Hidden spatiotemporal symmetries and intermittency

Alexei Mailybaev
Instituto de Matemática Pura e Aplicada - IMPA, Rio de Janeiro

Symmetries

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}=-\nabla p, \quad \nabla \cdot \mathbf{u}=0
$$

Euler system

(valid in the inertial interval)
temporal translation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}\left(\mathbf{r}, t^{\prime}+t\right), \quad t^{\prime} \in \mathbb{R}$;
spatial translation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}\left(\mathbf{r}+\mathbf{r}^{\prime}, t\right), \quad \mathbf{r}^{\prime} \in \mathbb{R}^{d} ;$

$$
\text { rotation: } \mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{Q}^{-1} \mathbf{u}(\mathbf{Q r}, t), \quad \mathbf{Q} \in \mathrm{O}(d) ;
$$

Galilean group

Galilean transformation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}(\mathbf{r}+\mathbf{v} t, t)-\mathbf{v}, \mathbf{v} \in \mathbb{R}^{d}$;
temporal scaling: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}(\mathbf{r}, t / a) / a, \quad a>0 ;$ spatial scaling: $\mathbf{u}(\mathbf{r}, t) \mapsto b \mathbf{u}(\mathbf{r} / b, t)$, $b>0$,

Symmetries

temporal translation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}\left(\mathbf{r}, t^{\prime}+t\right), \quad t^{\prime} \in \mathbb{R}$;
spatial translation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}\left(\mathbf{r}+\mathbf{r}^{\prime}, t\right), \quad \mathbf{r}^{\prime} \in \mathbb{R}^{d} ;$

$$
\text { rotation: } \mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{Q}^{-1} \mathbf{u}(\mathbf{Q r}, t), \quad \mathbf{Q} \in \mathrm{O}(d) ;
$$

Galilean group

Galilean transformation: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}(\mathbf{r}+\mathbf{v} t, t)-\mathbf{v}, \mathbf{v} \in \mathbb{R}^{d}$;
temporal scaling: $\mathbf{u}(\mathbf{r}, t) \mapsto \mathbf{u}(\mathbf{r}, t / a) / a, \quad a>0 ;$ spatial scaling: $\mathbf{u}(\mathbf{r}, t) \mapsto b \mathbf{u}(\mathbf{r} / b, t)$, $b>0$,

Dynamical system setting

Configuration space: $\quad x=\mathbf{u}(\mathbf{r}) \in \mathcal{X} \quad$ infinite-dimensional probability measure space $(\mathcal{X}, \Sigma, \mu)$

Flow (evolution) operator: $\quad \Phi^{t} x=\mathbf{u}(\mathbf{r}, t) \quad \Phi^{t}: \mathcal{X} \mapsto \mathcal{X}$

Invariance of the measure: $\quad \Phi_{\sharp}^{t} \mu=\mu$

Symmetry operators:	$s_{\mathrm{s}}^{\mathbf{r}^{\prime}}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}\left(\mathbf{r}+\mathbf{r}^{\prime}\right)$,	$\mathbf{r}^{\prime} \in \mathbb{R}^{d}$,	
(spatial translation)			
(at $t=0)$	$s_{\mathrm{r}}^{\mathbf{Q}}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{Q}^{-1} \mathbf{u}(\mathbf{Q r})$,	$\mathbf{Q} \in \mathrm{O}(d)$,	(rotation)
$s_{\mathrm{g}}^{\mathbf{v}}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r})-\mathbf{v}$,	$\mathbf{v} \in \mathbb{R}^{d}$,		(Galilean transformation)
	$s_{\mathrm{ts}}^{a}: \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r}) / a$,	$a>0$,	
	$s_{\mathrm{ss}}^{b}: \mathbf{u}(\mathbf{r}) \mapsto b \mathbf{u}(\mathbf{r} / b)$,	$b>0$.	
	(spatial scaling)		

Symmetry: a one-to-one measurable map $s: \mathcal{X} \mapsto \mathcal{X}$ such that the invariance of μ implies the invariance of $s_{\sharp} \mu$

The measure is symmetric with respect to s if: $s_{\sharp} \mu=\mu$

Commutation relations

	Φ^{t}	$s_{\mathrm{S}}^{\mathrm{r}}$	$s_{\mathrm{r}}^{\mathbf{Q}}$	$s_{\mathrm{g}}^{\mathbf{v}}$	$s_{\text {ts }}^{a}$	$s_{\text {SS }}^{b}$
Φ^{t}	$\Phi^{t_{1}+t_{2}}$	$s_{\mathrm{S}}^{\mathbf{r}} \circ \Phi^{t}$	$s_{\mathrm{r}}^{\mathbf{Q}} \circ \Phi^{t}$	$s_{\mathrm{s}}^{\mathbf{v}} \bigcirc s_{\mathrm{g}}^{\mathbf{v}} \circ \Phi^{t}$	$s_{\mathrm{ts}}^{a} \circ \Phi^{t / a}$	$s_{\mathrm{SS}}^{b} \circ \Phi^{t}$
$s_{\mathrm{S}}^{\mathrm{r}}$	$\Phi^{t} \circ s_{\mathrm{s}}^{\mathbf{r}}$	$s_{\mathrm{S}}^{\mathbf{r}_{1}+\mathbf{r}_{2}}$	$s_{\mathrm{r}}^{\mathbf{Q}} \circ s_{\mathrm{S}}^{\mathrm{Qr}}$	$s_{\mathrm{g}}^{\mathbf{v}} \circ s_{\mathrm{s}}^{\mathbf{r}}$	$s_{\mathrm{ts}}^{a} \circ s_{\mathrm{s}}^{\mathbf{r}}$	$s_{\mathrm{SS}}^{b} \circ s_{\mathrm{S}}^{\mathbf{r} / b}$
$s_{\mathrm{r}}^{\mathbf{Q}}$	$\Phi^{t} \circ s_{\mathrm{r}}^{\mathbf{Q}}$	$s_{\mathrm{S}}^{\mathbf{Q}^{-1} \mathbf{r}} \circ s_{\mathrm{r}}^{\mathbf{Q}}$	$s_{\mathrm{r}}^{\mathbf{Q}_{1} \mathbf{Q}_{2}}$	$s_{\mathrm{g}}^{\mathbf{Q}^{-1} \mathbf{v}} \circ s_{\mathrm{r}}^{\mathbf{Q}}$	$s_{\text {ts }}^{a} \circ s_{\mathrm{r}}^{\mathbf{Q}}$	$s_{\mathrm{SS}}^{b} \circ s_{\mathrm{r}}^{\mathbf{Q}}$
$s_{\mathrm{g}}^{\mathbf{V}}$	$s_{\mathrm{S}}^{-\mathbf{v} t} \circ \Phi^{t} \circ s_{\mathrm{g}}^{\mathbf{v}}$	$s_{\mathrm{S}}^{\mathbf{r}} \circ s_{\mathrm{g}}^{\mathbf{v}}$	$s_{\mathrm{r}}^{\mathbf{Q}} \circ s_{\mathrm{g}} \mathrm{Qv}^{\mathbf{v}}$	$s_{\mathrm{g}}^{\mathbf{v}_{1}+\mathbf{v}_{2}}$	$s_{\mathrm{ts}}^{a} \circ s_{\mathrm{g}}^{a \mathbf{v}}$	$s_{\mathrm{SS}}^{b} \circ s_{\mathrm{g}}^{\mathbf{v} / b}$
$s_{\text {ts }}^{a}$	$\Phi^{a t} \circ s_{\text {ts }}^{a}$	$s_{\mathrm{s}}^{\mathbf{r}} \circ s_{\mathrm{ts}}^{a}$	$s_{\mathrm{r}}^{\mathbf{Q}} \circ s_{\mathrm{ts}}^{a}$	$s_{\mathrm{g}}^{\mathrm{v} / a} \circ s_{\mathrm{ts}}^{a}$	$s_{\text {ts }}^{a_{1} a_{2}}$	$s_{\text {Ss }}^{b} \circ s_{\text {ts }}^{a}$
s_{ss}^{b}	$\Phi^{t} \circ s_{\mathrm{ss}}^{b}$	$s_{\mathrm{s}}^{b \mathbf{r}} \circ s_{\mathrm{ss}}^{b}$	$s_{\mathrm{r}}^{\mathbf{Q}} \circ s_{\mathrm{Ss}}^{b}$	$s_{\mathrm{g}}^{b \mathbf{v}} \circ s_{\mathrm{Ss}}^{b}$	$s_{\mathrm{ts}}^{a} \circ s_{\mathrm{ss}}^{b}$	$s_{\text {SS }}^{b_{1} b_{2}}$

Symmetries not commuting with the flow

$$
\Phi^{t} \circ s_{\mathrm{g}}^{\mathbf{v}}=s_{\mathrm{s}}^{\mathrm{v} t} \circ s_{\mathrm{g}}^{\mathbf{v}} \circ \Phi^{t}
$$

$$
\Phi^{t} \circ s_{\mathrm{ts}}^{a}=s_{\mathrm{ts}}^{a} \circ \Phi^{t / a}
$$

Galilean transformation

Part 1:

Quotient construction with respect to temporal scalings
(not taking into account Galilean transformations)

Symmetries

Symmetry group: $\quad \mathcal{S}=\mathcal{H}_{\mathrm{ts}}+\mathcal{G}$

$$
\begin{array}{ll}
h^{a}=s_{\mathrm{ts}}^{a} \in \mathcal{H}_{\mathrm{ts}}=\left\{s_{\mathrm{ts}}^{a}: a>0\right\} \quad \text { (temporal scalings) } & \mathbf{u}(\mathbf{r}) \mapsto \mathbf{u}(\mathbf{r}) / a \\
g \in \mathcal{G} \quad \text { (spatial scalings and rotations) } & \mathbf{u}(\mathbf{r}) \mapsto b \mathbf{u}(\mathbf{r} / b)
\end{array}
$$

Commutation relations:
quotient space

Equivalence is not flow-invariant!

Representative set

Equivalence of evolved states:

$$
\begin{gathered}
\Phi^{t} \circ h^{a}=h^{a} \circ \Phi^{t / a} \\
\downarrow \\
\Phi^{t^{\prime}}\left(x^{\prime}\right) \sim \Phi^{t}(x) \quad t^{\prime}=a t
\end{gathered}
$$

time synchronization with respect to the representative set

Definition 2. We call $\mathcal{Y} \subset \mathcal{X}$ a representative set (with respect to the group $\mathcal{H}_{\mathrm{ts}}$), if the following properties are satisfied. For any $x \in \mathcal{X}$, there exists a unique value $a=A(x)>0$ such that $h^{a}(x) \in \mathcal{Y}$. The function $A: \mathcal{X} \mapsto \mathbb{R}_{+}$is measurable with $\int A d \mu<\infty$.

Properties:

$A \circ h^{a}(x)=\frac{A(x)}{a}, \quad A(y)=1$

Projector:
$y=P(x)=h^{A(x)}(x)$

Normalized system

Change of time with the relative speed $A(x)$ (ergodic theory)
Proposition 1 ([14]). For a positive measurable function $A(x)$, one can introduce a new flow Φ_{A}^{τ} with a new time $\tau \in \mathbb{R}$ defined by the relations

$$
\Phi_{A}^{\tau}(x)=\Phi^{t}(x), \quad \tau=\int_{0}^{t} A \circ \Phi^{s}(x) d s
$$

The flow Φ_{A}^{τ} has the invariant measure μ_{A}, which is absolutely continuous with respect to μ as

$$
\frac{d \mu_{A}}{d \mu}=\frac{A(x)}{\int A d \mu}
$$

Normalized flow and invariant measure

Theorem 1. The map

$$
\Psi^{\tau}(y)=P \circ \Phi_{A}^{\tau}(y)
$$

with $y \in \mathcal{Y}$ defines a flow in the representative set. It has the invariant probability measure

$$
\nu=P_{\sharp} \mu_{A} .
$$

The proof uses commutation relations and properties of push-forward measures.

Statistical symmetries in the normalized system

Theorem 2. Consider invariant measures μ and $g_{\sharp} \mu$ of the flow Φ^{t} for some $g \in \mathcal{G}$. We denote by ν and $g_{\star} \nu$ the corresponding invariant measures of the flow Ψ^{τ} given by Theorem 1. Then,

$$
g_{\star} \nu=(P \circ g)_{\sharp} \nu_{C}, \quad C=A \circ g,
$$

where ν_{C} is an absolutely continuous measure with respect to ν such that

$$
\frac{d \nu_{C}}{d \nu}=\frac{C(y)}{\int C d \nu}
$$

For any g and $g^{\prime} \in \mathcal{G}$ we have $\left(g^{\prime} \circ g\right)_{\star} \nu=g_{\star}^{\prime}\left(g_{\star} \nu\right)$.

Hidden statistical scaling symmetry:

$g_{\star} \nu=\nu$
normalized

Theorem 3. Assume that the normalized measure ν from Theorem 1 is symmetric with respect to $g \in \mathcal{G}$ for some representative set: $g_{\star} \nu=\nu$. Then the same is true for any representative set.

Example: Shell model of turbulence

$$
\text { shells } \quad n=0,1,2, \ldots
$$

Full system:
wavenumber $k_{n}=2^{n}$
shell velocities $\quad u_{n}(t) \in \mathbb{C}$

$$
\begin{aligned}
& \frac{d u_{n}}{d t}=B_{n}-\mathrm{Re}^{-1} k_{n}^{2} u_{n}+f_{n}, \quad n \geq 0 \\
& \quad \text { viscosity forcing } \\
& B_{n}= \begin{cases}i\left(k_{n+1} u_{n+2} u_{n+1}^{*}-k_{n-1} u_{n+1} u_{n-1}^{*}+k_{n-2} u_{n-1} u_{n-2}\right), & n>1 ; \\
i\left(k_{2} u_{3} u_{2}^{*}-k_{0} u_{2} u_{0}^{*}\right), & n=1 ; \\
i k_{1} u_{2} u_{1}^{*}, & n=0,\end{cases}
\end{aligned}
$$

Ideal (inviscid, unforced) system:

$$
\frac{d u_{n}}{d t}=i\left(k_{n+1} u_{n+2} u_{n+1}^{*}-k_{n-1} u_{n+1} u_{n-1}^{*}+k_{n-2} u_{n-1} u_{n-2}\right), \quad n \in \mathbb{Z}
$$

Symmetries of the ideal system:
temporal scaling: $u_{n}(t) \mapsto u_{n}(t / a) / a, \quad a>0 ;$ spatial scaling: $u_{n}(t) \mapsto k_{m} u_{n+m}(t), m \in \mathbb{Z}$

Normalized system and scaling symmetry

Representative states (generalized multipliers) and change of time:

$$
U_{n}=\frac{u_{n}}{A(x)} \quad A(x)=\sqrt{\sum_{n<0} k_{n}^{2}\left|u_{n}\right|^{2}} \quad \tau=\int_{0}^{t} A \circ \Phi^{s}(x) d s
$$

Equation of motion for the normalized system:

$$
\begin{aligned}
\frac{d U_{n}}{d \tau}= & i\left(k_{n+1} U_{n+2} U_{n+1}^{*}-k_{n-1} U_{n+1} U_{n-1}^{*}+k_{n-2} U_{n-1} U_{n-2}\right) \\
& +U_{n} \sum_{j<0} k_{j}^{3}\left(2 \pi_{j+1}-\frac{\pi_{j}}{2}-\frac{\pi_{j-1}}{4}\right), \quad \pi_{j}=\operatorname{Im}\left(U_{j-1}^{*} U_{j}^{*} U_{j+1}\right)
\end{aligned}
$$

Statistical scaling symmetries: $\quad \nu \mapsto g_{\star}^{m} \nu=\left(P \circ g^{m}\right)_{\sharp} \nu_{C} \quad C=A \circ g^{m}$

$$
\begin{aligned}
& d \tau \mapsto d \tau^{(m)}=A \circ g^{m}(y) d \tau \\
& U_{n} \mapsto U_{n}^{(m)}=\frac{k_{m} U_{n+m}}{A \circ g^{m}(y)}
\end{aligned}
$$

$$
A \circ g^{m}(y)=\sqrt{\sum_{n<m} k_{n}^{2}\left|U_{n}\right|^{2}}= \begin{cases}\left(1+\sum_{0 \leq n<m} k_{n}^{2}\left|U_{n}\right|^{2}\right)^{1 / 2}, & m>0 \\ 1, & m=0 \\ \left(1-\sum_{m \leq n<0} k_{n}^{2}\left|U_{n}\right|^{2}\right)^{1 / 2}, & m<0\end{cases}
$$

Effect of normalization on the intermittent evolution

Scaling symmetries in the normalized system:

$$
\begin{aligned}
g_{\star}^{m} \nu: & U_{n} \mapsto U_{n}^{(m)}=\frac{k_{m} U_{n+m}}{A \circ g^{m}(y)} \\
& d \tau \mapsto d \tau^{(m)}=A \circ g^{m}(y) d \tau
\end{aligned}
$$

Hidden scaling symmetry:

$$
g_{\star}^{m} \nu=\nu
$$

the statistics of $U_{n}^{(m)}\left(\tau^{(m)}\right)$ is universal: independent of m in the inertial interval.

Results for $m=12, \ldots, 21$

Universality of Kolmogorov multipliers

$$
\frac{u_{m+1}}{u_{m}}=\frac{U_{1}^{(m)}}{U_{0}^{(m)}}=\frac{U_{j+1}^{(m-j)}}{U_{j}^{(m-j)}}
$$

Part 2: Intermittency

Structure functions

Usual definition: $\quad S_{p}(\ell)=\left\langle\left\|\delta_{\ell} \mathbf{u}\right\|^{p}\right\rangle \quad \delta_{\ell} \mathbf{u}=\mathbf{u}\left(\mathbf{r}^{\prime}\right)-\mathbf{u}(\mathbf{r}) \quad \ell=\left\|\mathbf{r}^{\prime}-\mathbf{r}\right\|$

Generalized definition: $\quad S_{p}(\ell)=b^{p} \int F \circ s_{\mathrm{ss}}^{b} d \mu \quad F \circ s_{\mathrm{ts}}^{a}(x)=\frac{F(x)}{a^{p}} \quad b=\frac{1}{\ell} \gg 1$
scaling factor

Usual definition follows for: $\quad F(x)=\left\|\delta_{1} \mathbf{u}\right\|^{p} \quad\left\|\mathbf{r}^{\prime}-\mathbf{r}\right\|=1$

We show that:

- Hidden scaling symmetry yields asymptotic power law scaling: $\quad S_{p}(\ell) \propto \ell^{\zeta_{p}}$
- Scaling exponents are obtained as Perron-Frobenius eigenvalues of linear operators based on the hidden symmetry of the normalized measure
- Scaling exponents can be anomalous
- Numerical test for the shell model

Asymptotic power laws and scaling exponents

Hidden symmetry:

$$
g_{\star} \nu=\nu
$$

Structure function are expressed as iterations of a positive operator in measure space:

$$
\lambda^{(n+1)}=\mathcal{L}_{p} \quad\left[\lambda^{(n)}\right]
$$

- Perron-Frobenius eigenvalue and eigenvector:

$$
\mathcal{L}_{p}\left[\lambda_{p}\right]=R_{p} \lambda_{p}
$$

Corollary 3. Assuming limits (IV.32) and (IV.35) and a finite positive value of the integral

$$
\begin{equation*}
\int F(y) \rho^{\infty}\left(y_{\oplus} \mid y_{-}\right) d \lambda_{p} d y_{\oplus} \tag{IV.37}
\end{equation*}
$$

the structure function S_{p} has the asymptotic power law scaling (IV.2) in the inertial interval with the exponent

$$
\begin{equation*}
\zeta_{p}=-\log _{2} R_{p} \tag{IV.38}
\end{equation*}
$$

where R_{p} is the Perron-Frobenius eigenvalue; see (IV.34).

Eigenvalue is obtained by integrating numerically the approximate operator $\mathcal{L}_{p}[\lambda]$ with arbitrary positive initial measure.

Approximation of $\mathcal{L}_{p}[\lambda]$ of order N corresponds to

$$
\rho_{\ominus}^{\infty}\left(y_{0} \mid y_{-}\right) \approx \rho_{\ominus}^{(19)}\left(y_{0} \mid y_{-1}, \ldots, y_{-N}\right)
$$

approximated numerically using histograms.

Part 3: General quotient construction (sweeping effect)

Noncommutativity and equivalence relation

$$
\Phi^{t} \circ s_{\mathrm{ts}}^{a}=s_{\mathrm{ts}}^{a} \circ \Phi^{t / a}
$$

$$
\Phi^{t} \circ s_{\mathrm{g}}^{\mathbf{v}}=s_{\mathrm{s}}^{\mathbf{v} t} \circ s_{\mathrm{g}}^{\mathbf{v}} \circ \Phi^{t}
$$

temporal scalings
Galilean transformations
$\mathcal{H}=\left\{s_{\text {ts }}^{a} \circ s_{\mathrm{g}}^{\mathbf{v}}: a>0, \mathbf{v} \in \mathbb{R}^{d}\right\} \quad$ group of temporal scalings and Galilean transformations

Equivalence relation: $\quad x \sim x^{\prime} \quad$ if $\quad x^{\prime}=h(x), h \in \mathcal{H}$
Equivalence class: $\mathcal{E}(x)=\left\{x^{\prime} \in \mathcal{X}: x^{\prime} \sim x\right\}$

Equivalence is not flow-invariant!

$$
s_{\mathrm{s}}^{\mathbf{r}} \circ \Phi^{t^{\prime}}\left(x^{\prime}\right)=h \circ \Phi^{t}(x)
$$

$$
t^{\prime}=a t, \quad \mathbf{r}=-\mathbf{v} t
$$

Equivalence can be repaired by a time change and a space shift

Quotient-like construction

Equivalence is restored through time change and space shift synchronized with respect to a specific representative state in the equivalence class.

This can be done globally in configuration space by choosing a representative set $\mathcal{Y} \subset \mathcal{X}$ containing a single element in each equivalence class.

Reducing the dynamics to the representative set yields the normalized system.
$1+d$ less degrees of freedom

- There is a normalized flow $\Psi^{\tau}: \mathcal{Y} \mapsto \mathcal{Y}$ on the representative set, which is induced by Φ^{t}
- The normalized flow Ψ^{τ} has the invariant measure ν, which is explicitly related to the original invariant measure μ.

Statistical symmetries in the normalized system

$$
\mathcal{G}=\left\{s_{\mathrm{r}}^{\mathbf{Q}} \circ s_{\mathrm{ss}}^{b}: \mathbf{Q} \in \mathrm{O}(d), b>0\right\} \quad \text { group of rotations and spatial scalings }
$$

- The group \mathcal{G} defines statistical symmetries in the normalized system. We introduce a transformation $\nu \mapsto g_{\star} \nu$ for any $g \in \mathcal{G}$, akin to the push-forward. This transformation preserves the group structure and the invariance of a measure with respect to Ψ^{τ}.
- Using Galilean transformations in the quotient construction requires extra conditions:
- spatial homogeneity (required by the symmetry condition)
- incompressibility (required for the existence of the normalized invariant measure)

Normalized Euler system

Normalized solution:

$$
\widetilde{\mathbf{u}}(\mathbf{r}, t)=\mathbf{u}\left(\mathbf{R}^{t}+\mathbf{r}, t\right)-\mathbf{u}\left(\mathbf{R}^{t}, t\right), \quad \frac{d \mathbf{R}^{t}}{d t}=\mathbf{u}\left(\mathbf{R}^{t}, t\right), \quad \mathbf{R}^{0}=\mathbf{0} .
$$

(quasi-Lagrangian representation removes the sweeping effect)
$\mathbf{U}(\mathbf{r}, \tau)=\frac{\widetilde{\mathbf{u}}(\mathbf{r}, t)}{a_{z}(t)}, \quad \tau=\int_{0}^{t} a_{z}(s) d s, \quad a_{z}(t)=A \circ \Omega^{t}(z)$,
intrinsic solution-dependent time

$$
A(z)=\left(\int K(r)\|\widetilde{\mathbf{u}}(\mathbf{r})\|^{2} d \mathbf{r}\right)^{1 / 2}
$$

Kolmogorov (1962) multipliers:

$$
\begin{aligned}
& w_{i j}\left(\mathbf{r} ; \ell, \ell^{\prime}\right)=\frac{\delta_{i} u_{j}(\mathbf{r}, \ell)}{\delta_{i} u_{j}\left(\mathbf{r}, \ell^{\prime}\right)}, \quad \delta_{i} \mathbf{u}(\mathbf{r}, \ell)=\mathbf{u}\left(\mathbf{r}+\ell \mathbf{e}_{i}\right)-\mathbf{u}(\mathbf{r}), \\
& w_{i j}\left(\mathbf{r} ; \ell, \ell^{\prime}\right)=\frac{U_{j}^{(m)}\left(\mathbf{e}_{i}\right)}{U_{j}^{(m)}\left(\mathbf{e}_{i}\right)}, \quad \ell=2^{-m}, \quad \gamma=\frac{\ell^{\prime}}{\ell} .
\end{aligned}
$$

Conclusion

Temporal scaling:

$$
\Phi^{t} \circ s_{\mathrm{ts}}^{a}=s_{\mathrm{ts}}^{a} \circ \Phi^{t / a}
$$

Galilean transformations:
$\Phi^{t} \circ s_{\mathrm{g}}^{\mathbf{v}}=s_{\mathrm{s}}^{\mathbf{v} t} \circ s_{\mathrm{g}}^{\mathbf{v}} \circ \Phi^{t}$

Power law asymptotic for structure functions (can be anomalous).

Scaling exponents as
Perron-Frobenius eigenvalues.

Possible applications: shell model,
Navier-Stokes turbulence, etc.

Thank you!

arXiv:2010.13089

alexei.impa.br

