Kneser's theorem for codes and ℓ-divisible set families

Gilles Zémor joint work with Chenying Lin

Bordeaux Institute of Mathematics (IMB)

ICTS, May 2025

ℓ-divisible set families

Eventown problem: size of maximal collection \mathcal{F} of subsets of $\{1,2,\ldots,n\}$ such that $|A\cap B|$ even for all $A,B\in\mathcal{F}$?

View $\mathfrak F$ as set of binary vectors. Let C be linear code generated by $\mathfrak F$. Intersection property means $\mathbf c\mathbf c'$ has even weight for any $\mathbf c, \mathbf c \in C$. So $C \subset C^\perp$. So $\dim C \leqslant n/2$ and $|\mathfrak F| \leqslant 2^{n/2}$.

Maximum size of ${\mathcal F}$ if any intersection of any two subsets has size 0 mod ℓ ??

Not known: not $2^{\lfloor n/\ell \rfloor}$. Counter-example for $\ell=3$: from Hadamard matrix of size 12 we get, for n=12, a family $|\mathcal{F}|=24>2^{12/3}$.

Gishboliner, Sudakov, Tomon (2022): there exists k depending only on ℓ such that if intersection of any k subsets has size $0 \mod \ell$, then $|\mathfrak{F}| \leqslant 2^{n/\ell}$. The guaranteed number k is exponential in ℓ . Solved conjecture Frankl Odlyzko 1983.

Results

Family $\mathfrak{F} \subset 2^{[n]}$ is k-wise ℓ -divisible if intersection of any k subsets of \mathfrak{F} is ℓ -divisible.

Theorem:

For p prime, if family $\mathcal{F} \subset 2^{[n]}$ is p-wise p-divisible, then maximum size $|\mathcal{F}| \leq 2^{\lfloor n/p \rfloor}$.

For p = 3, optimal. Note that upper can always be achieved by *atomic* family: all unions of disjoint subsets of size p.

Companion result.

Theorem:

For p prime, if family $\mathfrak{F} \subset 2^{[n]}$ is p+1-wise p-divisible, and $|\mathfrak{F}| > 2^{\lfloor n/p \rfloor - 1}$, then atoms of \mathfrak{F} have size p.

Results

For arbitrary (composite) ℓ , looser result.

Theorem:

If family $\mathfrak{F} \subset 2^{[n]}$ is $4\ell^2$ -wise ℓ -divisible, then maximum size $|\mathfrak{F}| \leqslant 2^{\lfloor n/\ell \rfloor}$. Furthermore, if $|\mathfrak{F}| > 2^{\lfloor n/\ell \rfloor - 1}$, then atoms of \mathfrak{F} have size ℓ .

Note: brings down value of k from exponential in ℓ to polynomial in ℓ .

Key idea: Viewed as set of functions, or $\{0,1\}$ *n*-tuples, consider V code generated by \mathcal{F} over \mathbb{F}_p . The family \mathcal{F} is k-wise p-divisible iff

$$\langle \mathbf{x}, \mathbf{1} \rangle = 0$$
 for every $\mathbf{x} \in V^{\langle k \rangle}$,

equivalently,

$$V^{\langle k
angle} \subset \mathbf{1}^{\perp}$$

Code products

For $\mathbf{x}, \mathbf{y} \in \mathbb{F}_q^n$,

$$\mathbf{x} = [x_1, \dots, x_n]$$

$$\mathbf{y} = [y_1, \dots, y_n]$$

$$\mathbf{x} * \mathbf{v} = \mathbf{x} \mathbf{v} := [x_1 y_1, \dots, x_n y_n].$$

C, D two linear codes in \mathbb{F}_q^n , the product (Hadamard, Schur, star) is defined as the linear code C * D = CD generated by

cd,

for
$$\mathbf{c} \in C$$
, $\mathbf{d} \in D$.

Denote $C^{\langle k \rangle} = C * C * \cdots * C$.

Products of small dimension

We have

$$\dim CD \leqslant \dim C \dim D$$

(equality is typical case whenever $CD \neq \mathbb{F}_q^n$).

But notable exceptions: Reed-Solomon codes C,D are such that $\dim CD = \mathbb{F}_q^n$ or

$$\dim CD = \dim C + \dim D - 1$$
.

Structure of pairs of codes C, D s.t. products CD have small dimension?

Many applications (Decoding, Multiplicative secret sharing, MPC protocols, cryptanalysis, quantum computing ...)

Kneser's Theorem for codes

Theorem (Mirandola, Z.)

$$\dim CD \geqslant \dim C + \dim D - s$$

where s is such that CD decomposes into a direct sum of s codes with disjoint supports.

CD generated by
$$G = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

Compare with Kneser's theorem:

Theorem

$$A, B \subset G$$
 Abelian group.

$$|A+B|\geqslant |A|+|B|-\#\mathrm{St}(A+B)$$

where
$$St(A + B) = \{g \in G, g + (A + B) = A + B\}.$$

Kneser's Theorem for codes (2)

More precisely,

$$\dim CD \geqslant \dim C + \dim D - \dim St(CD)$$

Stabiliser algebra of a code C: $St(C) = \{ \mathbf{x} \subset \mathbb{F}_p^n, \mathbf{x} C \subset C \}$.

It is generated by a set of constant vectors of disjoint supports.

Improving result of Gishboliner et al.

For \mathcal{F} k-wise p-divisible family. Introduce $V = \langle \mathcal{F} \rangle$ over \mathbb{F}_p .

Consider the sequence $V, V^{\langle 2 \rangle}, \ldots, V^{\langle k \rangle}$. If it grows too quickly it eventually fills up the whole space, contradiction. Else, Kneser's theorem implies that $V^{\langle k \rangle}$ splits into direct sum of spaces, each orthogonal to $\mathbf{1}$.

The family \mathcal{F} , restricted to the support of a component code must also be k-wise ℓ -divisible. Use induction argument.

Dimension argument

Need largest possible dimension for V to start with. If V has dimension r, generator matrix

$$\mathbf{G} = [I_r \ \mathbf{A}]$$

we see that $|V \cap \{0,1\}^n| \le 2^r$. Almost gives the result. But need improvement.

If $V^{(3)}$ has trivial stabiliser then

$$|V \cap \{0,1\}^n| \leqslant 2^{r-1}$$

Composite ℓ

$$\ell = p_1 p_2 \dots p_m$$
.

Need somewhat different strategy, since $V^{\langle k \rangle}$, with V vector space generated by $\mathcal F$ over $\mathbb F_{p_i}$ may decompose differently for different primes.

Look for an atom of \mathcal{F} that is p_i -divisible for all prime factors of ℓ . Argue that for k large enough,

$$V^{\langle k \rangle} = C_1 \oplus C_2 \oplus \cdots \oplus C_h$$

with many C_i 's of dimension 1. Their supports must be atoms of \mathcal{F} . If V is defined over \mathbb{F}_p , then these atoms are p-divisible. The remaining C_i 's have small dimension, so \mathcal{F} restricted to their support contains few functions. Looking at all these restricted functions simultaneously for all prime factors of ℓ , we get that they cannot cover the whole support of \mathcal{F} . There must exist an atom outside which must be p_i -divisible for every p_i .

Some open problems

- Largest non-atomic 3-wise 3-divisible set families?
- Beyond Kneser's theorem for binary codes. Codes with a small product which is not a direct sum are hard to come by if one wants a small codimension.