in (I.2) taken at t = 0 yield the maps s : X 7! X as

s
r0
s : u(r) 7! u(r+ r0), r0 2 Rd

, (spatial translation)

s
Q
r : u(r) 7! Q�1u(Qr), Q 2 O(d), (rotation)

s
v
g : u(r) 7! u(r)� v, v 2 Rd

, (Galilean transformation)

s
a
ts : u(r) 7! u(r)/a, a > 0, (temporal scaling)

s
b
ss : u(r) 7! bu(r/b), b > 0. (spatial scaling)

(I.3)

Table I describes commutation relations for the flow �t and all mappings in (I.3) in agreement

with time-dependent transformations (I.2). In our study, we consider Tab. I as a definition: we

assume the existence of flow �t and other maps from Tab. I acting on some configuration space X

and generating a group with the composition operation. This definition is based on fundamental

physical properties of space and time, and it helps to bypass the issue of lacking the global-in-time

existence and uniqueness results for particular systems of interest [10, 11], which are necessary for

introducing a flow (or semiflow) operator.

Focusing on statistical properties of the flow, we consider an invariant probability measure µ

Existence of the flow operator and commutation relations are our central assumptions. 
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Symmetries not commuting with the flow

Galilean transformation temporal scaling



Part 1:  
Quotient construction with respect to temporal scalings 

(not taking into account Galilean transformations)



Symmetries

Symmetry group: 

10

We emphasize that symmetries in this definition are understood in the statistical sense: they

are defined through their action on invariant probability measures. This, in particular, implies

that symmetries do not necessarily commute with the flow �t.

We will always assume that the measure µ is invariant. In this section, we consider a symmetry

group given by a direct sum

S = Hts + G. (II.1)

Here Hts is a one-parameter group of temporal scalings

Hts =
�
s
a

ts : a > 0
 
. (II.2)

We will adopt the shorter notation h
a = s

a
ts. We assume that elements h

a
2 Hts and g 2 G are

one-to-one measurable maps in X satisfying the commutation relations

h
a1 � h

a2 = h
a1a2 , (II.3)

�t
� g = g � �t

, g � h
a = h

a
� g, (II.4)

�t
� h

a = h
a
� �t/a

. (II.5)

Using these relations, it is straightforward to check that any element s 2 S is a symmetry in

the sense of Definition 1. Relations (II.3)–(II.5) are all we need to know about the symmetry

group. The group G can be taken in the form (I.5), containing compositions of spatial rotations

and scalings. In this case relations (II.3)–(II.5) coincide with those in Tab. I. Notice that Galilean

transformations will not be considered until Section V.

A. Normalized flow and invariant measure

Let us consider the equivalence relation with respect to temporal scalings Hts as

x ⇠ x
0 if x

0 = h
a(x), a > 0. (II.6)

For each x 2 X , this relation defines the equivalence class

Ets(x) = {x
0
2 X : x0 ⇠ x}. (II.7)

Because of commutation relation (II.5), for the equivalent states (II.6) we have

�at(x0) = h
a
� �t(x). (II.8)
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TABLE I. Commutation relations among the flow �t and symmetry mappings (I.3); the primes are dropped

for simplicity. In these relations, the left-hand side is understood as (row map) � (column map) and the

right-hand side is given in the main part of the table. For the diagonal elements, one assumes the index 1

for the row and 2 for the column.

We now write transformations (I.2) in terms of the evolution operator (flow) �t and mappings

acting on velocity fields at a fixed time. In this description, points of the configuration space X

are time-independent velocity fields x = u(r), and the flow �t : X 7! X relates velocity fields at

di↵erent times with the property �t1+t2 = �t1 ��t2 for any t1 and t2. The flow �t is associated with

temporal translations, and remaining relations in (I.2) taken at t = 0 yield the maps s : X 7! X as

s
r0
s : u(r) 7! u(r+ r0), r0 2 Rd

, (spatial translation)
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Q
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(I.3)

Table I describes commutation relations for the flow �t and all mappings in (I.3) in agreement

with time-dependent transformations (I.2). In our study, we consider Tab. I as a definition: we

assume the existence of flow �t and other maps from Tab. I acting on some configuration space X

and generating a group with the composition operation. This definition is based on fundamental

physical properties of space and time, and it helps to bypass the issue of lacking the global-in-time

existence and uniqueness results for particular systems of interest [10, 11], which are necessary for

introducing a flow (or semiflow) operator.

Focusing on statistical properties of the flow, we consider an invariant probability measure µ

on the configuration space X . The invariance signifies that the push-forward �t
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µ = µ for any
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TABLE I. Commutation relations among the flow �t and symmetry mappings (I.3); the primes are dropped

for simplicity. In these relations, the left-hand side is understood as (row map) � (column map) and the

right-hand side is given in the main part of the table. For the diagonal elements, one assumes the index 1

for the row and 2 for the column.

We now write transformations (I.2) in terms of the evolution operator (flow) �t and mappings

acting on velocity fields at a fixed time. In this description, points of the configuration space X

are time-independent velocity fields x = u(r), and the flow �t : X 7! X relates velocity fields at

di↵erent times with the property �t1+t2 = �t1 ��t2 for any t1 and t2. The flow �t is associated with

temporal translations, and remaining relations in (I.2) taken at t = 0 yield the maps s : X 7! X as

s
r0
s : u(r) 7! u(r+ r0), r0 2 Rd

, (spatial translation)

s
Q
r : u(r) 7! Q�1u(Qr), Q 2 O(d), (rotation)

s
v
g : u(r) 7! u(r)� v, v 2 Rd

, (Galilean transformation)

s
a
ts : u(r) 7! u(r)/a, a > 0, (temporal scaling)

s
b
ss : u(r) 7! bu(r/b), b > 0. (spatial scaling)

(I.3)

Table I describes commutation relations for the flow �t and all mappings in (I.3) in agreement

with time-dependent transformations (I.2). In our study, we consider Tab. I as a definition: we

assume the existence of flow �t and other maps from Tab. I acting on some configuration space X

and generating a group with the composition operation. This definition is based on fundamental

physical properties of space and time, and it helps to bypass the issue of lacking the global-in-time

existence and uniqueness results for particular systems of interest [10, 11], which are necessary for

introducing a flow (or semiflow) operator.

Focusing on statistical properties of the flow, we consider an invariant probability measure µ

on the configuration space X . The invariance signifies that the push-forward �t

]
µ = µ for any
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We emphasize that symmetries in this definition are understood in the statistical sense: they

are defined through their action on invariant probability measures. This, in particular, implies

that symmetries do not necessarily commute with the flow �t.

We will always assume that the measure µ is invariant. In this section, we consider a symmetry

group given by a direct sum

S = Hts + G. (II.1)

Here Hts is a one-parameter group of temporal scalings

Hts =
�
s
a

ts : a > 0
 
. (II.2)

We will adopt the shorter notation h
a = s

a
ts. We assume that elements h

a
2 Hts and g 2 G are

one-to-one measurable maps in X satisfying the commutation relations

h
a1 � h

a2 = h
a1a2 , (II.3)

�t
� g = g � �t

, g � h
a = h

a
� g, (II.4)

�t
� h

a = h
a
� �t/a

. (II.5)

Using these relations, it is straightforward to check that any element s 2 S is a symmetry in

the sense of Definition 1. Relations (II.3)–(II.5) are all we need to know about the symmetry

group. The group G can be taken in the form (I.5), containing compositions of spatial rotations

and scalings. In this case relations (II.3)–(II.5) coincide with those in Tab. I. Notice that Galilean

transformations will not be considered until Section V.

A. Normalized flow and invariant measure

Let us consider the equivalence relation with respect to temporal scalings Hts as

x ⇠ x
0 if x

0 = h
a(x), a > 0. (II.6)

For each x 2 X , this relation defines the equivalence class

Ets(x) = {x
0
2 X : x0 ⇠ x}. (II.7)

Because of commutation relation (II.5), for the equivalent states (II.6) we have

�at(x0) = h
a
� �t(x). (II.8)
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FIG. 1. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

with respect to the symmetry group H. (a) Due to noncommutativity with the flow, the equivalence relation

x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not equivalent. (b) The equivalence can be

“repaired” by choosing a specific time t
0 and an extra spatial translation s

r
s , fitting the initially equivalent

states x ⇠ x
0 into the equivalence class of �t(x) at a later time. Such construction can be introduced globally

by synchronizing the flow with respect to a representative set Y, which contains a single state from every

equivalence class. This construction induces the dynamics in Y governed by a new normalized flow  ⌧ .

for x0 = h(x) with a general element h = s
a
ts � s

v
g of the group (I.4). Thus, all initially equivalent

states x ⇠ x
0 are fit into the same equivalence class at larger times, if one assumes the specific

time synchronization t
0 = at and the extra spatial translation r = �vt for each x

0, as shown in

Fig. 1(b). This construction is determined by a selected representative element x, with respect to

which all other equivalent states are “synchronized”.

In this paper, we develop such a quotient-like construction globally in the configuration space

X by introducing a representative set Y ⇢ X , which contains a single element y 2 Y within each

equivalence class E(x); see Fig. 1(b). As a result, we reduce the original dynamical system in

X to the dynamical system in Y, which we call the normalized system. We prove the following

properties of this construction:

• There is a normalized flow  ⌧ : Y 7! Y on the representative set, which is induced by �t

and the equivalence relation (I.6); see Fig. 1(b).

• The normalized flow  ⌧ has the invariant measure ⌫, which is explicitly related to the original

invariant measure µ.

Equivalence is not flow-invariant!

quotient space
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FIG. 2. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

Ets(x). The equivalence relation x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not

equivalent as shown by the dotted line. The equivalence can be restored by choosing a di↵erent time t0 = at

for x
0. Such construction is introduced globally by synchronizing the flow with respect to a representative

set Y, which contains a single state from every equivalence class. This yields a normalized flow  ⌧ in Y.

Hence, the equivalence relation is not preserved by the flow: the states �t(x) and �t(x0) are

generally not equivalent at the same time t > 0. However, the equivalence can be restored by

considering a di↵erent time t
0 = at for the state x

0, which yields �t
0
(x0) ⇠ �t(x); see Fig. 2. Such

time synchronization requires a choice of a representative element x in the equivalence class, and

can be introduced globally using a representative set consisting of these elements.

Definition 2. We call Y ⇢ X a representative set (with respect to the group Hts), if the following

properties are satisfied. For any x 2 X , there exists a unique value a = A(x) > 0 such that

h
a(x) 2 Y. The function A : X 7! R+ is measurable with

R
Adµ < 1.

Thus, a representative set Y contains a single state within every equivalence class. From Defi-

nition 2 and relation (II.3) it follows that the function A(x) has the property

A � h
a(x) =

A(x)

a
, A(y) = 1 (II.9)

for any h
a
2 Hts, x 2 X and y 2 Y. We introduce a measurable projector P : X 7! Y as

P (x) = h
A(x)(x). (II.10)

We will need the following known property of invariant measures under a change of time.

Proposition 1 ([14]). For a positive measurable function A(x), one can introduce a new flow �⌧

A

with a new time ⌧ 2 R defined by the relations

�⌧

A(x) = �
t(x), ⌧ =

Z
t

0
A � �s(x)ds. (II.11)
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Properties: Projector:
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We will always assume that the measure µ is invariant. In this section, we consider a symmetry

group given by a direct sum
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We will adopt the shorter notation h
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ts. We assume that elements h
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2 Hts and g 2 G are

one-to-one measurable maps in X satisfying the commutation relations
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a = h

a
� g, (II.4)
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Using these relations, it is straightforward to check that any element s 2 S is a symmetry in

the sense of Definition 1. Relations (II.3)–(II.5) are all we need to know about the symmetry

group. The group G can be taken in the form (I.5), containing compositions of spatial rotations

and scalings. In this case relations (II.3)–(II.5) coincide with those in Tab. I. Notice that Galilean

transformations will not be considered until Section V.

A. Normalized flow and invariant measure

Let us consider the equivalence relation with respect to temporal scalings Hts as

x ⇠ x
0 if x

0 = h
a(x), a > 0. (II.6)

For each x 2 X , this relation defines the equivalence class

Ets(x) = {x
0
2 X : x0 ⇠ x}. (II.7)

Because of commutation relation (II.5), for the equivalent states (II.6) we have

�at(x0) = h
a
� �t(x). (II.8)
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FIG. 2. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

Ets(x). The equivalence relation x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not

equivalent as shown by the dotted line. The equivalence can be restored by choosing a di↵erent time t0 = at

for x
0. Such construction is introduced globally by synchronizing the flow with respect to a representative

set Y, which contains a single state from every equivalence class. This yields a normalized flow  ⌧ in Y.

Hence, the equivalence relation is not preserved by the flow: the states �t(x) and �t(x0) are

generally not equivalent at the same time t > 0. However, the equivalence can be restored by

considering a di↵erent time t
0 = at for the state x

0, which yields �t
0
(x0) ⇠ �t(x); see Fig. 2. Such

time synchronization requires a choice of a representative element x in the equivalence class, and

can be introduced globally using a representative set consisting of these elements.

Definition 2. We call Y ⇢ X a representative set (with respect to the group Hts), if the following

properties are satisfied. For any x 2 X , there exists a unique value a = A(x) > 0 such that

h
a(x) 2 Y. The function A : X 7! R+ is measurable with

R
Adµ < 1.

Thus, a representative set Y contains a single state within every equivalence class. From Defi-

nition 2 and relation (II.3) it follows that the function A(x) has the property

A � h
a(x) =

A(x)

a
, A(y) = 1 (II.9)

for any h
a
2 Hts, x 2 X and y 2 Y. We introduce a measurable projector P : X 7! Y as

P (x) = h
A(x)(x). (II.10)

We will need the following known property of invariant measures under a change of time.

Proposition 1 ([14]). For a positive measurable function A(x), one can introduce a new flow �⌧

A

with a new time ⌧ 2 R defined by the relations

�⌧

A(x) = �
t(x), ⌧ =

Z
t

0
A � �s(x)ds. (II.11)12

The flow �⌧

A
has the invariant measure µA, which is absolutely continuous with respect to µ as

dµA

dµ
=

A(x)R
Adµ

. (II.12)

We adopt the subscript notation µA for transformation (II.12) from now on. In (II.11), the

function A(x) plays the role of a “relative speed” between the original and new times. By con-

struction, µA is a probability measure. For consecutive changes of time with relative speeds A1(x)

and A2(x), one can verify the relations

(µA1)A2 = µA, A(x) = A1(x)A2(x). (II.13)

We now normalize the system by reducing the dynamics to the representative set Y. This is the

central part of our construction, which yields a normalized flow  ⌧ and a corresponding normalized

measure ⌫ on Y by synchronizing the original time t in X with the time ⌧ in Y; see Fig. 2.

Theorem 1. The map

 ⌧ (y) = P � �⌧

A(y) (II.14)

with y 2 Y defines a flow in the representative set. It has the invariant probability measure

⌫ = P]µA. (II.15)

For all proofs, see Subsection IIC. Notice that the invariance of measure (II.15) is not a trivial
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by �⌧

A
restricted to Y. The important property of ⌫ is that it is not a↵ected by temporal scalings:
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a
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µ with a > 0 yield the same normalized measure

⌫ = P]eµA by Theorem 1.

In applications, one often explores statistical properties of a system using test functions (also

called observables), which are averaged with respect to time for particular solutions or with respect

to statistical ensembles. Let us consider measurable functions ' : X 7! R for the original system

and  : Y 7! R for the normalized system. We introduce their temporal and ensemble averages as

h'it(x) = lim
t!1

1

t

Z
t

0
' � �s(x) ds, h'iµ =

Z
' dµ, (II.16)

h i⌧ (y) = lim
⌧!1

1

⌧

Z
⌧

0
 � �(y) d�, h i⌫ =

Z
 d⌫, (II.17)

where the limits are assumed to exist; in general, the temporal averages depend on the initial state

x or y.

12

The flow �⌧

A
has the invariant measure µA, which is absolutely continuous with respect to µ as

dµA

dµ
=

A(x)R
Adµ

. (II.12)

We adopt the subscript notation µA for transformation (II.12) from now on. In (II.11), the

function A(x) plays the role of a “relative speed” between the original and new times. By con-

struction, µA is a probability measure. For consecutive changes of time with relative speeds A1(x)

and A2(x), one can verify the relations

(µA1)A2 = µA, A(x) = A1(x)A2(x). (II.13)

We now normalize the system by reducing the dynamics to the representative set Y. This is the

central part of our construction, which yields a normalized flow  ⌧ and a corresponding normalized

measure ⌫ on Y by synchronizing the original time t in X with the time ⌧ in Y; see Fig. 2.

Theorem 1. The map

 ⌧ (y) = P � �⌧

A(y) (II.14)

with y 2 Y defines a flow in the representative set. It has the invariant probability measure

⌫ = P]µA. (II.15)

For all proofs, see Subsection IIC. Notice that the invariance of measure (II.15) is not a trivial

fact, because it depends on the measure µA on the full space X while the flow (II.14) is determined

by �⌧

A
restricted to Y. The important property of ⌫ is that it is not a↵ected by temporal scalings:

Proposition 2. All invariant measures eµ = h
a

]
µ with a > 0 yield the same normalized measure

⌫ = P]eµA by Theorem 1.

In applications, one often explores statistical properties of a system using test functions (also

called observables), which are averaged with respect to time for particular solutions or with respect

to statistical ensembles. Let us consider measurable functions ' : X 7! R for the original system

and  : Y 7! R for the normalized system. We introduce their temporal and ensemble averages as

h'it(x) = lim
t!1

1

t

Z
t

0
' � �s(x) ds, h'iµ =

Z
' dµ, (II.16)

h i⌧ (y) = lim
⌧!1

1

⌧

Z
⌧

0
 � �(y) d�, h i⌫ =

Z
 d⌫, (II.17)

where the limits are assumed to exist; in general, the temporal averages depend on the initial state

x or y.
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Normalized flow and invariant measure

The proof uses commutation relations and properties of push-forward measures.
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Proposition 3. For averages (II.16) and (II.17) the following relations hold

h i⌧ (y) =
h'it(x)

hAit(x)
, h i⌫ =

h'iµ

hAiµ
, (II.18)

where y = P (x), '(x) =  �P (x)A(x), and averages of A(x) are assumed to be finite and nonzero.

This Proposition shows that both temporal and ensemble averages of any observable  (y) in the

normalized system are related to respective averages of the observable '(x) in the original system.

Hence, the normalized system inherits some of ergodic properties of the original flow: if temporal

and ensemble averages are equal for '(x) and A(x) in the original system, the same is true for

 (y) in the normalized system. Recall that, in the definition of SRB (physical) measures [15], such

equality is assumed for almost all initial states and bounded continuous test functions.

B. Symmetries of the normalized measure

Here are going to extend the symmetry group G to the normalized system. First, let us establish

the action of symmetries on the normalized measure ⌫.

Theorem 2. Consider invariant measures µ and g]µ of the flow �t for some g 2 G. We denote

by ⌫ and g?⌫ the corresponding invariant measures of the flow  ⌧ given by Theorem 1. Then,

g?⌫ = (P � g)]⌫C , C = A � g, (II.19)

where ⌫C is an absolutely continuous measure with respect to ⌫ such that

d⌫C

d⌫
=

C(y)R
Cd⌫

. (II.20)

Here (II.20) is the change-of-time transformation (II.12), which is applied to the normalized

measure ⌫. In the following, we assume
R
Cd⌫ =

R
A � g d⌫ < 1 for all g 2 G, implying that all

measures g?⌫ exist. By Theorem 2, elements of the group G define transformations of normalized

invariant measures through the relation ⌫ 7! g?⌫, which is a normalized counterpart of the push-

forward µ 7! g]µ for the original measure. Therefore, g? preserves the group structure:

Corollary 1. For any g and g
0
2 G, we have

(g0 � g)?⌫ = g
0
?

�
g?⌫

�
, (II.21)

where the action of g? is defined by (II.19) and (II.20).

<latexit sha1_base64="1yU6uS3aaiYS2o/kGKSrn2ZRJAY="></latexit>

For any g and g0 2 G we have (g0 � g)?⌫ = g0?(g?⌫).
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We say that the normalized measure ⌫ is symmetric with respect to g if g?⌫ = ⌫. Combining

Proposition 2 and Theorem 2, we see that this relation is not sensitive to temporal scalings:

Corollary 2. If the measure µ is symmetric with respect to a composition g � h
a for some g 2 G

and h
a
2 Hts, then the normalized measure ⌫ is symmetric with respect to g:

(g � ha)]µ = µ ) g?⌫ = ⌫. (II.22)

We see that the normalized system inherits the symmetry group G in the statistical sense. As

explained in Section IC, this yields a “hidden” form of the symmetry: ⌫ can be symmetric while µ

is not. For example, this is the case when µ is a sum of measures symmetric with respect to g � h
a

with distinct a.

A specific form of the normalized system depends on a choice of the representative set Y. The

next statement ensures that all choices are equivalent as far as the symmetry of the normalized

measure is concerned.

Theorem 3. Assume that the normalized measure ⌫ from Theorem 1 is symmetric with respect to

g 2 G for some representative set: g?⌫ = ⌫. Then the same is true for any representative set.

It is useful to express g?⌫ in terms of the original measure µ.

Proposition 4. Under conditions of Theorem 2, the following relation holds:

g?⌫ = (P � g)]µC . (II.23)

In conclusion, we developed a quotient-like construction for the flow �t with respect to the

group of temporal scalings Hts. It yields the normalized flow  ⌧ with the normalized invariant

measure ⌫, which are not sensitive to temporal scalings. Symmetries of the remaining group G

persist in the form of transformations g?⌫ for normalized invariant measures.

C. Proofs of Theorems 1–3 and Propositions 2–4

We will need the following lemmas:

Lemma 1. For any measurable map f : X 7! X and positive measurable functions B : X 7! R+

and B
0 : X 7! R+ the following relations hold:

(f]µ)B = f] µB�f , (II.24)

(f]µB)B0 = f]µF , F = (B0
� f)B. (II.25)

Hidden statistical scaling symmetry:

7

• The group (I.5) defines statistical symmetries in the normalized system. We introduce a

transformation ⌫ 7! g?⌫ for any g 2 G, akin to the push-forward. This transformation

preserves the group structure and the invariance of a measure with respect to  ⌧ .

• For any given h 2 H and g 2 G, the symmetry of µ implies the symmetry of ⌫ in the form

(g � h)]µ = µ ) g?⌫ = ⌫. (I.10)

• The property of statistical symmetry, g?⌫ = ⌫ for a given element g 2 G, does not depend

on a choice of the representative set Y.

Notice that the transformation from original to normalized system is time-dependent. In general,

such transformations do not preserve statistical properties, e.g. the measure invariance. In fact,

the listed properties follow in a nontrivial way from the specific commutation relations of Tab. I.

C. Hidden symmetries, multifractality, intermittency and sweeping e↵ects

The main motivation and application of the developed construction is related to the interplay

between statistical symmetries in the original and normalized systems. For understanding a general

idea, let us consider a probability measure µ
a with the symmetry property

(g � ha)]µ
a = µ

a
, (I.11)

where g = s
b
ss with b = 2 corresponds to the change of spatial scales by a factor of two, and we

set h
a = s

a
ts to be the temporal scaling with a given factor a. Using relations (I.2) and (I.3) for

velocity fields, this symmetry can be associated with the spatiotemporal scaling transformation of

the form

u(r, t) 7! 21�↵ u

✓
r

2
,
t

2↵

◆
, (I.12)

where ↵ = log2 a. According to (I.10), we have

g?⌫
a = ⌫

a
. (I.13)

Considering the measures ⌫a and µ
a for some set of di↵erent values of a, we define their sums

µ =
X

a

µ
a
, ⌫ =

X

a

⌫
a
. (I.14)
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Example: Shell model of turbulence

Full system:
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kn = 2n
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III. HIDDEN SCALING SYMMETRY IN A SHELL MODEL OF TURBULENCE

In this section we consider a popular toy-model, called a shell model, which mimics turbulent

dynamics of incompressible three-dimensional Navier–Stokes equations [16–18]. It is represented by

complex variables un 2 C called shell velocities and indexed by integer shell numbers n. Shell ve-

locities are interpreted as amplitudes of velocity fluctuations at wavenumbers kn = 2n. Thus, small

wavenumbers (smaller n) describe large-scale motion and large wavenumbers (larger n) correspond

to small-scale dynamics. Equations of motion are constructed in analogy with the Navier–Stokes

system (preserving some of its symmetries and global inviscid invariants) and take the form [19]

dun

dt
= Bn � Re�1

k
2
nun + fn, n � 0. (III.1)

Here Bn is the quadratic nonlinear term

Bn =

8
>>>><

>>>>:

i(kn+1un+2u
⇤
n+1 � kn�1un+1u

⇤
n�1 + kn�2un�1un�2), n > 1;

i(k2u3u⇤2 � k0u2u
⇤
0), n = 1;

ik1u2u
⇤
1, n = 0,

(III.2)

where n = 0 and 1 are “boundary” shell numbers, i is the imaginary unit, and the asterisks denote

complex conjugation. We consider constant (time independent) forcing terms fn, which are nonzero

only for the boundary shells n = 0 and 1. Equations (III.1) are written in non-dimensional form

with characteristic integral scales set to unity. The viscous term Re�1
k
2
nun is multiplied by the

inverse of the dimensionless Reynolds number Re > 0.

Along with (III.1), we consider a shell model for the Euler equations of ideal flow. It is given

by the equations

dun

dt
= i

�
kn+1un+2u

⇤
n+1 � kn�1un+1u

⇤
n�1 + kn�2un�1un�2

�
, n 2 Z, (III.3)

where variables un are introduced for all integer shell numbers n. Equations (III.3) are obtained

from (III.1) and (III.2) for n > 1 after removing the forcing and viscous terms. We refer to [20] for

analytical properties of equations (III.1)–(III.3), including the issues of existence and uniqueness

of solutions.

A. Symmetries

In this subsection, we present the formal analysis of scaling symmetries for the ideal system

(III.3). The state variable x = (un)n2Z consists of all shell velocities. We assume the existence
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Ideal (inviscid, unforced) system:
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of solutions.

A. Symmetries

In this subsection, we present the formal analysis of scaling symmetries for the ideal system

(III.3). The state variable x = (un)n2Z consists of all shell velocities. We assume the existence
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of a flow �t : X 7! X in a properly defined configuration space x 2 X . Having a solution
�
un(t)

�
n2Z = �t(x) of (III.3), new solutions are given by

temporal scaling: un(t) 7! un(t/a)/a, a > 0;

spatial scaling: un(t) 7! kmun+m(t), m 2 Z.
(III.4)

In terms of the state x considered at initial time t = 0, relations (III.4) define the mappings

h
a : X 7! X and g

m : X 7! X acting on each shell velocity as

x
0 = h

a(x), u
0
n = un/a, a > 0; (III.5)

x
0 = g

m(x), u
0
n = kmun+m, m 2 Z. (III.6)

Notice that ha1 � ha2 = h
a1a2 and g

m1 � g
m2 = g

m1+m2 . These maps generate the two groups

Hts = {h
a : a > 0}, G = {g

m : m 2 Z}. (III.7)

We will write g
1 = g, which represents the primary spatial scaling with the unitary change of shell

numbers n 7! n+ 1. It is straightforward to see from (III.4)–(III.6) that the flow �t and elements

of the groups Hts and G satisfy composition and commutation relations (II.3)–(II.5). Hence the

theory of Section II applies to the shell model.

B. Normalized system

The representative set Y is defined by a positive function A(x) satisfying the homogeneity

property (II.9). Given x =
�
un

�
n2Z 2 X the corresponding representative state y =

�
Un

�
n2Z 2 Y

is determined by the projector (II.10) as

y = P (x), Un =
un

A(x)
. (III.8)

As an example, we consider

A(x) =

sX

n<0

k2n|un|
2. (III.9)

For turbulent solutions, the sum in (III.9) converges as a geometric progression with the main

contribution from the largest (close to zero) shells numbers [21].

Given a solution
�
un(t)

�
n2Z = �t(x) of system (III.3), we now derive formally the equations

for the normalized solution
�
Un(⌧)

�
n2Z =  ⌧ (y). The normalized flow is defined by Theorem 1 as

 ⌧ = P � �⌧

A
, which depends on the synchronized time given by expression (II.11) as

⌧ =

Z
t

0
A � �s(x) ds. (III.10)

shells

wavenumber

shell velocities viscosity forcing
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We emphasize that symmetries in this definition are understood in the statistical sense: they

are defined through their action on invariant probability measures. This, in particular, implies

that symmetries do not necessarily commute with the flow �t.

We will always assume that the measure µ is invariant. In this section, we consider a symmetry

group given by a direct sum

S = Hts + G. (II.1)

Here Hts is a one-parameter group of temporal scalings

Hts =
�
s
a

ts : a > 0
 
. (II.2)

We will adopt the shorter notation h
a = s

a
ts. We assume that elements h

a
2 Hts and g 2 G are

one-to-one measurable maps in X satisfying the commutation relations

h
a1 � h

a2 = h
a1a2 , (II.3)

�t
� g = g � �t

, g � h
a = h

a
� g, (II.4)

�t
� h

a = h
a
� �t/a

. (II.5)

Using these relations, it is straightforward to check that any element s 2 S is a symmetry in

the sense of Definition 1. Relations (II.3)–(II.5) are all we need to know about the symmetry

group. The group G can be taken in the form (I.5), containing compositions of spatial rotations

and scalings. In this case relations (II.3)–(II.5) coincide with those in Tab. I. Notice that Galilean

transformations will not be considered until Section V.

A. Normalized flow and invariant measure

Let us consider the equivalence relation with respect to temporal scalings Hts as

x ⇠ x
0 if x

0 = h
a(x), a > 0. (II.6)

For each x 2 X , this relation defines the equivalence class

Ets(x) = {x
0
2 X : x0 ⇠ x}. (II.7)

Because of commutation relation (II.5), for the equivalent states (II.6) we have

�at(x0) = h
a
� �t(x). (II.8)
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of a flow �t : X 7! X in a properly defined configuration space x 2 X . Having a solution
�
un(t)

�
n2Z = �t(x) of (III.3), new solutions are given by

temporal scaling: un(t) 7! un(t/a)/a, a > 0;

spatial scaling: un(t) 7! kmun+m(t), m 2 Z.
(III.4)

In terms of the state x considered at initial time t = 0, relations (III.4) define the mappings

h
a : X 7! X and g

m : X 7! X acting on each shell velocity as

x
0 = h

a(x), u
0
n = un/a, a > 0; (III.5)

x
0 = g

m(x), u
0
n = kmun+m, m 2 Z. (III.6)

Notice that ha1 � ha2 = h
a1a2 and g

m1 � g
m2 = g

m1+m2 . These maps generate the two groups

Hts = {h
a : a > 0}, G = {g

m : m 2 Z}. (III.7)

We will write g
1 = g, which represents the primary spatial scaling with the unitary change of shell

numbers n 7! n+ 1. It is straightforward to see from (III.4)–(III.6) that the flow �t and elements

of the groups Hts and G satisfy composition and commutation relations (II.3)–(II.5). Hence the

theory of Section II applies to the shell model.

B. Normalized system

The representative set Y is defined by a positive function A(x) satisfying the homogeneity

property (II.9). Given x =
�
un

�
n2Z 2 X the corresponding representative state y =

�
Un

�
n2Z 2 Y

is determined by the projector (II.10) as

y = P (x), Un =
un

A(x)
. (III.8)

As an example, we consider

A(x) =

sX

n<0

k2n|un|
2. (III.9)

For turbulent solutions, the sum in (III.9) converges as a geometric progression with the main

contribution from the largest (close to zero) shells numbers [21].

Given a solution
�
un(t)

�
n2Z = �t(x) of system (III.3), we now derive formally the equations

for the normalized solution
�
Un(⌧)

�
n2Z =  ⌧ (y). The normalized flow is defined by Theorem 1 as

 ⌧ = P � �⌧

A
, which depends on the synchronized time given by expression (II.11) as

⌧ =

Z
t

0
A � �s(x) ds. (III.10)

Equation of motion for the normalized system:
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]

dUn

d⌧
= i

�
kn+1Un+2U

⇤
n+1 � kn�1Un+1U

⇤
n�1 + kn�2Un�1Un�2

�

+Un

X

j<0

k
3
j

⇣
2⇡j+1 �

⇡j

2
�

⇡j�1

4

⌘
, ⇡j = Im

�
U

⇤
j�1U

⇤
j Uj+1

�
.

(III.11)

These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1

on the representative set is written using (III.9) as

X

n<0

k
2
n|Un|

2 = 1. (III.12)

One can check that this condition is invariant for system (III.11).

Now let us analyze statistical symmetries of the normalized system. By Theorem 1, the invariant

measure µ of the flow �t in the original system (III.3) yields the invariant measure

⌫ = P]µA (III.13)

of the flow  ⌧ in the normalized system (III.11). For any scaling map g
m

2 G, Theorem 2 and

Proposition 4 yield the new invariant normalized measure as

g
m

? ⌫ = (P � g
m)]⌫C = (P � g

m)]µC , C = A � g
m
. (III.14)

The transformation ⌫ 7! g?⌫ can be associated with changes of variables. Indeed, expressions

(III.14) imply transformations of state and time in the form

y 7! y
(m) = P � g

m(y) = P � g
m(x),

d⌧ 7! d⌧
(m) = A � g

m(y) d⌧ = A � g
m(x) dt.

(III.15)

Using normalized shell velocities (III.8) and the scaling map from (III.6), the first relation of (III.15)

is written as

Un 7! U
(m)
n =

kmUn+m

A � gm(y)
=

kmun+m

A � gm(x)
. (III.16)

Using (III.6), (III.9) and (III.12), we derive

A � g
m(y) =

sX

n<m

k2n|Un|
2 =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
1 +

X

0n<m

k
2
n|Un|

2

◆1/2

, m > 0;

1, m = 0;

✓
1�

X

mn<0

k
2
n|Un|

2

◆1/2

, m < 0;

(III.17)
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]
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These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1

on the representative set is written using (III.9) as
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One can check that this condition is invariant for system (III.11).
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]
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These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1
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One can check that this condition is invariant for system (III.11).
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]
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These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1

on the representative set is written using (III.9) as

X

n<0

k
2
n|Un|

2 = 1. (III.12)

One can check that this condition is invariant for system (III.11).
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Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]

dUn

d⌧
= i

�
kn+1Un+2U

⇤
n+1 � kn�1Un+1U

⇤
n�1 + kn�2Un�1Un�2

�

+Un

X

j<0

k
3
j

⇣
2⇡j+1 �

⇡j

2
�

⇡j�1

4

⌘
, ⇡j = Im

�
U

⇤
j�1U

⇤
j Uj+1

�
.

(III.11)

These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1
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One can check that this condition is invariant for system (III.11).
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measure µ of the flow �t in the original system (III.3) yields the invariant measure

⌫ = P]µA (III.13)

of the flow  ⌧ in the normalized system (III.11). For any scaling map g
m

2 G, Theorem 2 and

Proposition 4 yield the new invariant normalized measure as

g
m

? ⌫ = (P � g
m)]⌫C = (P � g

m)]µC , C = A � g
m
. (III.14)

The transformation ⌫ 7! g?⌫ can be associated with changes of variables. Indeed, expressions

(III.14) imply transformations of state and time in the form

y 7! y
(m) = P � g

m(y) = P � g
m(x),

d⌧ 7! d⌧
(m) = A � g

m(y) d⌧ = A � g
m(x) dt.

(III.15)

Using normalized shell velocities (III.8) and the scaling map from (III.6), the first relation of (III.15)

is written as

Un 7! U
(m)
n =

kmUn+m

A � gm(y)
=

kmun+m

A � gm(x)
. (III.16)

Using (III.6), (III.9) and (III.12), we derive

A � g
m(y) =

sX

n<m

k2n|Un|
2 =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
1 +

X

0n<m

k
2
n|Un|

2
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, m > 0;

1, m = 0;
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n|Un|

2
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, m < 0;

(III.17)

(exact nonlinear symmetry of the normalized system)

Representative states (generalized multipliers) and change of time:

20

of a flow �t : X 7! X in a properly defined configuration space x 2 X . Having a solution
�
un(t)

�
n2Z = �t(x) of (III.3), new solutions are given by

temporal scaling: un(t) 7! un(t/a)/a, a > 0;

spatial scaling: un(t) 7! kmun+m(t), m 2 Z.
(III.4)

In terms of the state x considered at initial time t = 0, relations (III.4) define the mappings

h
a : X 7! X and g

m : X 7! X acting on each shell velocity as

x
0 = h

a(x), u
0
n = un/a, a > 0; (III.5)

x
0 = g

m(x), u
0
n = kmun+m, m 2 Z. (III.6)

Notice that ha1 � ha2 = h
a1a2 and g

m1 � g
m2 = g

m1+m2 . These maps generate the two groups

Hts = {h
a : a > 0}, G = {g

m : m 2 Z}. (III.7)

We will write g
1 = g, which represents the primary spatial scaling with the unitary change of shell

numbers n 7! n+ 1. It is straightforward to see from (III.4)–(III.6) that the flow �t and elements

of the groups Hts and G satisfy composition and commutation relations (II.3)–(II.5). Hence the

theory of Section II applies to the shell model.

B. Normalized system

The representative set Y is defined by a positive function A(x) satisfying the homogeneity

property (II.9). Given x =
�
un

�
n2Z 2 X the corresponding representative state y =

�
Un

�
n2Z 2 Y

is determined by the projector (II.10) as

y = P (x), Un =
un

A(x)
. (III.8)

As an example, we consider

A(x) =

sX

n<0

k2n|un|
2. (III.9)

For turbulent solutions, the sum in (III.9) converges as a geometric progression with the main

contribution from the largest (close to zero) shells numbers [21].

Given a solution
�
un(t)

�
n2Z = �t(x) of system (III.3), we now derive formally the equations

for the normalized solution
�
Un(⌧)

�
n2Z =  ⌧ (y). The normalized flow is defined by Theorem 1 as

 ⌧ = P � �⌧

A
, which depends on the synchronized time given by expression (II.11) as

⌧ =

Z
t

0
A � �s(x) ds. (III.10)
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FIG. 1. (a) Typical evolution of the squared amplitude for
the shell velocity in the inertial interval, |un|2 with n = 20.
(b) Evolution of the respective rescaled variable, |U0(⌧)|2 =
k2
mT 2

m|um|2 for the same reference shell m = 20. Intermittent
fluctuations are regularized as a result of dynamical temporal
scaling. For details of the simulation, see later in the text.

the transformations t, un 7! ↵
1�h

t,↵
h
un+s, where h 2 R

and ↵ = �
�s takes discrete values with arbitrary inte-

ger s such that kn/↵ = kn+s. According to the multi-
fractal theory [3], the intermittent turbulence in Sabra
model develops motions with a continuous range of ex-
ponents h, therefore, breaking scale invariance in the
inertial interval. Such intermittency manifests itself in
temporal fluctuations of velocities: short streaks of fast
large-amplitude oscillations are separated by long periods
of slow motion, becoming more and more pronounced at
smaller scales; see Fig. 1(a). The intermittency is quan-
tified by the scaling of time-averaged velocity moments,
h|un|pi / k

�⇣p
n , with anomalous exponents ⇣p depend-

ing nonlinearly on p in close agreement with structure
functions in hydrodynamic turbulence [10].

Intrinsic times and rescaled velocities. The cen-
tral idea is to cope with the intermittency by adjust-
ing temporal scales dynamically, according to the mo-
mentary intensity of motion at every scale. Feasibility
of such dynamical scaling relies on its combination with
the translational temporal symmetry, such that di↵erent
scaling laws are introduced locally at di↵erent times and
scales. As we shall see, this results in nonlinear and time-
dependent relations defining a new form of exact scaling
symmetry for the inviscid equations.

Let us consider some reference shell m within the in-
ertial interval. We introduce the momentary temporal
scale associated to this shell as

Tm(t) =
⇣
k
2
0U

2 +
X

n<m

k
2
n|un(t)|2

⌘�1/2
. (3)

One can see that this expression can be interpreted as
a local turnover time at shell m and time t. Indeed,

since the time-averaged structure function h|un|2i / k
�⇣2
n

has the scaling exponent ⇣2 ⇡ 0.72 [10], the sum in (3)
converges as a geometric progression with the dominant
contribution from shells close to m. Extra terms in the
sum play a regularizing role, ensuring that Tm is not
singular when some shell velocities accidentally take very
small values.
We now introduce the dimensionless time and shell ve-

locity, whose scales are adjusted dynamically as

⌧ =

Z t

0

dt
0

Tm(t0)
, UN = kmTm(t)uN+m(t), (4)

with integer indices N > �m. Note that the new time
⌧ is a nonlinear solution-dependent function of physical
time t, designed such that its increments d⌧ = dt/Tm

are calibrated with the momentary temporal scale Tm(t).
We call ⌧ the intrinsic time at shell m, and consider re-
lations (4) as implicit definition of the rescaled shell ve-
locity UN (⌧). A numerical example of this new function
is presented in Fig. 1(b), obtained from the original vari-
ables in Fig. 1(a). Since the dynamical temporal scale Tm

follows local intermittent changes at shell m, the result-
ing rescaled velocity displays regular fluctuations with
typical periods and amplitudes of order unity.
Rescaled variables UN (⌧) are uniquely expressed by (4)

in terms of original velocities un(t). In this paragraph we
verify that the converse is also true. Let us assume that
all variables UN (⌧) are known for some reference shell m.
Then, we derive rescaled variables (4) corresponding to
the next reference shell m+ = m+ 1 in the form

⌧
+ =

Z ⌧

0

q
1 +

��U0

��2d⌧, U+
N =

2UN+1p
1 + |U0|2

, (5)

as one can check using (3). Similarly, the rescaled
variables corresponding to the previous reference shell
m

� = m� 1 are found as

⌧
� =

Z ⌧

0

r
1� |U�1|2

4
d⌧, U�

N =
UN�1p

4� |U�1|2
. (6)

These formulas can be used iteratively to define one-to-
one relations between representations (4) introduced for
any pair of reference shells m and m

0. In particular,
for m

0 = 1, expressions (3)–(4) yield ⌧
0 = k0Ut and

U 0
N = �uN+1/U , therefore, providing the original func-

tions un(t) through linear scaling. One can say that for-
mulas (5)–(6) introduce a hierarchy of intrinsic times and
rescaled velocities associated to di↵erent scales of motion.
System (2) in the inviscid unforced case (⌫ = 0 and

fn = 0) is written for the dimensionless variables (4) as

dUN

d⌧
= i

⇣
kN+1UN+2 U⇤

N+1 �
1

2
kNUN+1U⇤

N�1

+
1

2
kN�1UN�1UN�2

⌘
+ ⇠ UN ,

(7)

n = 20

m = 20



Hidden symmetry: numerical tests

Scaling symmetries in the normalized system:

21

Using expressions (III.8)–(III.10) in (III.3), after a long but elementary derivation one obtains [21]

dUn

d⌧
= i

�
kn+1Un+2U

⇤
n+1 � kn�1Un+1U

⇤
n�1 + kn�2Un�1Un�2

�

+Un

X

j<0

k
3
j

⇣
2⇡j+1 �

⇡j

2
�

⇡j�1

4

⌘
, ⇡j = Im

�
U

⇤
j�1U

⇤
j Uj+1

�
.

(III.11)

These are equations satisfied by solutions Un(⌧) of the normalized system. The condition A(y) = 1

on the representative set is written using (III.9) as

X

n<0

k
2
n|Un|

2 = 1. (III.12)

One can check that this condition is invariant for system (III.11).

Now let us analyze statistical symmetries of the normalized system. By Theorem 1, the invariant

measure µ of the flow �t in the original system (III.3) yields the invariant measure

⌫ = P]µA (III.13)

of the flow  ⌧ in the normalized system (III.11). For any scaling map g
m

2 G, Theorem 2 and

Proposition 4 yield the new invariant normalized measure as

g
m

? ⌫ = (P � g
m)]⌫C = (P � g

m)]µC , C = A � g
m
. (III.14)

The transformation ⌫ 7! g?⌫ can be associated with changes of variables. Indeed, expressions

(III.14) imply transformations of state and time in the form

y 7! y
(m) = P � g

m(y) = P � g
m(x),

d⌧ 7! d⌧
(m) = A � g

m(y) d⌧ = A � g
m(x) dt.

(III.15)

Using normalized shell velocities (III.8) and the scaling map from (III.6), the first relation of (III.15)

is written as

Un 7! U
(m)
n =

kmUn+m

A � gm(y)
=

kmun+m

A � gm(x)
. (III.16)

Using (III.6), (III.9) and (III.12), we derive

A � g
m(y) =

sX

n<m

k2n|Un|
2 =

8
>>>>>>>>>><

>>>>>>>>>>:

✓
1 +

X

0n<m

k
2
n|Un|

2

◆1/2

, m > 0;

1, m = 0;

✓
1�

X

mn<0

k
2
n|Un|

2

◆1/2

, m < 0;

(III.17)
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(III.17)

the statistics of                       is universal: 

independent of m  in the inertial interval.
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FIG. 4. PDFs of real parts of normalized and scaled shell velocities U
(m)
�2 , U (m)

�1 , U (m)
0 and U

(m)
1 (green,

blue, black and red) computed numerically. For each velocity, ten PDFs are shown for m = 12, . . . , 21 in

the inertial range. The collapse of PDFs onto a single profile verifies the hidden scaling symmetry.
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FIG. 5. PDFs for real parts of (a) self-similar normalized velocity U
(m)
0 and (b) the shell velocities rescaled

according to the Kolmogorov theory as k1/3m um and demonstrating a symmetry breaking. Both figures show

numerical results for m = 12, . . . , 21. The insets present the same graphs with a vertical logarithmic scale.

terms of normalized shell velocities (III.16) as

um+1

um
=

U
(m)
1

U
(m)
0

. (III.26)

According to our numerical observations, the right-hand side in (III.26) has a universal (indepen-

dent of m) statistics with respect to time ⌧
(m) due to the hidden scaling symmetry. In fact, the

right-hand side in (III.26) can also be replaced by U
(m�j)
j+1 /U

(m�j)
j

for any integer j. This relates

the earlier results on universal statistics of multipliers with the hidden scaling symmetry.
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Results for

24

Notice that (III.25) follows from (III.24) and the group property (II.21) in Corollary 1. We

consider the convergence in (III.24) as a conjecture. Despite we are unable to prove it (the limit

of high Reynolds numbers is still not well understood for the shell model), the hidden scaling

symmetry can be tested by numerical simulations.

D. Numerical results

Here we present a brief account of numerical results supporting the conjecture of hidden scaling

symmetry; we refer to [21] for further details on numerical simulations and statistical analysis. For

approximating the limit (III.24), we took the very high Reynolds number Re = 2.5⇥ 1011 leading

to the large inertial interval 1 ⌧ km ⌧ Re3/4 ⇡ k28. Equations (III.1) and (III.2) with the forcing

terms f0 = 2f1 and f1 = 1+i were integrated numerically for the variables u0, . . . , u39 (with un = 0

for n � 40) in the large time interval 0  t  100.

Statistical properties of the normalized measure g
m
? ⌫

Re from (III.23) can be accessed using

Proposition 3, which relates averages in the original and normalized system; see (II.16)–(II.18). The

results presented below are obtained by means of temporal averages, assuming that the temporal

and statistical ensemble averages are equal (ergodicity property); the latter is a usual though not

rigorously proven assumption. Using relations of Section III B, analysis of the normalized measure

g
m
? ⌫

Re reduces to computing temporal averages of the normalized and scaled shell velocities U (m)
n as

functions of the normalized and scaled times ⌧ (m). Since the Reynold number is already taken very

large, we test the convergence of the limit (III.24) by verifying that probability density functions

(PDFs) of the variables U (m)
n do not depend on m in the inertial interval.

Figure 4 shows PDFs for the normalized velocities U (m)
�2 , U (m)

�1 , U (m)
0 and U

(m)
1 for ten di↵erent

values m = 12, . . . , 21 chosen in the central part of the inertial interval. The coincidence of curves

for di↵erent m provides a clear evidence of convergence. Figure 5 compares PDFs for U
(m)
0 with

PDFs for the rescaled variables k
1/3
m um considered in the Kolmogorov theory [3, 18]; see also

(III.20) and the related discussion in Section III C. While Fig. 5(a) confirms self-similarity for

the normalized variable U
(m)
0 up to numerical fluctuations, Fig. 5(b) demonstrates the symmetry

breaking (a persistent drift of PDFs with a change of m).

The hidden scaling symmetry reveals an interesting connection with so-called Kolmogorov mul-

tipliers [22, 23]. For the shell model, these multipliers are defined as ratios um+1/um. Using

numerical simulations, statistics of the Kolmogorov multipliers was shown to be universal [24, 25],

i.e., independent of the shell number m in the inertial range. The multipliers can be expressed in
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functions of the normalized and scaled times ⌧ (m). Since the Reynold number is already taken very

large, we test the convergence of the limit (III.24) by verifying that probability density functions

(PDFs) of the variables U (m)
n do not depend on m in the inertial interval.

Figure 4 shows PDFs for the normalized velocities U (m)
�2 , U (m)

�1 , U (m)
0 and U

(m)
1 for ten di↵erent

values m = 12, . . . , 21 chosen in the central part of the inertial interval. The coincidence of curves

for di↵erent m provides a clear evidence of convergence. Figure 5 compares PDFs for U
(m)
0 with

PDFs for the rescaled variables k
1/3
m um considered in the Kolmogorov theory [3, 18]; see also

(III.20) and the related discussion in Section III C. While Fig. 5(a) confirms self-similarity for

the normalized variable U
(m)
0 up to numerical fluctuations, Fig. 5(b) demonstrates the symmetry

breaking (a persistent drift of PDFs with a change of m).

The hidden scaling symmetry reveals an interesting connection with so-called Kolmogorov mul-

tipliers [22, 23]. For the shell model, these multipliers are defined as ratios um+1/um. Using

numerical simulations, statistics of the Kolmogorov multipliers was shown to be universal [24, 25],

i.e., independent of the shell number m in the inertial range. The multipliers can be expressed in

<latexit sha1_base64="9R9jeaJOWAKfpJndG4YdLtNl7uo="></latexit>

um+1

um
=

U (m)
1

U (m)
0

=
U (m�j)
j+1

U (m�j)
j

Universality of Kolmogorov multipliers

Hidden symmetry explains the universality of multipliers.

Hidden scaling symmetry:
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Structure functions

Usual definition:
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Since (g � ha)] and g? are linear measure transformations, and g does not depend on a, we deduce

from (I.11) and (I.13) that

(g � ha)]µ 6= µ, g?⌫ = ⌫ (I.15)

for any a. This means that the normalized measure ⌫ remains symmetric, while all symmetries of

the original measure are broken. This is what we call the hidden symmetry : a statistical symmetry

restored in the normalized system.

The measure µ from (I.14) with properties (I.11) and (I.12) resembles constructions of the

multifractal theory in turbulence [3, 12, 13]. This theory models an intermittent turbulent state as

a sum of statistical behaviours featuring di↵erent scaling laws (I.12) and supported in subspaces

of di↵erent fractal dimensions. Let us consider a structure function of order p defined as the

mean value Sp(`) = hk�`ukpi for a di↵erence of fluid velocities �`u = u(r0) � u(r) at a distance

` = kr0 � rk > 0. The multifractal statistics yields the asymptotic power law

Sp(`) / `
⇣p (I.16)

at small ` with the exponent ⇣p depending nonlinearly on p. Since the multifractal theory is

phenomenological and not derived from the original equations of fluid motion, an explanation of

these so-called anomalous power laws (I.16) remains one of central open problems in the theory of

hydrodynamic turbulence [3].

In this work, we derive asymptotic power laws (I.16) from the assumption of hidden scaling sym-

metry (I.15). This derivation provides formulas for the exponent ⇣p in terms of Perron–Frobenius

eigenvalues of operators constructed for the symmetric normalized measure ⌫. We show that the

resulting exponents ⇣p can be anomalous, i.e., depending nonlinearly on p. This leads us to the

conjecture that the developed turbulent state in the inertial interval (where the dynamics is gov-

erned by the Euler system) possesses a hidden scaling symmetry (I.15). This symmetry and its

implications are supported by numerical simulations for a simplified (shell) model of turbulence.

Finally, we mention the role of Galilean transformations in the equivalence relation of our

quotient construction. Galilean transformations yield a normalized system in the form analogous

to a mixed Lagrangian–Eulerian representation in fluid dynamics, i.e., describing the system in

a reference frame moving with a Lagrangian (fluid) particle. As a consequence, the quotient

construction removes the so-called sweeping e↵ect caused by a large-scale motion, the well-known

obstacle for describing statistical properties at small scales [3]. This makes the developed theory

applicable to real turbulence problems. Remarkably, our quotient construction imposes extra

algebraic conditions, one of which corresponds to incompressibility in fluid dynamics.
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Generalized definition:
<latexit sha1_base64="XBNAxZTTgiEu1Qpn+KPM/3ghaEc="></latexit>

Sp(`) = bp
Z

F � sbss dµ

scaling factor

spatial scaling
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F � sats(x) =
F (x)
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temporal scaling defines  
order of structure function

Usual definition follows for: 

We show that:

Hidden scaling symmetry yields asymptotic power law scaling:
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these so-called anomalous power laws (I.16) remains one of central open problems in the theory of

hydrodynamic turbulence [3].
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metry (I.15). This derivation provides formulas for the exponent ⇣p in terms of Perron–Frobenius

eigenvalues of operators constructed for the symmetric normalized measure ⌫. We show that the

resulting exponents ⇣p can be anomalous, i.e., depending nonlinearly on p. This leads us to the

conjecture that the developed turbulent state in the inertial interval (where the dynamics is gov-

erned by the Euler system) possesses a hidden scaling symmetry (I.15). This symmetry and its

implications are supported by numerical simulations for a simplified (shell) model of turbulence.

Finally, we mention the role of Galilean transformations in the equivalence relation of our

quotient construction. Galilean transformations yield a normalized system in the form analogous

to a mixed Lagrangian–Eulerian representation in fluid dynamics, i.e., describing the system in

a reference frame moving with a Lagrangian (fluid) particle. As a consequence, the quotient

construction removes the so-called sweeping e↵ect caused by a large-scale motion, the well-known

obstacle for describing statistical properties at small scales [3]. This makes the developed theory

applicable to real turbulence problems. Remarkably, our quotient construction imposes extra
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Scaling exponents are obtained as Perron-Frobenius eigenvalues of linear operators 
based on the hidden symmetry of the normalized measure

Scaling exponents can be anomalous

Numerical test for the shell model
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Using limits (IV.32) and (IV.35) with expressions (IV.25) and (IV.30), yields the structure function

asymptotically proportional to

Sp(kn) / R
n

p

Z
F (y) ⇢1(y�|y�) d�p dy�. (IV.36)

Notice that the limits in (IV.35) are considered here as assumptions, which are naturally related to

the hidden scaling symmetry. A precise formulation that guaranties the convergence would require

technical details depending on a specific system under consideration. Recalling that kn = 2n, we

obtain the following formula for scaling exponents in (IV.2).

Corollary 3. Assuming limits (IV.32) and (IV.35) and a finite positive value of the integral
Z

F (y) ⇢1(y�|y�) d�p dy�, (IV.37)

the structure function Sp has the asymptotic power law scaling (IV.2) in the inertial interval with

the exponent

⇣p = � log2Rp, (IV.38)

where Rp is the Perron–Frobenius eigenvalue; see (IV.34).

The important property of Corollary 3 is that exponents (IV.38) can be anomalous, i.e., de-

pending nonlinearly on p. One can see this with the following illustrative example. Consider

xn 2 X0 = R with the probability density ⇢
1(y0|y�) = ⇢(y0) independent of y�, and bA(x�) = |x�1|.

Integrating the measures in both sides of (IV.34) and using (IV.33) yields

2�p
Z

|y0|
p
⇢(y0) dy0 = Rp, (IV.39)

where we took into account that the push-forward does not change the integral, and bA � g (y ) =

|y0| following from (IV.13). Expression (IV.39) defines the Perron–Frobenius eigenvalues Rp

through moments of the probability density ⇢. The corresponding quantities ⇣p = � log2Rp are

known to be nonlinear functions of p in general, e.g., consider a normal distribution.

In summary, we see that normalized measures with a hidden scaling symmetry define scaling

exponents ⇣p in terms of Perron–Frobenius eigenvalues of the linear operators Lp. These exponents

may depend nonlinearly on p, i.e., be anomalous. Another consequence is that the exponents ⇣p

depend only on the homogeneity property (IV.5), i.e., they do not depend on a specific form of

function F . We note that, though the convergence assumptions of our theory will be di�cult to

prove for particular fluid models because of still restricted knowledge on the high Reynolds number

limit, they are accessible to numerical analysis.

Hidden symmetry:

7

• The group (I.5) defines statistical symmetries in the normalized system. We introduce a

transformation ⌫ 7! g?⌫ for any g 2 G, akin to the push-forward. This transformation

preserves the group structure and the invariance of a measure with respect to  ⌧ .

• For any given h 2 H and g 2 G, the symmetry of µ implies the symmetry of ⌫ in the form

(g � h)]µ = µ ) g?⌫ = ⌫. (I.10)

• The property of statistical symmetry, g?⌫ = ⌫ for a given element g 2 G, does not depend

on a choice of the representative set Y.

Notice that the transformation from original to normalized system is time-dependent. In general,

such transformations do not preserve statistical properties, e.g. the measure invariance. In fact,

the listed properties follow in a nontrivial way from the specific commutation relations of Tab. I.

C. Hidden symmetries, multifractality, intermittency and sweeping e↵ects

The main motivation and application of the developed construction is related to the interplay

between statistical symmetries in the original and normalized systems. For understanding a general

idea, let us consider a probability measure µ
a with the symmetry property

(g � ha)]µ
a = µ

a
, (I.11)

where g = s
b
ss with b = 2 corresponds to the change of spatial scales by a factor of two, and we

set h
a = s

a
ts to be the temporal scaling with a given factor a. Using relations (I.2) and (I.3) for

velocity fields, this symmetry can be associated with the spatiotemporal scaling transformation of

the form

u(r, t) 7! 21�↵ u

✓
r

2
,
t

2↵

◆
, (I.12)

where ↵ = log2 a. According to (I.10), we have

g?⌫
a = ⌫

a
. (I.13)

Considering the measures ⌫a and µ
a for some set of di↵erent values of a, we define their sums

µ =
X

a

µ
a
, ⌫ =

X

a

⌫
a
. (I.14)

Structure function are expressed as iterations  
of a positive operator in measure space:

30

Theorem 4. The structure function (IV.11) for n � 0 can be expressed in the form

Np(kn) =

Z
F (y) ⇢(n)(y�|y�) d�

(n)
dy�, (IV.25)

where �
(0) = ⌫

(0)
� and the measures �

(n) on Y� are defined iteratively as

�
(n+1) = L

(n)
p [�(n)]. (IV.26)

Here L
(n)
p is the linear operator acting on measures � on Y� as

L
(n)
p [�] = ( bP � g )]⇤, (IV.27)

where ⇤ is a measure on Y� ⇥ X0 given by the expression

d⇤(y ) = 2�p
⇣
bA � g (y )

⌘
p

⇢
(n)
 (y0|y�) d�(y�) dy0, y = (y�, y0) 2 Y� ⇥ X0. (IV.28)

C. Anomalous exponents as Perron–Frobenius eigenvalues

In this subsection, we show how the scaling power laws for structure functions appear as a

consequence of the hidden scaling symmetry. We establish this connection in two steps. First, we

relate the original (generalized) structure functions Sp from (IV.4) with the normalized structure

functions from (IV.11). Then, using the symmetry condition for the normalized measure, g?⌫ = ⌫,

and the iterative relation of Theorem 4, we derive the asymptotic power law scaling (IV.2) and

determine the respective exponents ⇣p.

Let us use the shell model from Section III as an example. System (III.1) describes the evolution

of shell variables un(t) for n � 0, where n = 0 corresponds to the largest scale (lowest wavenumber

k0 = 1) of the system. For the scaling analysis, we need to assign some values to the shell variables

with n < 0; see the crossed cells in Fig. 3. This is a purely formal procedure, because these

variables are removed in the limit m ! 1; see Fig. 3 and Definition 3 of the hidden scaling

symmetry. Therefore, we are free to set u�1 = 2 and un = 0 for n < �1, which yields the sum
P

n<0 k
2
n|un|

2 = 1. With such a choice the function A(x) from (III.9) takes the constant value

A(x) = 1 (IV.29)

for all states x of interest. According to Definition 2 and Theorem 1, this yields the trivial relation

for the normalized measure ⌫, which just coincides with µ. Hence, the structure functions (IV.4)

coincide with their normalized counterparts (IV.11):

Sp(kn) = Np(kn). (IV.30)
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We note that relation (IV.29) will be broken under the scaling: A� g
m(x) that describes the scaled

normalized system is already a nontrivial function; see Section III B.

One can imagine that the “trick” leading to (IV.29) and (IV.30) is applicable in other fluid

models, which possess the largest (so-called integral) scale. It is related to a proper artificial

extension of the state variable x to larger scales. Obviously, this extension does not a↵ect the

asymptotic scaling properties referring to small-scale dynamics.

Now we turn to the hidden scaling symmetry introduced in Definition 3 as the double limit

(III.24) in the inertial interval. This symmetry implies that the measure ⌫(n) from (IV.22) converges

to the self-similar measure ⌫1. Hence, the projected measures ⌫(n)� and ⌫
(n)
 from (IV.22) converge

to

⌫
1
� = (p�)]⌫

1
, ⌫

1
 = (p )]⌫

1
. (IV.31)

Also, it is natural to assume that analogous limits exist for conditional probabilities from (IV.23)

and (IV.24), i.e.,

lim
n!1

lim
Re!1

⇢
(n) = ⇢

1
, lim

n!1
lim

Re!1
⇢
(n)
 = ⇢

1
 . (IV.32)

We define the limiting operator Lp corresponding to (IV.27) and (IV.28) as

Lp[�] = ( bP � g )]⇤, d⇤(y ) = 2�p
⇣
bA � g (y )

⌘
p

⇢
1
 (y0|y�) d�(y�) dy0. (IV.33)

The operator Lp is linear and positive: it maps positive measures to positive measures. Hence, it

satisfies the Krein–Rutman theorem under proper assumptions of compactness; see [27, §19.5] for

a precise formulation. This theorem, generalizing the Perron–Frobenius theorem for matrices with

positive entries, proves the existence of the (maximum) Perron–Frobenius eigenvalue Rp > 0 with

a positive eigenvector (probability measure) �p satisfying the eigenvalue equation

Lp[�p] = Rp�p. (IV.34)

The eigenvalue Rp is simple and equal to the spectral radius of Lp. Under the assumption of strong

positivity [27, §19.5], absolute values of all other eigenvalues of Lp are smaller than Rp.

The properties just described imply that iterative procedure (IV.26) is governed by the limiting

operator Lp asymptotically for large n in the inertial interval. Hence, the measures �
(n) must

converge, up to a positive scalar factor, to the Perron–Frobenius eigenvector �p. In this case,

each iteration reduces to multiplication by the Perron–Frobenius eigenvalue Rp. Precisely, these

properties are formulated as

lim
n!1

lim
Re!1

�
(n)

R
d�(n)

= �p, lim
n!1

lim
Re!1

R
d�

(n+1)

R
d�(n)

= Rp. (IV.35)

Perron-Frobenius eigenvalue and eigenvector:



Numerical test Eigenvalue is obtained by integrating 
numerically the approximate operator       .             

with arbitrary positive initial measure. 
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1
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1
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1
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Also, it is natural to assume that analogous limits exist for conditional probabilities from (IV.23)

and (IV.24), i.e.,

lim
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We define the limiting operator Lp corresponding to (IV.27) and (IV.28) as
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The operator Lp is linear and positive: it maps positive measures to positive measures. Hence, it

satisfies the Krein–Rutman theorem under proper assumptions of compactness; see [27, §19.5] for

a precise formulation. This theorem, generalizing the Perron–Frobenius theorem for matrices with

positive entries, proves the existence of the (maximum) Perron–Frobenius eigenvalue Rp > 0 with

a positive eigenvector (probability measure) �p satisfying the eigenvalue equation

Lp[�p] = Rp�p. (IV.34)

The eigenvalue Rp is simple and equal to the spectral radius of Lp. Under the assumption of strong

positivity [27, §19.5], absolute values of all other eigenvalues of Lp are smaller than Rp.

The properties just described imply that iterative procedure (IV.26) is governed by the limiting

operator Lp asymptotically for large n in the inertial interval. Hence, the measures �
(n) must

converge, up to a positive scalar factor, to the Perron–Frobenius eigenvector �p. In this case,

each iteration reduces to multiplication by the Perron–Frobenius eigenvalue Rp. Precisely, these
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Approximation of            of order N corresponds to

approximated numerically using histograms.
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Noncommutativity and equivalence relation

group of temporal scalings and Galilean transformations

5

on the configuration space X . The invariance signifies that the push-forward �t

]
µ = µ for any

time. Then, we consider symmetries in the statistical sense, as transformations of µ preserving

its invariance. For example, one can see using the commutation relations of Tab. I that all maps

in (I.3), except for Galilean transformations, are symmetries: a push-forward of µ by these maps

yield invariant measures. Galilean transformations become symmetries under an extra homogeneity

condition for the invariant measure: (srs)] µ = µ for any translation r in physical space.

B. Quotient construction

Our study will be developed around the two groups

H =
�
s
a

ts � s
v
g : a > 0, v 2 Rd

 
, (I.4)

G =
�
s
Q
r � s

b

ss : Q 2 O(d), b > 0
 
. (I.5)

The group H contains maps h : X 7! X generated by temporal scalings and Galilean transforma-

tions, which do not commute with the flow; see Tab. I. The commutation of �t with s
a
ts leads to a

di↵erent time t/a, while the commutation of �t with s
v
g contains an extra spatial translation s

vt
s .

Maps g : X 7! X of the group G are generated by spatial rotations and scalings, which commute

with �t. Spatial translations srs , which are not included in H and G, will play an auxiliary role in

our study.

Using the group H, we define the equivalence relation between two states as

x ⇠ x
0 if x

0 = h(x), h 2 H. (I.6)

Equivalence classes

E(x) = {x
0
2 X : x0 ⇠ x} (I.7)

form a partition of the configuration space X . Because of noncommutativity, this partition is

not invariant with respect to the flow: generally, �t(x) and �t(x0) are not equivalent for initially

equivalent states x ⇠ x
0; see Fig. 1(a). However, due to the specific form of commutation relations,

the equivalence can be “repaired” as follows. Using relations of Tab. I, we have

s
�vt
s � �at

� s
a

ts � s
v
g = s

a

ts � s
v
g � �t

. (I.8)

Hence, we can write

s
r
s � �

t
0
(x0) = h � �t(x), t

0 = at, r = �vt, (I.9)
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FIG. 1. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

with respect to the symmetry group H. (a) Due to noncommutativity with the flow, the equivalence relation

x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not equivalent. (b) The equivalence can be

“repaired” by choosing a specific time t
0 and an extra spatial translation s

r
s , fitting the initially equivalent

states x ⇠ x
0 into the equivalence class of �t(x) at a later time. Such construction can be introduced globally

by synchronizing the flow with respect to a representative set Y, which contains a single state from every

equivalence class. This construction induces the dynamics in Y governed by a new normalized flow  ⌧ .

for x0 = h(x) with a general element h = s
a
ts � s

v
g of the group (I.4). Thus, all initially equivalent

states x ⇠ x
0 are fit into the same equivalence class at larger times, if one assumes the specific

time synchronization t
0 = at and the extra spatial translation r = �vt for each x

0, as shown in

Fig. 1(b). This construction is determined by a selected representative element x, with respect to

which all other equivalent states are “synchronized”.

In this paper, we develop such a quotient-like construction globally in the configuration space

X by introducing a representative set Y ⇢ X , which contains a single element y 2 Y within each

equivalence class E(x); see Fig. 1(b). As a result, we reduce the original dynamical system in

X to the dynamical system in Y, which we call the normalized system. We prove the following

properties of this construction:

• There is a normalized flow  ⌧ : Y 7! Y on the representative set, which is induced by �t

and the equivalence relation (I.6); see Fig. 1(b).

• The normalized flow  ⌧ has the invariant measure ⌫, which is explicitly related to the original

invariant measure µ.
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FIG. 1. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

with respect to the symmetry group H. (a) Due to noncommutativity with the flow, the equivalence relation

x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not equivalent. (b) The equivalence can be

“repaired” by choosing a specific time t
0 and an extra spatial translation s

r
s , fitting the initially equivalent

states x ⇠ x
0 into the equivalence class of �t(x) at a later time. Such construction can be introduced globally

by synchronizing the flow with respect to a representative set Y, which contains a single state from every

equivalence class. This construction induces the dynamics in Y governed by a new normalized flow  ⌧ .

for x0 = h(x) with a general element h = s
a
ts � s

v
g of the group (I.4). Thus, all initially equivalent

states x ⇠ x
0 are fit into the same equivalence class at larger times, if one assumes the specific

time synchronization t
0 = at and the extra spatial translation r = �vt for each x

0, as shown in

Fig. 1(b). This construction is determined by a selected representative element x, with respect to

which all other equivalent states are “synchronized”.

In this paper, we develop such a quotient-like construction globally in the configuration space

X by introducing a representative set Y ⇢ X , which contains a single element y 2 Y within each

equivalence class E(x); see Fig. 1(b). As a result, we reduce the original dynamical system in

X to the dynamical system in Y, which we call the normalized system. We prove the following

properties of this construction:

• There is a normalized flow  ⌧ : Y 7! Y on the representative set, which is induced by �t

and the equivalence relation (I.6); see Fig. 1(b).

• The normalized flow  ⌧ has the invariant measure ⌫, which is explicitly related to the original

invariant measure µ.

Equivalence is restored through time change and space shift 
synchronized with respect to a specific representative state 
in the equivalence class.

This can be done globally in configuration space by choosing 
a representative set                 containing a single element in 
each equivalence class.
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on the configuration space X . The invariance signifies that the push-forward �t

]
µ = µ for any

time. Then, we consider symmetries in the statistical sense, as transformations of µ preserving

its invariance. For example, one can see using the commutation relations of Tab. I that all maps

in (I.3), except for Galilean transformations, are symmetries: a push-forward of µ by these maps

yield invariant measures. Galilean transformations become symmetries under an extra homogeneity

condition for the invariant measure: (srs)] µ = µ for any translation r in physical space.

B. Quotient construction

Our study will be developed around the two groups

H =
�
s
a

ts � s
v
g : a > 0, v 2 Rd

 
, (I.4)

G =
�
s
Q
r � s

b

ss : Q 2 O(d), b > 0
 
. (I.5)

The group H contains maps h : X 7! X generated by temporal scalings and Galilean transforma-

tions, which do not commute with the flow; see Tab. I. The commutation of �t with s
a
ts leads to a

di↵erent time t/a, while the commutation of �t with s
v
g contains an extra spatial translation s

vt
s .

Maps g : X 7! X of the group G are generated by spatial rotations and scalings, which commute

with �t. Spatial translations srs , which are not included in H and G, will play an auxiliary role in

our study.

Using the group H, we define the equivalence relation between two states as

x ⇠ x
0 if x

0 = h(x), h 2 H. (I.6)

Equivalence classes

E(x) = {x
0
2 X : x0 ⇠ x} (I.7)

form a partition of the configuration space X . Because of noncommutativity, this partition is

not invariant with respect to the flow: generally, �t(x) and �t(x0) are not equivalent for initially

equivalent states x ⇠ x
0; see Fig. 1(a). However, due to the specific form of commutation relations,

the equivalence can be “repaired” as follows. Using relations of Tab. I, we have

s
�vt
s � �at

� s
a

ts � s
v
g = s

a

ts � s
v
g � �t

. (I.8)

Hence, we can write

s
r
s � �

t
0
(x0) = h � �t(x), t

0 = at, r = �vt, (I.9)

group of rotations and spatial scalings

7

• The group (I.5) defines statistical symmetries in the normalized system. We introduce a

transformation ⌫ 7! g?⌫ for any g 2 G, akin to the push-forward. This transformation

preserves the group structure and the invariance of a measure with respect to  ⌧ .

• For any given h 2 H and g 2 G, the symmetry of µ implies the symmetry of ⌫ in the form

(g � h)]µ = µ ) g?⌫ = ⌫. (I.10)

• The property of statistical symmetry, g?⌫ = ⌫ for a given element g 2 G, does not depend

on a choice of the representative set Y.

Notice that the transformation from original to normalized system is time-dependent. In general,

such transformations do not preserve statistical properties, e.g. the measure invariance. In fact,

the listed properties follow in a nontrivial way from the specific commutation relations of Tab. I.

C. Hidden symmetries, multifractality, intermittency and sweeping e↵ects

The main motivation and application of the developed construction is related to the interplay

between statistical symmetries in the original and normalized systems. For understanding a general

idea, let us consider a probability measure µ
a with the symmetry property

(g � ha)]µ
a = µ

a
, (I.11)

where g = s
b
ss with b = 2 corresponds to the change of spatial scales by a factor of two, and we

set h
a = s

a
ts to be the temporal scaling with a given factor a. Using relations (I.2) and (I.3) for

velocity fields, this symmetry can be associated with the spatiotemporal scaling transformation of

the form

u(r, t) 7! 21�↵ u

✓
r

2
,
t

2↵

◆
, (I.12)

where ↵ = log2 a. According to (I.10), we have

g?⌫
a = ⌫

a
. (I.13)

Considering the measures ⌫a and µ
a for some set of di↵erent values of a, we define their sums

µ =
X

a

µ
a
, ⌫ =

X

a

⌫
a
. (I.14)
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• Using Galilean transformations in the quotient construction requires extra conditions:  
• spatial homogeneity (required by the symmetry condition) 
• incompressibility (required for the existence of the normalized invariant measure)
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despite the original measure is not, i.e., g?⌫ = ⌫ while (g �h)]µ 6= µ for all h 2 H. As we discuss in

the next section, including Galilean transformations into the full quotient construction is crucial

for applications in fluid dynamics.

Similarly to Proposition 3 in Section IIA, we can express statistical averages in (II.17) for any

measurable test function  (y) in the normalized system through analogous averages (II.16) in the

original system. Using (VI.10), the derivation analogous to (II.45) yields

h i⌫ =
h'iµ

hA �Qiµ
, '(x) =  � P �Q(x)A �Q(x). (VI.13)

This identity relates ensemble averages like in the second equality of (II.18). We cannot generalize

the first equality in (II.18), which relates temporal averages for particular solutions. Technically,

this is because spatial translations are not among symmetries in our final normalized system. How-

ever, the relation between temporal averages may follow from (VI.13) assuming the ergodicity [14].

C. Application to the Euler system

Here present the quotient construction applied to the Euler system (I.1) that we started with

in Section IA. In this system velocity fields x = u(r) are considered as elements of a configuration

space X . We proceed formally by assuming the existence of a flow (evolution) operator �t : X 7! X ,

which satisfies the commutation relations of Tab. I with symmetry maps (I.3).

The full quotient construction of Section VIB requires two projectors (VI.4), and we denote

the respective velocity fields as

z = Q(x) = eu(r), y = P (z) = U(r). (VI.14)

As suggested earlier in Section VB, we define V(x) 2 Rd as the velocity vector at the origin:

V(x) = u(0). (VI.15)

Then, relations (VI.5) and (VI.6) with symmetries (I.3) yield

eu(r) = u(r)� u(0), U(r) =
u(r)� u(0)

A(z)
. (VI.16)

One can check that conditions (VI.7) are satisfied for V(x) from (VI.15) and A(z) being a positive-

homogeneous function of degree 1, i.e. A(↵z) = ↵A(z) for ↵ > 0. For example, one can take

A(z) =

✓Z
K(r) keu(r)k2 dr

◆1/2

, (VI.17)
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where K : R+ 7! R+ is some positive function vanishing (or decaying rapidly) at large r = krk.

The Euler system (I.1) already includes the incompressibility condition. Under extra assump-

tions of homogeneity and periodicity, Theorem 7 yields the normalized flow  ⌧ . This flow has

the invariant measure ⌫, which describes the probability distribution of normalized velocity fields

y = U(r) and is given explicitly in terms of the original distribution µ for x = u(r). Also, sym-

metries of the group G (rotations and spatial scalings) extend to the normalized system in the

statistical sense: they generate invariant measures g?⌫ for the flow  ⌧ . In applications, invariant

probability measures are usually accessed with the ergodicity hypothesis, which allows substituting

averages with respect to a measure by averages with respect to time. For this purpose, it is useful

to have explicit relations between solutions for di↵erent flows. We devote the rest of this subsection

to this issue.

Let �t(x) = u(r, t) be the velocity field describing a solution with the initial condition x = u(r)

at t = 0. Similarly, we denote by ⌦t(z) = eu(r, t) the velocity field generated by the flow (VI.9). As

we explained in Sections VB and VC, the field eu(r, t) is obtained by following the original system

in the reference frame moving along a Lagrangian trajectory r = Rt(x). Thus, we have

eu(r, t) = u
�
Rt + r, t

�
� u

�
Rt

, t
�
, (VI.18)

where Rt is defined by equations (V.8) and (V.13) as

dRt

dt
= u(Rt

, t), R0 = 0. (VI.19)

One can also derive these relations directly from expressions (VI.9) and (VI.16) with the help of

identity (V.26) and commutation relations of Tab. I for symmetries (I.3). The final velocity field

 ⌧ (y) = U(r, ⌧) of the normalized flow (VI.8) is obtained as

U(r, ⌧) =
eu(r, t)
az(t)

, ⌧ =

Z
t

0
az(s) ds, az(t) = A � ⌦t(z), (VI.20)

where we the first relation is given by the projector P and the second relation introduces the

change of time; see (II.11). Solution (VI.20) has the physical meaning of the velocity field, which

is considered in a reference frame moving along a Lagrangian trajectory, and having the temporal

scale adjusted dynamically by the function az(t).

Finally, let us describe solutions obtained by the spatial scaling from (I.3). In order to comply

with our notations in Sections III and IV we introduce the map

g = s
2
ss, g : u(r) 7! 2u

⇣r
2

⌘
, (VI.21)
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(quasi-Lagrangian representation removes the sweeping effect)
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intrinsic solution-dependent time

Kolmogorov (1962) multipliers:
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It is known that the scaling invariance is broken in the developed hydrodynamic turbulence due

to the intermittency phenomenon [3, 4], which precludes the convergence of the double limit for the

turbulent statistics. As we have shown in this paper (see Sections IC and IV), the intermittency is

not an obstacle for a similar convergence in the normalized system. As in Section III C, we denote

by µ
Re the probability measure of the statistically stationary state in the Navier–Stokes system for

a given Reynolds number, and by ⌫
Re the corresponding normalized measure. Then the limiting

normalized measure is defined as the weak double limit

⌫
1 = lim

m!1
lim

Re!1
g
m

? ⌫
Re
. (VI.27)

Existence of this limit implies that the limiting normalized measure is symmetric: g?⌫
1 = ⌫

1.

Once this symmetry is established, the theory of Section IV applies. This theory explains the

power-law scaling for structure functions, and associates the scaling exponents to Perron–Frobenius

eigenvalues defined in terms of the symmetric measure ⌫
1.

Current understanding of the Navier–Stokes system does not allow a rigorous study of the limit

(VI.27); see e.g. [33]. Nevertheless, the convergence can be verified numerically using expressions

(VI.24) and (VI.23) with the ergodicity assumption. In this numerical analysis, the measure

g
m
? ⌫

Re is approximated by the temporal statistics of the velocity field U(m)(r, ⌧ (m)) obtained from

a solution u(r, t) of the Navier–Stokes system for a large Reynolds number. Hence, the convergence

in (VI.27) implies that this statistics is independent of m at the scales of inertial interval (VI.26).

We emphasize that Galilean transformations play important role in this construction: they yield

the mixed Lagrangian–Eulerian form of the velocity fields (VI.18) and (VI.23) considered in the

reference frame moving with a Lagrangian particle. Indeed, subtracting the Lagrangian particle

speed in (VI.23) eliminates the so-called sweeping e↵ect [3, 7] caused by a large-scale motion, which

otherwise would prevent the limit (VI.27).

We leave the detailed numerical study of the hidden scaling symmetry for a future work. Here,

we remark on some interesting connections with the known numerical results. Let us demonstrate

a close relation of the hidden scaling symmetry with the co-called Kolmogorov multipliers defined

as [22, 23]

wij(r; `, `
0) =

�iuj(r, `)

�iuj(r, `0)
, �iu(r, `) = u(r+ `ei)� u(r), (VI.28)

where the indices i and j denote vector components, ei are unit vectors in R3, and `, `
0
2 R+ are

two positive scales. Using (VI.24) and (VI.23), the multipliers evaluated at along the Lagrangian
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trajectory r = Rt are expressed as

wij(r; `, `
0) =

U
(m)
j

(ei)

U
(m)
j

(�ei)
, ` = 2�m

, � =
`
0

`
. (VI.29)

The multipliers on the left-hand side of (VI.29) have the scale-invariant statistics, which depends

only on the ratio � = `
0
/` and the vector indices. This was first conjectured by Kolmogorov [22] and

observed systematically both in numerical simulations and experimental data [23]. On the other

hand, the same property in the right-hand side of (VI.29) is the direct consequence of the hidden

scaling symmetry, which implies that the statistics does not depend on m. Strictly speaking, there

are some reservations to this argument, because the statistics of normalized variables is considered

with respect to a di↵erent time ⌧
(m). However, one may consider this connection as the numerical

and experimental indication towards the hidden scaling symmetry.

E. Proof of Theorem 8

Let us consider a di↵erent choice of the representative set denoted by tildes as

X
eQ
7�! eZ

eP
7�! eY. (VI.30)

This system is defined by two functions eV(x) and eA(ez) satisfying symmetry relations (VI.7).

Recall that the independence of condition g?⌫ = ⌫ to a choice of eA(ez) has already been proven in

Theorem 3 of Section II B. Thus, let us specify this function as

eA = A �Q. (VI.31)

The first condition in (VI.7) is verified for (VI.31) as

eA � s
a
ts(z) = A �Q � s

a

ts(z) = A � s
V�sats(z)
g � s

a

ts(z) = A � s
V(z)/a
g � s

a

ts(z)

= A � s
a

ts(z) � s
V(z)
g (z) =

A � s
V(z)
g (z)

a
=

A �Q(z)

a
=

eA(z)

a
,

(VI.32)

where we consecutively used (VI.31), (VI.5), the fourth equality in (VI.7), commutation relation

from Tab. I, the first equality in (VI.7), (VI.5) and (VI.31).

Lemma 10. For the choice (VI.31), the following relations hold:

Q � eQ = Q, Q � eP � eQ = P �Q, eA � eQ = A �Q. (VI.33)
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<latexit sha1_base64="DYcd/P265tVfJKnqOoJyAnNLF7M=">AAACYXichVFNT8IwGO6GH4igE49cGomJJ7IZE72YEL14xESEhAHpSgcN3Ufadxiy7E968+DFX2IHO/Bh4ps0efo871eferHgCmz7yzBLB4dHx+WTymm1dnZuXdTfVZRIyro0EpHse0QxwUPWBQ6C9WPJSOAJ1vPmz7neWzCpeBS+wTJmw4BMQ+5zSkBTY+vD7cz4CLBLuaRYjVI3IDDz/HSRZeP1RQbpNMvw47YKG7LS8v8N1hnFvLHVtFv2KvA+cArQREV0xtanO4loErAQqCBKDRw7hmFKJHAqWFZxE8ViQudkygYahiRgapiuDMrwtWYm2I+kPiHgFbtZkZJAqWXg6cx8YbWr5eRf2iAB/2GY8jBOgIV0PchPBIYI527jCZeMglhqQKjkeldMZ0QSCvpPKtoEZ/fJ+6B323LuWo7zetdsPxV+lFEDXaEb5KB71EYvqIO6iKJvo2RUjZrxY5ZNy6yvU02jqLlEW2E2fgFyk7nj</latexit>

�t � svg = svts � svg � �t

Temporal scaling:

Galilean transformations:
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FIG. 1. Structure of configuration space X with a partition to equivalence classes (straight vertical lines)

with respect to the symmetry group H. (a) Due to noncommutativity with the flow, the equivalence relation

x ⇠ x
0 is not invariant: the states �t(x) and �t(x0) are generally not equivalent. (b) The equivalence can be

“repaired” by choosing a specific time t
0 and an extra spatial translation s

r
s , fitting the initially equivalent

states x ⇠ x
0 into the equivalence class of �t(x) at a later time. Such construction can be introduced globally

by synchronizing the flow with respect to a representative set Y, which contains a single state from every

equivalence class. This construction induces the dynamics in Y governed by a new normalized flow  ⌧ .

for x0 = h(x) with a general element h = s
a
ts � s

v
g of the group (I.4). Thus, all initially equivalent

states x ⇠ x
0 are fit into the same equivalence class at larger times, if one assumes the specific

time synchronization t
0 = at and the extra spatial translation r = �vt for each x

0, as shown in

Fig. 1(b). This construction is determined by a selected representative element x, with respect to

which all other equivalent states are “synchronized”.

In this paper, we develop such a quotient-like construction globally in the configuration space

X by introducing a representative set Y ⇢ X , which contains a single element y 2 Y within each

equivalence class E(x); see Fig. 1(b). As a result, we reduce the original dynamical system in

X to the dynamical system in Y, which we call the normalized system. We prove the following

properties of this construction:

• There is a normalized flow  ⌧ : Y 7! Y on the representative set, which is induced by �t

and the equivalence relation (I.6); see Fig. 1(b).

• The normalized flow  ⌧ has the invariant measure ⌫, which is explicitly related to the original

invariant measure µ.

Hidden 
symmetry

Power law asymptotic 
for structure functions 
(can be anomalous).

Scaling exponents as  
Perron-Frobenius 

eigenvalues.

Possible applications: 
shell model, 

Navier-Stokes turbulence, 
etc.
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