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Thermalization and entanglement entropy

@ In this talk, we will discuss the emergence of universal properties of
the time-evolution of entanglement entropy in chaotic quantum
many-body systems.

o Consider the time-evolution of some initial state pg:
p( t) — e—thpoeth
If H is chaotic, then at late times, most details of py are forgotten
and p(t) resembles a thermal density matrix p(®). This process is
known as thermalization.

@ Holographic CFTs are an example of highly chaotic systems.
Thermalization in the CFT corresponds to black hole formation in the
bulk.



@ With local interactions, increasingly large regions are thermalized as
time evolves:




@ With local interactions, increasingly large regions are thermalized as

time evolves:

AN \)/ D /’ -
W) /\{ U \& ( RN

A / (= \

( - —) V \‘

( )

\/\\/\/
/\\//\\/ ( ‘\\‘/\
\/) o N \ o

@ For any fixed region A (smaller than half of the full system), the
reduced density matrix pa(t) approaches thermal density matrix.



@ With local interactions, increasingly large regions are thermalized as

Y Yo N —
0| [FO (o
) ( y
\>/\\/\/ — C /\ —) \/ \\‘
{ \\ |

e \\ // \\ ) \ ]
s

time evolves:

\/ \/

@ For any fixed region A (smaller than half of the full system), the
reduced density matrix pa(t) approaches thermal density matrix.
@ One way to probe this process is by considering time-evolution of the

Renyi entropies,

1
Sna(t) = —— 1 log Tr[pa(t)"], n=1,2,..



@ With local interactions, increasingly large regions are thermalized as
time evolves:

/\/\/\/\ A\

U/\UN ‘\ 7\\”/7753‘ {/ D 1\
AN OO = \_— \
\UZNE /\/ - / N —) ‘?/ \

N

/\\//\\/ )
\/ \/ \ )

@ For any fixed region A (smaller than half of the full system), the
reduced density matrix pa(t) approaches thermal density matrix.

@ One way to probe this process is by considering time-evolution of the
Renyi entropies,

1
Sna(t) = —— 1 log Tr[pa(t)"], n=1,2,..

n — 1 limit is von Neumann entropy.



@ With local interactions, increasingly large regions are thermalized as
time evolves:

AN N ,/""\ _

\//\/\/\/ ‘ \ ('/ \L,,\
A / \ = N
F \\ /\/ - ) / \
e \\ // \\ J / \ { \ )
o Y \ / \\,,, / N ,\\,/

@ For any fixed region A (smaller than half of the full system), the
reduced density matrix pa(t) approaches thermal density matrix.

@ One way to probe this process is by considering time-evolution of the
Renyi entropies,

1
Spa(t) =— 1 log Tr[pa(t)"], n=1,2,..
n — 1 limit is von Neumann entropy.

@ Due to thermalization, these quantities will approach extensive
thermal values at late times:

tlngo S,,,A(t) = Seq Va.



Universality in approach to equilibrium

@ We expect there to be universality not only in the late-time saturation
values of various quantities during thermalization, but also in the way
in which they are approached.

@ Evolution of entanglement entropy in generic chaotic time-evolutions
is very difficult to study analytically.

@ But the few analytically tractable examples we can study suggest a
remarkable universality.

@ In both random circuits and holographic CFTs, the evolution of
entanglement entropy at late times can be expressed in terms of a

membrane formula.

o ConjeCtured to h0|d UniVersa”y in Jonay, Huse, Nahum.



Membrane picture for entanglement growth

@ In one spatial dimension, suppose we want to find S, of the region to
the left of some x at time t.

@ Extend the system in time direction from 7 =0 to 7 = t, and
consider lines with different velocities v:

y=x —vt



Membrane picture for entanglement growth

@ In one spatial dimension, suppose we want to find S, of the region to
the left of some x at time t.

@ Extend the system in time direction from 7 =0 to 7 = t, and
consider lines with different velocities v:

X

T=t

y=x —vt

Sn(x,t) = miny [Seq En(v)t + Sp(y, t = 0)]



Membrane picture for entanglement growth

@ In one spatial dimension, suppose we want to find the entanglement
entropy of the left half-line at time t.

o Extend the system in time direction from 7 =0 to 7 = t, and
consider all possible curves:

T=t

y=x —vt

Sn(x, t) = miny [Seq En(v)t + Sp(y, t = 0)]

En(v)




Physical consequences

-L/2 x L/2
L /1 =t En(v)

y=x—-vt

Sn(x, t) = miny [Seq En(v) t + Sn(y, t = 0)]

o Consider an initial state with volume law entanglement entropy, with
coefficient s:
Sp(y,t=0)=s x (y+L/2), 0<5<5q-

@ The membrane formula gives an s-dependent growth rate of S,(x, t):
Sn(X, t) = Sn(X, t= 0) + Seq rn(s) t
where I is related to £ by Legendre transform.

@ Constraints on membrane tension are equivalent to the condition that
[n(Seq) = 0.
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@ While this formula turns out to hold in both random circuits and
holographic CFTs, the methods used in the two cases are very
different.

@ In random circuits, Haar averages for n-th Renyi entropy. (Explicit
calculation for the second Renyi entropy, and results in certain limits
for third Renyi entropy.)

@ In holographic CFTs:

e Thermalization in boundary is dual to gravitational collapse in bulk.

@ Liu and Suh, Hartman and Maldacena applled HRT formula Hubeny, Rangamani, Takayanagi tO
find the evolution of von Neumann entropy in this setup.

o wMezei showed that for large system size and time, we can get rid of the
radial direction in the bulk, and reduce the HRT formula to a
minimization problem in the boundary.

e The resulting membrane tension satisfies non-trivial constraints from

Jonay, Huse, Nahum.
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Questions

@ What is the physical meaning of the entanglement membrane, and
the source of this universality?

@ Heuristically, if there is a tensor network representation of the state,
we may think of the membrane as a “minimal cut.”

@ But we would like to have a more precise understanding of the
following questions:

1. What is the source of the velocity-dependent function £(v)?

2. Is there an underlying structure in terms of low-lying modes,
which we could look for in a continuum theory such as a
holographic CFT?

3. How does the structure of £(v) depend on the Renyi index n?
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@ We will make use of a family of time-dependent Hamiltonians:
H(t) = Jo(t)Ha,

where the H,, are local operators, and J,(t) are random numbers,
uncorrelated for different times and different «.
Ja(£)Hy
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@ Previously, such models have allowed a derivation of diffusion in
tWO—pOint fu nCtionS Moudgalya and Motrunich; Ogunnaike, Feldmeier, Lee.
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@ Observables of interest, such as the n-th Renyi entropy, can be
written as a transition amplitudes under (U ® U*)®" in any system.
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@ The key simplification in Brownian models is that the Lorentzian
evolution on 2n copies can be replaced with a Euclidean evolution:

(U(t) @ U(t)*)@n = e Pt
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@ Let us derive the Euclidean evolution explicitly in the two-copy case
(n=1).
@ Divide time-evolution into small steps of size e.

H(t) = Ja(t)Ha

@ Then we have:

eiHa(t)e ® e—iHb(t)Te

1 1
~ (14 iHa(t)e — = Ha(t)? +...) @ (1 — iHp(t) Te — EHb(t)Tze2 + ...

2
=1-eP,+0(?) ~ e

where

P2 - Z(Ha,a - Hl;,,_a)z

«
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Summary

@ The n-th Renyi entropy can be expressed as a transition amplitude
under Euclidean evolution with a non-negative Hamiltonian P5,,.

@ The equilibrium saturation value of the n-th Renyi entropy is
determined by the zero energy states of Pap,.
The result is consistent with the equilibrium approximation of v and sv.

@ Approach to equilibrium is determined by low energy eigenstates,
which have a universal structure.
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@ For the second Renyi entropy in models without symmetries:

P, has two degenerate ground states:

DIDIHIDIDIDIDIHIDIL),  IDHITDHITDHITDHITITITITHTIT

@ The low-energy excitations include a “one-particle” band
approximately given by:

[ Wiy = Zy €KX (DD Pt xsad D raara DHITHDITITT)
for some O(1) d.

@ This structure leads to the membrane picture.
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@ The one-particle excitations have a gapped dispersion relation E(k).
The entanglement growth rate is given by
rz(S) = E2(k = iS)/Seq

E(v) can be obtained from this quantity by Legendre transform.

@ Dispersion relation at O(1) values of k is physically important for
satisfying constraints.

@ For the third Renyi entropy, we have an analogous set of low-energy
eigenstates. In addition to these, competition from another set of
eigenstates leads to phase transitions in £3(v) as a function of v.



Plan

@ Introduce expression for the second Renyi entropy as a transition
amplitude, and the definition of |1) and [{).

Derive the low-energy excitations in a simplifying limit.

(]

Discuss how the structure remains robust more generally.

Discuss qualitatively new features of the third Renyi entropy.
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Second Renyi entropy as a transition amplitude

@ Second Renyi entropy involves two forward and two backward copies
of U:

2
e 524(t) — Trp (Tl";\Upo UT>

a b c d
@ Let us introduce the following “spins” on four copies of a single site i

particular, Zhou and Nahum

’T) = |MAX>ab |MAX>cd7 |\L> = ‘MAX>ad ‘MAX>bC

@ Evolution of second Renyi entropy is given by

e %2400 = (Ds |(U® U*)?|po) |po)

where

A
(Ds,| = Qiea U Rica (Tl 1111111



Equilibrium value in models without conserved quantities

@ P4 generally has exactly two zero energy eigenstates:
o)y W d)
@ This gives the Page value for the entropy of pure state at late times:
tlggo S A(t) = min(log da, log dz)

@ We would now like to understand the approach to this value using the
low-energy modes of Pj.



Low energy excitations: GUE model
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GUE model

@ Take each H,(t) to be an i.i.d. random Hermitian matrix on adjacent
sites drawn from the GUE ensemble:

Ha(t) = HSD (1)

Ho ()
im-q -0 @/9)®© 0 © ©0® © ®

@ Using the average over these random matrices, P4 can be expressed
entirely in terms of 1), [{).



Analytically solvable large g limit

@ In the large g limit, P, is exactly solvable, and has a very simple
action on a single domain wall

<Dx| = <¢¢ i/XTx+1T T|

(Dy| Py = (D] — (17(<DX_1| T (Deyi])

@ This leads to the following band of lowest excited states:

E(k)

(el = " (Dy|

2
E(k) = l—acosk

-



Second Renyi entropy for half-line region
@ Let us return to the second Renyi entropy of a half-line region:
e 20 — (D, |e "o, €)

LR 1Tttt

@ Since (D,| only evolves to a superposition of (Dy| at other locations,
509 = 3Dyl PID) (Dulpo- e
_ZD‘G P4t’D —SQXtO

=c JLLLHELL Tttt

=o [LLLLITE Tttt
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Membrane picture from one domain wall band

@ Using one-particle eigenstates in domain wall propagator:
<Dy|efP4t|DX> _ Z eik(xfy)efE(k)t
k

@ At late times: using saddle-point approximation for the propagator,

So(y, t) = miny [seq E(V) t+ So(y + vt,t =0) ]
where

y+uvt

@ We can also check that for an initial state with volume law entropy
with coefficient s,
M(s) = E(k =1is)/seq-



Finite g in Brownian GUE model
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o Away from large g limit, interactions can cause domain walls to split,
so the eigenstates and eigenvalues are modified.

(Dy| Py = (Dy| - (17(<Dx1| + (D) +

1
q2 <DX71,X,X+1 |

@ From numerical diagonalization of Pjy:

Gapped spectrum in all cases, which implies vg # 0.

@ Is the structure of the eigenstates robust?

@ Is there still a well-defined one-particle band within the continuum for
qg=27
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Structure of eigenstates at finite g

@ Let us consider a variational ansatz for the eigenstates:

[Yk) = Z ek o L) [Oxt1,xt8) [Txtats o 1)

@ We can increase the value of A\, and at each A, minimize
Evar(k) - <¢k‘P4’wk>
over all choices of |¢).

@ This minimization maps to the problem of diagonalizing an effective
Hamiltonian on a 22-dimensional Hilbert space for each k.

e Rapid convergence of E, (k) with A would tell us that the
eigenstates are well-approximated by |1)x) for O(1) A. Hacgeman, Spyridon,

Michalakis, Nachtergaele, Osborne, Schuch, Verstraete



Variational results for g = 3

From minimizing (1| Al1k) over all choices of |¢) for various A:

q=3 9=3
16 -4
1]
H
14 .
.
6l g .
12
- .
]
- 3
<10
H L ¢ s
=S .
g
08 2 10 .
. .
0.6
12 L4
04 .
00 o5 10 1s 20 25 30 z 3 3
k a



Variational results for g = 3

From minimizing (1| Al1k) over all choices of |¢) for various A:

q=3 9=3
16 -4
1]
H
14 .
g
12
- g -8
210
H . s
< o kegxo0 .
8
08 10 k= gy x4
. .
o kefix8
06 k=g x12
12 o k=fx16
e o kefx20 .
00 o5 1o 15 20 25 30 p 3 :
k s

Good agreement with exact diagonalization results:

gq=3

0g0e® ®e

® .
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Variational results for g = 2

Still very good convergence with A:
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Variational results for g = 2

Still very good convergence with A:

109(E5 ~ E4-1)

oo os o 1s 20 25 30 2 3 1

o Confirms that there is still a well-defined domain wall band within the
continuum. ((Dx| will only have significant overlap with this band.)




Membrane picture at finite g

@ In the limit of large system sizes and late times, the local dressing
with O(1) A can be neglected.

o We still get the membrane formula at finite g, with £(v) given by
Legendre transform of exact dispersion relation.

@ &(v) can be found numerically from E(k), and in particular we can
check that the constraints on the membrane tension are satisfied:

Local Brownian GUE model, n =2 Ve, and vg as a function of g in Brownian GUE model

o ve, s w®w = =
]
oo ® v

08 "




Brownian mixed-field Ising model
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Let us now consider a spin-1/2 system, with the following
time-dependent Hamiltonian.

H(t) = Z Jz(t) Zi + Jx(t) Xi + Jzz(t) Z,'Z,'+1

where the variances are proportional to g7, gx, &zz.
Let us fix gx = gzz = 1, and consider various values of gz.

In this case,

o Ground state subspace of P; is still spanned by |1 ... 1), [{ ... {)
(except at g, = 0).

e Subspace spanned by arbitrary strings of 1, is no longer closed.

Again, let us consider a variational ansatz
6) =Y €™ e L) 1Dt 1emra) [Trass 1)
X

where now, |¢x11,.. x+n) is an arbitrary state in a 162-dimensional
Hilbert space.



@ Generic values of g, # 0 should correspond to chaotic systems.

e For g, =0, H(t) can be rewritten in terms of free fermions. The gap
of P4 vanishes and the ground state subspace is larger. swann, Bemard, Nahum

@ We see better convergence of E(k) with A for g, # 0.

@ Membrane tensions from A = 3 dispersion relations:




Higher Renyi entropies in Brownian GUE model



The n-th Renyi entropy can again be written as a transition amplitude,
now with the final state:

e
fi bi f2 by fs b3

i
n

fi b f2 b2 f3 b3

Qier Ml Qicr (el

where e is associated with identity permutation, and n with the cyclic
permutation (nn—1...1).



@ For the superhamiltonian in the Brownian GUE model, we now have
an nl-dimensional Hilbert space at each site.
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@ Let us make the variational ansatz that there are eigenstates of the
form
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where now |@) is an arbitrary state in an (n!)2-dimensional Hilbert
space.
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For the superhamiltonian in the Brownian GUE model, we now have
an nl-dimensional Hilbert space at each site.

The state (1)...1nxex+1...€| evolves to a state consisting of other
permutations o € S,,.

Let us make the variational ansatz that there are eigenstates of the
form

Wi} = Z e |n...1x) |Oxt1,.x+A) [Exratr--€)

X
where now |@) is an arbitrary state in an (n!)2-dimensional Hilbert
space.
For n = 3, we can use the variational method up to A = 4.

We find good convergence of E3(k) with A, indicating that we do
have low-energy eigenstates of this form.

9=3 a=10




@ By plugging this form of the eigenstates into the time-evolution of S,
for initial state with entropy density s, we now get
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@ By plugging this form of the eigenstates into the time-evolution of S,
for initial state with entropy density s, we now get

e~ (—1)Si(x.8) _ /Oo dy /7r dk [E(k)+iku—(n-1)sv]t
NS _g 2T

@ Using the saddle-point equations, we get the entanglement growth

rate
E,(—(n—1)is)

[ =
(5) (n—1)seq
e Using E3(k) from the variational calculation, we find:

q=8

— Tls)
()

@ This seems to give the unphysical prediction that the '3(ssq) # 0!



e Unphysical prediction must be corrected by contributions to e =23
from some other set of eigenstates of Pg.

@ We can argue that there is another natural set of eigenstates of Pg,
such that

e—253(x,t) x e—2seqr3(s)t + e—2seqrg(s)t

= T3(s) = min( T3(s),M2(s) )

g=8

— fas)
s=sc| |s=s S5
12 Fals) N
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@ &(v) is related to '(s) by Legendre transformation. We find that
&3(v) has two phase transitions, of first and second order respectively.

q=8 q=8
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@ &(v) is related to '(s) by Legendre transformation. We find that
&3(v) has two phase transitions, of first and second order respectively.

q=8 q=8
124 — / . n=3 /
e 1.0

/ 08 v=ui v=vi v=ve

o
N W
\

0.6

°
o
Derivative of £3(v)

e For v > vj, &(v) = &E(v).

In particular vg is the same for n =2 and n = 3. (Independent hints
from holography that it should be the same for all n.)

Is there a physical reason for this?



Summary and further questions

@ In Brownian models without conserved quantities, the membrane
picture is a result of gapped low-energy modes that resemble plane
waves of domain walls between permutations.

Questions:
@ How does this picture generalize to finite temperature?

o How does the picture change in Brownian circuits with conserved
quantities? work in progress with Sanjay Moudgalya

e How can a similar set of modes emerge in systems without random
averaging? Can they be seen in holographic CFTs? work in progress with Mark
Mezei and Zhencheng Wang

@ What is the physical interpretation of the phase transitions in the
higher Renyi membrane tensions?

@ Can we quantitatively analyse the higher-dimensional case?

@ Can these modes be used to formulate an effective field theory of
hydrodynamics for entanglement?



Thank you!






Ja()Hq

Random
Lorentzian ‘@‘ 0 00 00
evolution: /

dim=gq

l average over J,(t)
For Sp: dim=q +— @ @ 0 00 @ 0.
(N 0 00 @ &)

Fixed (N 0 00 @ 0.
Euclidean
evolution: (N 0 00 @ @«

l Random GUE H,(t)

Interms of  (11)= IMAX) 4 [MAX) ¢, (11)= IMAX)c[MAX) 1

Ajiva

cvidn a2 — (0 0 00 000 0O

evolution:



