

Hidden spatiotemporal symmetries and intermittency

Alexei Mailybaev

Instituto de Matemática Pura e Aplicada - IMPA, Rio de Janeiro

Symmetries

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p, \quad \nabla \cdot \mathbf{u} = 0$$

Euler system (valid in the inertial interval)

temporal translation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r},t'+t)$, $t' \in \mathbb{R}$; spatial translation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r}+\mathbf{r}',t)$, $\mathbf{r}' \in \mathbb{R}^d$; rotation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{Q}^{-1}\mathbf{u}(\mathbf{Q}\mathbf{r},t)$, $\mathbf{Q} \in \mathrm{O}(d)$;

Galilean transformation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r} + \mathbf{v}t,t) - \mathbf{v}, \ \mathbf{v} \in \mathbb{R}^d;$

Galilean group

temporal scaling: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r},t/a)/a$, a > 0; spatial scaling: $\mathbf{u}(\mathbf{r},t) \mapsto b\mathbf{u}(\mathbf{r}/b,t)$, b > 0,

spatiotemporal scaling group

Symmetries

temporal translation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r},t'+t), \qquad t' \in \mathbb{R};$

spatial translation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r}+\mathbf{r}',t), \quad \mathbf{r}' \in \mathbb{R}^d$;

rotation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{Q}^{-1}\mathbf{u}(\mathbf{Qr},t), \quad \mathbf{Q} \in \mathcal{O}(d);$

Galilean transformation: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r}+\mathbf{v}t,t) - \mathbf{v}, \ \mathbf{v} \in \mathbb{R}^d$;

Galilean group

temporal scaling: $\mathbf{u}(\mathbf{r},t) \mapsto \mathbf{u}(\mathbf{r},t/a)/a, \qquad a > 0;$

spatial scaling: $\mathbf{u}(\mathbf{r},t) \mapsto b\mathbf{u}(\mathbf{r}/b,t), \qquad b > 0,$

spatiotemporal scaling group

Dynamical system setting

Configuration space: $x = \mathbf{u}(\mathbf{r}) \in \mathcal{X}$ infinite-dimensional probability measure space $(\mathcal{X}, \Sigma, \mu)$

Flow (evolution) operator: $\Phi^t x = \mathbf{u}(\mathbf{r},t)$ $\Phi^t : \mathcal{X} \mapsto \mathcal{X}$

Invariance of the measure: $\Phi^t_\sharp \mu = \mu$

Symmetry operators: $s_{s}^{\mathbf{r}'}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r} + \mathbf{r}'), \quad \mathbf{r}' \in \mathbb{R}^{d},$ (spatial translation)

(at t = 0) $s_{\mathbf{r}}^{\mathbf{Q}} : \mathbf{u}(\mathbf{r}) \mapsto \mathbf{Q}^{-1}\mathbf{u}(\mathbf{Q}\mathbf{r}), \ \mathbf{Q} \in \mathcal{O}(d), \ (\text{rotation})$

 $s_{\mathbf{g}}^{\mathbf{v}}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r}) - \mathbf{v}, \quad \mathbf{v} \in \mathbb{R}^d,$ (Galilean transformation)

 $s_{\rm ts}^a: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r})/a, \qquad a > 0,$ (temporal scaling)

 $s_{\rm ss}^b: \mathbf{u}(\mathbf{r}) \mapsto b\mathbf{u}(\mathbf{r}/b), \qquad b > 0.$ (spatial scaling)

Symmetry: a one-to-one measurable map $s: \mathcal{X} \mapsto \mathcal{X}$ such that the invariance of μ implies the invariance of $s_{\sharp}\mu$

The measure is symmetric with respect to s if: $s_{\sharp}\mu = \mu$

Commutation relations

	Φ^t	$S_{ m S}^{f r}$	$s_{ m r}^{ m Q}$	$s_{ m g}^{f v}$	$s_{ m ts}^a$	$s_{ m ss}^b$
Φ^t	$\Phi^{t_1+t_2}$	$s_{ ext{ iny S}}^{\mathbf{r}} \circ \Phi^t$	$s_{ m r}^{f Q}\circ\Phi^t$	$s_{ m s}^{{f v}t}\circ s_{ m g}^{{f v}}\circ \Phi^t$	$s_{ m ts}^a \circ \Phi^{t/a}$	$s^b_{\mathrm{ss}} \circ \Phi^t$
$oxed{S_{\mathrm{S}}^{\mathbf{r}}}$	$igg \Phi^t\circ s_{_{\mathrm{S}}}^{\mathbf{r}}$	$s_{ m s}^{{f r}_1+{f r}_2}$	$s_{ m r}^{ m f Q} \circ s_{ m S}^{ m f Q}$ r	$s_{ m g}^{f v}\circ s_{ m s}^{f r}$	$s_{ m ts}^a \circ s_{ m s}^{f r}$	$s_{ ext{ss}}^b \circ s_{ ext{s}}^{\mathbf{r}/b}$
$S_{ m r}^{f Q}$	$\Phi^t \circ s^{\mathbf{Q}}_{\mathrm{r}}$	$s_{ ext{s}}^{\mathbf{Q}^{-1}\mathbf{r}}\circ s_{ ext{r}}^{\mathbf{Q}}$	$s_{ m r}^{{f Q}_1{f Q}_2}$	$s_{ m g}^{{f Q}^{-1}{f v}}\circ s_{ m r}^{{f Q}}$	$s_{ m ts}^a \circ s_{ m r}^{f Q}$	$s_{ ext{ss}}^b \circ s_{ ext{r}}^{\mathbf{Q}}$
$S_{ m g}^{f v}$	$s_{\mathrm{s}}^{-\mathbf{v}t} \circ \Phi^t \circ s_{\mathrm{g}}^{\mathbf{v}}$	$s_{ m s}^{f r} \circ s_{ m g}^{f v}$	$s_{ m r}^{{f Q}} \circ s_{ m g}^{{f Q}{f v}}$	$s_{ m g}^{{f v}_1+{f v}_2}$	$s_{ m ts}^a \circ s_{ m g}^{a{f v}}$	$s_{ ext{ss}}^b \circ s_{ ext{g}}^{\mathbf{v}/b}$
$s_{ m ts}^a$	$igg \Phi^{at}\circ s^a_{ m ts}$	$s_{ m s}^{f r} \circ s_{ m ts}^a$	$s_{ m r}^{f Q} \circ s_{ m ts}^a$	$s_{ m g}^{{f v}/a}\circ s_{ m ts}^a$	$s_{ m ts}^{a_1 a_2}$	$s_{ ext{ss}}^b \circ s_{ ext{ts}}^a$
$s_{ m ss}^b$	$igg \Phi^t\circ s^b_{\mathrm{ss}}$	$s_{ ext{ iny S}}^{b\mathbf{r}}\circ s_{ ext{ iny SS}}^{b}$	$s_{ m r}^{f Q} \circ s_{ m ss}^b$	$s_{ m g}^{b{f v}}\circ s_{ m ss}^{b}$	$s_{ m ts}^a \circ s_{ m ss}^b$	$s_{ m ss}^{b_1b_2}$

Symmetries not commuting with the flow

$$\Phi^t \circ s_{\mathbf{g}}^{\mathbf{v}} = s_{\mathbf{s}}^{\mathbf{v}t} \circ s_{\mathbf{g}}^{\mathbf{v}} \circ \Phi^t$$

Galilean transformation

$$\Phi^t \circ s^a_{\mathrm{ts}} = s^a_{\mathrm{ts}} \circ \Phi^{t/a}$$

temporal scaling

Existence of the flow operator and commutation relations are our central **assumptions**.

Part 1:

Quotient construction with respect to temporal scalings (not taking into account Galilean transformations)

Symmetries

Symmetry group:
$$S = \mathcal{H}_{ts} + \mathcal{G}$$

$$h^a = s^a_{\mathrm{ts}} \in \mathcal{H}_{\mathrm{ts}} = \{s^a_{\mathrm{ts}} : a > 0\}$$
 (temporal scalings)

$$\mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r})/a$$

$$g \in \mathcal{G}$$
 (spatial scalings and rotations)

$$\mathbf{u}(\mathbf{r}) \mapsto b\mathbf{u}(\mathbf{r}/b)$$

Commutation relations:

$$h^{a_1} \circ h^{a_2} = h^{a_1 a_2},$$

$$\Phi^t \circ g = g \circ \Phi^t, \quad g \circ h^a = h^a \circ g,$$

$$\Phi^t \circ h^a = h^a \circ \Phi^{t/a}.$$

quotient space

Equivalence relation: $x \sim x'$ if $x' = h^a(x), a > 0$

Equivalence class:
$$\mathcal{E}_{ts}(x) = \{x' \in \mathcal{X} : x' \sim x\}$$

Equivalence is not flow-invariant!

Representative set

Equivalence of evolved states:

time synchronization with respect to the representative set

Definition 2. We call $\mathcal{Y} \subset \mathcal{X}$ a representative set (with respect to the group \mathcal{H}_{ts}), if the following properties are satisfied. For any $x \in \mathcal{X}$, there exists a unique value a = A(x) > 0 such that $h^a(x) \in \mathcal{Y}$. The function $A: \mathcal{X} \mapsto \mathbb{R}_+$ is measurable with $\int A d\mu < \infty$.

Properties:

$$A \circ h^a(x) = \frac{A(x)}{a}, \quad A(y) = 1$$

Projector:

$$y = P(x) = h^{A(x)}(x)$$

Normalized system

Change of time with the relative speed A(x) (ergodic theory)

Proposition 1 ([14]). For a positive measurable function A(x), one can introduce a new flow Φ_A^{τ} with a new time $\tau \in \mathbb{R}$ defined by the relations

$$\Phi_A^{\tau}(x) = \Phi^t(x), \quad \tau = \int_0^t A \circ \Phi^s(x) ds.$$

The flow Φ_A^{τ} has the invariant measure μ_A , which is absolutely continuous with respect to μ as

$$\frac{d\mu_A}{d\mu} = \frac{A(x)}{\int Ad\mu}.$$

Normalized flow and invariant measure

Theorem 1. The map

$$\Psi^{\tau}(y) = P \circ \Phi_A^{\tau}(y)$$

with $y \in \mathcal{Y}$ defines a flow in the representative set. It has the invariant probability measure

$$\nu = P_{\sharp} \mu_A.$$

The proof uses commutation relations and properties of push-forward measures.

Statistical symmetries in the normalized system

Theorem 2. Consider invariant measures μ and $g_{\sharp}\mu$ of the flow Φ^t for some $g \in \mathcal{G}$. We denote by ν and $g_{\star}\nu$ the corresponding invariant measures of the flow Ψ^{τ} given by Theorem 1. Then,

$$g_{\star}\nu = (P \circ g)_{\sharp}\nu_C, \quad C = A \circ g,$$

where ν_C is an absolutely continuous measure with respect to ν such that

$$\frac{d\nu_C}{d\nu} = \frac{C(y)}{\int Cd\nu}.$$

For any g and $g' \in \mathcal{G}$ we have $(g' \circ g)_{\star} \nu = g'_{\star}(g_{\star} \nu)$.

$$(h \circ g)_{\sharp} \mu = \mu \qquad \Longrightarrow \qquad g_{\star} \nu = \nu$$
 original normalized

Theorem 3. Assume that the normalized measure ν from Theorem 1 is symmetric with respect to $g \in \mathcal{G}$ for some representative set: $g_{\star}\nu = \nu$. Then the same is true for any representative set.

Example: Shell model of turbulence

shells n = 0, 1, 2, ...

Full system:

wavenumber $k_n = 2^n$

$$k_n = 2^n$$

shell velocities $u_n(t) \in \mathbb{C}$

$$u_n(t) \in \mathbb{C}$$

$$B_n = \begin{cases} i(k_{n+1}u_{n+2}u_{n+1}^* - k_{n-1}u_{n+1}u_{n-1}^* + k_{n-2}u_{n-1}u_{n-2}), & n > 1; \\ i(k_2u_3u_2^* - k_0u_2u_0^*), & n = 1; \\ ik_1u_2u_1^*, & n = 0, \end{cases}$$

Ideal (inviscid, unforced) system:

$$\frac{du_n}{dt} = i\left(k_{n+1}u_{n+2}u_{n+1}^* - k_{n-1}u_{n+1}u_{n-1}^* + k_{n-2}u_{n-1}u_{n-2}\right), \quad n \in \mathbb{Z}$$

Symmetries of the ideal system:

temporal scaling:
$$u_n(t) \mapsto u_n(t/a)/a$$
, $a > 0$;

$$h^a = s_{\mathrm{ts}}^a$$

spatial scaling: $u_n(t) \mapsto k_m u_{n+m}(t), m \in \mathbb{Z}$

Normalized system and scaling symmetry

Representative states (generalized multipliers) and change of time:

$$U_n = \frac{u_n}{A(x)}$$
 $A(x) = \sqrt{\sum_{n < 0} k_n^2 |u_n|^2}$ $\tau = \int_0^t A \circ \Phi^s(x) ds$

Equation of motion for the normalized system:

$$\frac{dU_n}{d\tau} = i \left(k_{n+1} U_{n+2} U_{n+1}^* - k_{n-1} U_{n+1} U_{n-1}^* + k_{n-2} U_{n-1} U_{n-2} \right)$$

$$+ U_n \sum_{j < 0} k_j^3 \left(2\pi_{j+1} - \frac{\pi_j}{2} - \frac{\pi_{j-1}}{4} \right), \quad \pi_j = \operatorname{Im} \left(U_{j-1}^* U_j^* U_{j+1} \right)$$

Statistical scaling symmetries: $\nu \mapsto g_{\star}^{m} \nu = (P \circ g^{m})_{\sharp} \nu_{C}$ $C = A \circ g^{m}$

$$d\tau \mapsto d\tau^{(m)} = A \circ g^m(y) d\tau$$
$$U_n \mapsto U_n^{(m)} = \frac{k_m U_{n+m}}{A \circ g^m(y)}$$

$$d\tau\mapsto d\tau^{(m)}=A\circ g^m(y)\,d\tau$$

$$U_n\mapsto U_n^{(m)}=\frac{k_mU_{n+m}}{A\circ g^m(y)}$$

$$A\circ g^m(y)=\sqrt{\sum_{n< m}k_n^2|U_n|^2}=\begin{cases} \left(1+\sum_{0\leq n< m}k_n^2|U_n|^2\right)^{1/2},\ m>0;\\ 1,\qquad m=0;\\ \left(1-\sum_{m\leq n<0}k_n^2|U_n|^2\right)^{1/2},\ m<0; \end{cases}$$

(exact nonlinear symmetry of the normalized system)

Effect of normalization on the intermittent evolution

Hidden symmetry: numerical tests

Scaling symmetries in the normalized system:

$$g_{\star}^{m}\nu: U_{n} \mapsto U_{n}^{(m)} = \frac{k_{m}U_{n+m}}{A \circ g^{m}(y)}$$

$$d\tau \mapsto d\tau^{(m)} = A \circ g^{m}(y) d\tau$$

Hidden scaling symmetry:

$$g_{\star}^{m}\nu=\nu$$

the statistics of $U_n^{(m)}(\tau^{(m)})$ is universal: independent of m in the inertial interval.

Results for $m=12,\ldots,21$

Universality of Kolmogorov multipliers

$$\frac{u_{m+1}}{u_m} = \frac{U_1^{(m)}}{U_0^{(m)}} = \frac{U_{j+1}^{(m-j)}}{U_j^{(m-j)}}$$

Hidden symmetry explains the universality of multipliers.

Part 2: Intermittency

Structure functions

Usual definition:
$$S_p(\ell) = \langle \|\delta_\ell \mathbf{u}\|^p \rangle$$
 $\delta_\ell \mathbf{u} = \mathbf{u}(\mathbf{r}') - \mathbf{u}(\mathbf{r})$ $\ell = \|\mathbf{r}' - \mathbf{r}\|$

$$\delta_{\ell}\mathbf{u} = \mathbf{u}(\mathbf{r}') - \mathbf{u}(\mathbf{r})$$

$$\ell = \|\mathbf{r}' - \mathbf{r}\|$$

$$S_p(\ell) = b^p \int F \circ s_{ss}^b d\mu$$
 $F \circ s_{ts}^a(x) = \frac{F(x)}{a^p}$ $b = \frac{1}{\ell} \gg 1$

$$b = \frac{1}{\ell} \gg 1$$

scaling factor

temporal scaling defines order of structure function

Usual definition follows for: $F(x) = \|\delta_1 \mathbf{u}\|^p$ $\|\mathbf{r}' - \mathbf{r}\| = 1$

$$F(x) = \|\delta_1 \mathbf{u}\|^p$$

$$\|\mathbf{r}' - \mathbf{r}\| = 1$$

We show that:

- $S_p(\ell) \propto \ell^{\zeta_p}$ Hidden scaling symmetry yields asymptotic power law scaling:
- Scaling exponents are obtained as Perron-Frobenius eigenvalues of linear operators based on the hidden symmetry of the normalized measure
- Scaling exponents can be anomalous
- Numerical test for the shell model

Asymptotic power laws and scaling exponents

Hidden symmetry:

$$g_{\star}\nu = \nu$$
 \Longrightarrow

Structure function are expressed as iterations of a positive operator in measure space:

$$\lambda^{(n+1)} = \mathcal{L}_p \ [\lambda^{(n)}]$$

Perron-Frobenius eigenvalue and eigenvector:

$$\mathcal{L}_p[\lambda_p] = R_p \lambda_p$$

Corollary 3. Assuming limits (IV.32) and (IV.35) and a finite positive value of the integral

$$\int F(y) \,\rho^{\infty}(y_{\oplus}|y_{-}) \,d\lambda_{p} \,dy_{\oplus},\tag{IV.37}$$

the structure function S_p has the asymptotic power law scaling (IV.2) in the inertial interval with the exponent

$$\zeta_p = -\log_2 R_p, \tag{IV.38}$$

where R_p is the Perron-Frobenius eigenvalue; see (IV.34).

Numerical test

Eigenvalue is obtained by integrating numerically the approximate operator $\mathcal{L}_p[\lambda]$ with arbitrary positive initial measure.

Approximation of $\mathcal{L}_p[\lambda]$ of order N corresponds to

$$\rho_{\ominus}^{\infty}(y_0|y_-) \approx \rho_{\ominus}^{(19)}(y_0|y_{-1},\dots,y_{-N})$$

approximated numerically using histograms.

Part 3: General quotient construction (sweeping effect)

Noncommutativity and equivalence relation

$$\Phi^t \circ s^a_{\mathrm{ts}} = s^a_{\mathrm{ts}} \circ \Phi^{t/a}$$

temporal scalings

$$\Phi^t \circ s_{\mathbf{g}}^{\mathbf{v}} = s_{\mathbf{s}}^{\mathbf{v}t} \circ s_{\mathbf{g}}^{\mathbf{v}} \circ \Phi^t$$

Galilean transformations

$$\mathcal{H} = \{s_{ts}^a \circ s_g^{\mathbf{v}} : a > 0, \ \mathbf{v} \in \mathbb{R}^d\}$$
 group of temporal scalings and Galilean transformations

Equivalence relation: $x \sim x'$ if $x' = h(x), h \in \mathcal{H}$

$$s_{s}^{\mathbf{r}} \circ \Phi^{t'}(x') = h \circ \Phi^{t}(x)$$

Equivalence class: $\mathcal{E}(x) = \{x' \in \mathcal{X} : x' \sim x\}$

$$t' = at, \quad \mathbf{r} = -\mathbf{v}t$$

Equivalence is not flow-invariant!

Equivalence can be repaired by a time change and a space shift

Quotient-like construction

1+d less degrees of freedom

Equivalence is restored through time change and space shift synchronized with respect to a specific **representative state** in the equivalence class.

This can be done globally in configuration space by choosing a **representative set** $\mathcal{Y} \subset \mathcal{X}$ containing a single element in each equivalence class.

Reducing the dynamics to the representative set yields the **normalized system**.

- There is a normalized flow $\Psi^{\tau}: \mathcal{Y} \mapsto \mathcal{Y}$ on the representative set, which is induced by Φ^t
- The normalized flow Ψ^{τ} has the invariant measure ν , which is explicitly related to the original invariant measure μ .

Statistical symmetries in the normalized system

$$\mathcal{G} = \{s_{\mathbf{r}}^{\mathbf{Q}} \circ s_{\mathbf{ss}}^b : \mathbf{Q} \in \mathcal{O}(d), b > 0\}$$
 group of rotations and spatial scalings

• The group \mathcal{G} defines statistical symmetries in the normalized system. We introduce a transformation $\nu \mapsto g_{\star}\nu$ for any $g \in \mathcal{G}$, akin to the push-forward. This transformation preserves the group structure and the invariance of a measure with respect to Ψ^{τ} .

- Using Galilean transformations in the quotient construction requires extra conditions:
 - spatial homogeneity (required by the symmetry condition)
 - incompressibility (required for the existence of the normalized invariant measure)

Normalized Euler system

Normalized solution:

$$\widetilde{\mathbf{u}}(\mathbf{r},t) = \mathbf{u}\left(\mathbf{R}^t + \mathbf{r},t\right) - \mathbf{u}\left(\mathbf{R}^t,t\right), \quad \frac{d\mathbf{R}^t}{dt} = \mathbf{u}(\mathbf{R}^t,t), \quad \mathbf{R}^0 = \mathbf{0}.$$

(quasi-Lagrangian representation removes the sweeping effect)

$$\mathbf{U}(\mathbf{r},\tau) = \frac{\widetilde{\mathbf{u}}(\mathbf{r},t)}{a_z(t)}, \quad \tau = \int_0^t a_z(s) \, ds, \quad a_z(t) = A \circ \Omega^t(z),$$

intrinsic solution-dependent time

$$A(z) = \left(\int K(r) \|\widetilde{\mathbf{u}}(\mathbf{r})\|^2 d\mathbf{r} \right)^{1/2}$$

Kolmogorov (1962) multipliers:

$$w_{ij}(\mathbf{r};\ell,\ell') = \frac{\delta_i u_j(\mathbf{r},\ell)}{\delta_i u_j(\mathbf{r},\ell')}, \quad \delta_i \mathbf{u}(\mathbf{r},\ell) = \mathbf{u}(\mathbf{r}+\ell\mathbf{e}_i) - \mathbf{u}(\mathbf{r}),$$

$$w_{ij}(\mathbf{r};\ell,\ell') = \frac{U_j^{(m)}(\mathbf{e}_i)}{U_i^{(m)}(\gamma \mathbf{e}_i)}, \quad \ell = 2^{-m}, \quad \gamma = \frac{\ell'}{\ell}.$$

Conclusion

Temporal scaling:

$$\Phi^t \circ s^a_{\mathsf{ts}} = s^a_{\mathsf{ts}} \circ \Phi^{t/a}$$

Galilean transformations:

$$\Phi^t \circ s_{\mathbf{g}}^{\mathbf{v}} = s_{\mathbf{s}}^{\mathbf{v}t} \circ s_{\mathbf{g}}^{\mathbf{v}} \circ \Phi^t$$

Power law asymptotic for structure functions (can be anomalous).

Scaling exponents as Perron-Frobenius eigenvalues.

Possible applications:
shell model,
Navier-Stokes turbulence,
etc.

Thank you!

arXiv:2010.13089

alexei.impa.br