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Thermalization and entanglement entropy

In this talk, we will discuss the emergence of universal properties of
the time-evolution of entanglement entropy in chaotic quantum
many-body systems.

Consider the time-evolution of some initial state ρ0:

ρ(t) = e−iHtρ0e
iHt

If H is chaotic, then at late times, most details of ρ0 are forgotten
and ρ(t) resembles a thermal density matrix ρ(eq). This process is
known as thermalization.

Holographic CFTs are an example of highly chaotic systems.
Thermalization in the CFT corresponds to black hole formation in the
bulk.
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With local interactions, increasingly large regions are thermalized as
time evolves:

𝐴

𝐴

𝐴 𝐴

𝜌! 𝑡 ≈ 𝜌",!	

For any fixed region A (smaller than half of the full system), the
reduced density matrix ρA(t) approaches thermal density matrix.

One way to probe this process is by considering time-evolution of the
Renyi entropies,

Sn,A(t) = − 1

n − 1
logTr[ρA(t)

n] , n = 1, 2, ...

n → 1 limit is von Neumann entropy.

Due to thermalization, these quantities will approach extensive
thermal values at late times:

lim
t→∞

Sn,A(t) = seqVA .
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Universality in approach to equilibrium

We expect there to be universality not only in the late-time saturation
values of various quantities during thermalization, but also in the way
in which they are approached.

Evolution of entanglement entropy in generic chaotic time-evolutions
is very difficult to study analytically.

But the few analytically tractable examples we can study suggest a
remarkable universality.

In both random circuits and holographic CFTs, the evolution of
entanglement entropy at late times can be expressed in terms of a
membrane formula.

Conjectured to hold universally in Jonay, Huse, Nahum.



Membrane picture for entanglement growth

In one spatial dimension, suppose we want to find Sn of the region to
the left of some x at time t.

Extend the system in time direction from τ = 0 to τ = t, and
consider lines with different velocities v :
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Membrane picture for entanglement growth

In one spatial dimension, suppose we want to find the entanglement
entropy of the left half-line at time t.

Extend the system in time direction from τ = 0 to τ = t, and
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Physical consequences
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Sn(x , t) = minv [seq En(v) t + Sn(y , t = 0)]

Consider an initial state with volume law entanglement entropy, with
coefficient s:

Sn(y , t = 0) = s × (y + L/2), 0 < s < seq .

The membrane formula gives an s-dependent growth rate of Sn(x , t):

Sn(x , t) = Sn(x , t = 0) + seq Γn(s) t

where Γ is related to E by Legendre transform.

Constraints on membrane tension are equivalent to the condition that
Γn(seq) = 0 .



While this formula turns out to hold in both random circuits and
holographic CFTs, the methods used in the two cases are very
different.

In random circuits, Haar averages for n-th Renyi entropy. (Explicit
calculation for the second Renyi entropy, and results in certain limits
for third Renyi entropy.)

In holographic CFTs:

Thermalization in boundary is dual to gravitational collapse in bulk.

Liu and Suh, Hartman and Maldacena applied HRT formula Hubeny, Rangamani, Takayanagi to
find the evolution of von Neumann entropy in this setup.

Mezei showed that for large system size and time, we can get rid of the
radial direction in the bulk, and reduce the HRT formula to a
minimization problem in the boundary.

The resulting membrane tension satisfies non-trivial constraints from
Jonay, Huse, Nahum.
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Questions

What is the physical meaning of the entanglement membrane, and
the source of this universality?

Heuristically, if there is a tensor network representation of the state,
we may think of the membrane as a “minimal cut.”

But we would like to have a more precise understanding of the
following questions:

1. What is the source of the velocity-dependent function E(v)?

2. Is there an underlying structure in terms of low-lying modes,
which we could look for in a continuum theory such as a
holographic CFT?

3. How does the structure of E(v) depend on the Renyi index n?
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In this talk, we will propose a possible common underlying structure,
involving certain universal low-lying modes.

We will make use of a family of time-dependent Hamiltonians:

H(t) =
∑
α

Jα(t)Hα,

where the Hα are local operators, and Jα(t) are random numbers,
uncorrelated for different times and different α.

𝐽!(𝑡)𝐻!Random 
Lorentzian
evolution: 

𝐻!(𝑡)

𝐻!(𝑡)

Previously, such models have allowed a derivation of diffusion in
two-point functions Moudgalya and Motrunich; Ogunnaike, Feldmeier, Lee.
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From Lorentzian to Euclidean time-evolution

Observables of interest, such as the n-th Renyi entropy, can be
written as a transition amplitudes under (U ⊗ U∗)⊗n in any system.

e−(n−1)S
(A)
n = TrAρ

n
A = TrA

(
TrĀUρ0U

†
)n

…

! = 0

!

$! $′! $" $′" $# $′#

&$

Tr% , Tr%

The key simplification in Brownian models is that the Lorentzian
evolution on 2n copies can be replaced with a Euclidean evolution:

(U(t)⊗ U(t)∗)⊗n = e−P2nt
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TrĀUρ0U

†
)n

…

! = 0

!

$! $′! $" $′" $# $′#

&$

Tr% , Tr%

The key simplification in Brownian models is that the Lorentzian
evolution on 2n copies can be replaced with a Euclidean evolution:

(U(t)⊗ U(t)∗)⊗n = e−P2nt



From Lorentzian to Euclidean time-evolution

Observables of interest, such as the n-th Renyi entropy, can be
written as a transition amplitudes under (U ⊗ U∗)⊗n in any system.

e−(n−1)S
(A)
n = TrAρ

n
A = TrA

(
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Let us derive the Euclidean evolution explicitly in the two-copy case
(n = 1).

Divide time-evolution into small steps of size ϵ.

H(t) =
∑
α

Jα(t)Hα

Jα(t) = 0, Jα(t)Jα′(t ′) =
1

2

δαα′δtt′

ϵ
Then we have:

e iHa(t)ϵ ⊗ e−iHb(t)
T ϵ

≈ (1+ iHa(t)ϵ−
1

2
Ha(t)

2ϵ2 + ...)⊗ (1− iHb(t)
T ϵ− 1

2
Hb(t)

T 2
ϵ2 + ...)

= 1− ϵP2 + O(ϵ2) ≈ e−ϵP

where
P2 =

∑
α

(Ha,α − HT
b,α)
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Summary

The n-th Renyi entropy can be expressed as a transition amplitude
under Euclidean evolution with a non-negative Hamiltonian P2n.

The equilibrium saturation value of the n-th Renyi entropy is
determined by the zero energy states of P2n.

The result is consistent with the equilibrium approximation of Liu and SV.

Approach to equilibrium is determined by low energy eigenstates,
which have a universal structure.
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For the second Renyi entropy in models without symmetries:

P4 has two degenerate ground states:

↓ ↓ ↓ ↓ ↓ ↓ ↓ !

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  , ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ !"#"$ ↑ ↑ ↑ ↑ ↑ ↑|𝜙!!,…,!"⟩|𝜓!⟩ = Σ"	𝑒#	!	"
The low-energy excitations include a “one-particle” band
approximately given by:

↓ ↓ ↓ ↓ ↓ ↓ ↓ !

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓  , ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

↑ !"#"$ ↑ ↑ ↑ ↑ ↑ ↑|𝜙!"$,…,!"#⟩|𝜓!⟩ = Σ"	𝑒#	!	"

for some O(1) d .

This structure leads to the membrane picture.
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The one-particle excitations have a gapped dispersion relation E (k).
The entanglement growth rate is given by

Γ2(s) = E2(k = is)/seq

E(v) can be obtained from this quantity by Legendre transform.

Dispersion relation at O(1) values of k is physically important for
satisfying constraints.

For the third Renyi entropy, we have an analogous set of low-energy
eigenstates. In addition to these, competition from another set of
eigenstates leads to phase transitions in E3(v) as a function of v .
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Plan

Introduce expression for the second Renyi entropy as a transition
amplitude, and the definition of |↑⟩ and |↓⟩.

Derive the low-energy excitations in a simplifying limit.

Discuss how the structure remains robust more generally.

Discuss qualitatively new features of the third Renyi entropy.



Second Renyi entropy as transition amplitude



Second Renyi entropy as a transition amplitude

Second Renyi entropy involves two forward and two backward copies
of U:

e−S2,A(t) = TrA

(
TrĀUρ0U

†
)2

…

𝑡

𝑓! 𝑏!

Tr" 	, Tr"

𝑈⊗𝑈∗ 𝑈⊗𝑈∗ 𝑈⊗𝑈∗⊗

𝑓# 𝑏# 𝑓$ 𝑏$

𝑓! 𝑏! 𝑓# 𝑏#

⊗! ↑ , 	 𝑖"𝑖"# 𝑖$𝑖$# ↑ =
1
𝑞
𝛿!"!"#𝛿!$!$# 	

⊗! ↓ , 	 𝑖"𝑖"# 𝑖$𝑖$# ↓ =
1
𝑞
𝛿!"!$#𝛿!$!"# 	

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

𝑎 𝑏 𝑐 𝑑

Let us introduce the following “spins” on four copies of a single site in

particular, Zhou and Nahum

|↑⟩ = |MAX⟩ab |MAX⟩cd , |↓⟩ = |MAX⟩ad |MAX⟩bc

Evolution of second Renyi entropy is given by

e−S2,A(t) = ⟨DΣA
|(U ⊗ U∗)2 |ρ0⟩ |ρ0⟩

where

𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑
𝐴



Second Renyi entropy as a transition amplitude

Second Renyi entropy involves two forward and two backward copies
of U:

e−S2,A(t) = TrA

(
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Equilibrium value in models without conserved quantities

P4 generally has exactly two zero energy eigenstates:

|↑ .... ↑⟩ , |↓ ... ↓⟩

This gives the Page value for the entropy of pure state at late times:

lim
t→∞

S2,A(t) = min(log dA, log dĀ)

We would now like to understand the approach to this value using the
low-energy modes of P4.



Low energy excitations: GUE model



GUE model

Take each Hα(t) to be an i.i.d. random Hermitian matrix on adjacent
sites drawn from the GUE ensemble:

Hα(t) = H
(GUE)
i ,i+1 (t)

𝐽!(𝑡)𝐻!Random 
Lorentzian
evolution: 

𝐻!(𝑡)

𝐻!(𝑡)

dim = 𝑞

Using the average over these random matrices, P4 can be expressed
entirely in terms of |↑⟩ , |↓⟩.
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Analytically solvable large q limit

In the large q limit, P4 is exactly solvable, and has a very simple
action on a single domain wall

⟨Dx | ≡ ⟨↓ ↓ ... ↓x ↑x+1 ↑ ... ↑|

⟨Dx |P4 = ⟨Dx | −
1

q
(⟨Dx−1|+ ⟨Dx+1|)

This leads to the following band of lowest excited states:

⟨ψk | =
∑
x

e ikx ⟨Dx |

E (k) = 1− 2

q
cos k

k

E(k)𝐸(𝑘)

𝑘

Δ

−𝜋 𝜋



Second Renyi entropy for half-line region

Let us return to the second Renyi entropy of a half-line region:

e−S2(y ,t) = ⟨Dy |e−P4t |ρ0, e⟩
𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑

𝐴

𝑦

𝑥

𝜏 = 𝑡

𝜏 = 0

𝑦

Since ⟨Dy | only evolves to a superposition of ⟨Dx | at other locations,

e−S2(y ,t) =
∑
x

⟨Dy |e−P4t |D̄x⟩ ⟨Dx |ρ0, e⟩

=
∑
x

⟨Dy |e−P4t |D̄x⟩ e−S2(x ,t=0)

𝐷!! =	⊗"∈$ ↓ ⊗"∈$̅ ↑
𝐴

𝑦

𝑥

𝜏 = 𝑡

𝜏 = 0

𝑦



Membrane picture from one domain wall band

Using one-particle eigenstates in domain wall propagator:

⟨Dy |e−P4t |D̄x⟩ =
∑
k

e ik(x−y)e−E(k)t

At late times: using saddle-point approximation for the propagator,

S2(y , t) = minv [seq E(v) t + S2(y + vt, t = 0) ]

where

E(v) = E (kv )− ikvv

seq
, kv is solution to E ′(kv ) = iv .

𝑣!

𝑡′ = 𝑡

𝑡′ = 0

𝑣

𝐿"#$%

𝐿"

𝑦

𝑥 𝑗

𝜏 = 𝑡

𝜏 = 0

𝑣

𝑦 = 𝑣

ℰ!(𝑣)

ℰ) 𝑣 ≥ 𝑣
ℰ) 𝑣* = 𝑣* 	 , ℰ)+ 𝑣* = 1

𝑣!

𝑣

𝑦 + 𝑣𝑡

𝜏 = 𝑡

𝜏 = 0

𝑦

We can also check that for an initial state with volume law entropy
with coefficient s,

Γ(s) = E (k = is)/seq .
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Finite q in Brownian GUE model



Away from large q limit, interactions can cause domain walls to split,
so the eigenstates and eigenvalues are modified.

⟨Dx |P4 = ⟨Dx | −
1

q
(⟨Dx−1|+ ⟨Dx+1|) +

1

q2
⟨Dx−1,x ,x+1|

From numerical diagonalization of P4:
q = 2 q = 3 q = 4

3 2 1 0 1 2 3
k

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E

3 2 1 0 1 2 3
k

0.50

0.75

1.00

1.25

1.50

1.75

2.00

E

3 2 1 0 1 2 3
k

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

E

Gapped spectrum in all cases, which implies vE ̸= 0.

Is the structure of the eigenstates robust?

Is there still a well-defined one-particle band within the continuum for
q = 2?
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Gapped spectrum in all cases, which implies vE ̸= 0.

Is the structure of the eigenstates robust?

Is there still a well-defined one-particle band within the continuum for
q = 2?



Structure of eigenstates at finite q

Let us consider a variational ansatz for the eigenstates:

|ψk⟩ =
∑
x

e−ikx |↓ .... ↓x⟩ |ϕx+1,...,x+∆⟩ |↑x+∆+1 ... ↑⟩

We can increase the value of ∆, and at each ∆, minimize

Evar(k) = ⟨ψk |P4|ψk⟩

over all choices of |ϕ⟩.

This minimization maps to the problem of diagonalizing an effective
Hamiltonian on a 2∆-dimensional Hilbert space for each k .

Rapid convergence of Evar(k) with ∆ would tell us that the
eigenstates are well-approximated by |ψk⟩ for O(1) ∆. Haegeman, Spyridon,
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Variational results for q = 3

From minimizing ⟨ψk |A|ψk⟩ over all choices of |ϕ⟩ for various ∆:
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Variational results for q = 2

Still very good convergence with ∆:
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Confirms that there is still a well-defined domain wall band within the
continuum. (⟨Dx | will only have significant overlap with this band.)
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Membrane picture at finite q

In the limit of large system sizes and late times, the local dressing
with O(1) ∆ can be neglected.

We still get the membrane formula at finite q, with E(v) given by
Legendre transform of exact dispersion relation.

E(v) can be found numerically from E (k), and in particular we can
check that the constraints on the membrane tension are satisfied:
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Brownian mixed-field Ising model



Let us now consider a spin-1/2 system, with the following
time-dependent Hamiltonian.

H(t) =
∑
i

JZ (t) Zi + JX (t) Xi + JZZ (t) ZiZi+1

where the variances are proportional to gZ , gX , gZZ .

Let us fix gX = gZZ = 1, and consider various values of gZ .

In this case,

Ground state subspace of P4 is still spanned by |↑ ... ↑⟩, |↓ ... ↓⟩
(except at gz = 0).

Subspace spanned by arbitrary strings of ↑, ↓ is no longer closed.

Again, let us consider a variational ansatz

|ϕk⟩ =
∑
x

e−ikx |↓ .... ↓x⟩ |ϕx+1,...,x+∆⟩ |↑x+∆+1 ... ↑⟩

where now, |ϕx+1,...,x+n⟩ is an arbitrary state in a 16∆-dimensional
Hilbert space.
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Generic values of gz ̸= 0 should correspond to chaotic systems.

For gz = 0, H(t) can be rewritten in terms of free fermions. The gap
of P4 vanishes and the ground state subspace is larger. Swann, Bernard, Nahum

We see better convergence of E (k) with ∆ for gz ̸= 0.

Membrane tensions from ∆ = 3 dispersion relations:
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Higher Renyi entropies in Brownian GUE model



The n-th Renyi entropy can again be written as a transition amplitude,
now with the final state:
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where e is associated with identity permutation, and η with the cyclic
permutation (n n − 1 ... 1).



For the superhamiltonian in the Brownian GUE model, we now have
an n!-dimensional Hilbert space at each site.

The state ⟨η...ηxex+1...e| evolves to a state consisting of other
permutations σ ∈ Sn.

Let us make the variational ansatz that there are eigenstates of the
form

|ψk⟩ =
∑
x

e−ikx |η...ηx⟩ |ϕx+1,...,x+∆⟩ |ex+∆+1...e⟩

where now |ϕ⟩ is an arbitrary state in an (n!)∆-dimensional Hilbert
space.

For n = 3, we can use the variational method up to ∆ = 4.

We find good convergence of E3(k) with ∆, indicating that we do
have low-energy eigenstates of this form.
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By plugging this form of the eigenstates into the time-evolution of Sn
for initial state with entropy density s, we now get

e−(n−1)Sn(x ,t) =

∫ ∞

−∞
dv

∫ π

−π

dk

2π
e−[En(k)+ikv−(n−1)sv ]t

Using the saddle-point equations, we get the entanglement growth
rate

Γn(s) =
En(−(n − 1)is)

(n − 1)seq

Using E3(k) from the variational calculation, we find:
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This seems to give the unphysical prediction that the Γ3(seq) ̸= 0!
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Unphysical prediction must be corrected by contributions to e−2S3

from some other set of eigenstates of P6.

We can argue that there is another natural set of eigenstates of P6,
such that

e−2S3(x ,t) ∝ e−2seqΓ̄3(s)t + e−2seqΓ2(s)t

⇒ Γ3(s) = min( Γ̄3(s), Γ2(s) )
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E(v) is related to Γ(s) by Legendre transformation. We find that
E3(v) has two phase transitions, of first and second order respectively.
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For v > v∗2 , E3(v) = E2(v).

In particular vB is the same for n = 2 and n = 3. (Independent hints
from holography that it should be the same for all n.)

Is there a physical reason for this?
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Summary and further questions

In Brownian models without conserved quantities, the membrane
picture is a result of gapped low-energy modes that resemble plane
waves of domain walls between permutations.

Questions:

How does this picture generalize to finite temperature?
How does the picture change in Brownian circuits with conserved
quantities? work in progress with Sanjay Moudgalya

How can a similar set of modes emerge in systems without random
averaging? Can they be seen in holographic CFTs? work in progress with Mark

Mezei and Zhencheng Wang

What is the physical interpretation of the phase transitions in the
higher Renyi membrane tensions?

Can we quantitatively analyse the higher-dimensional case?

Can these modes be used to formulate an effective field theory of
hydrodynamics for entanglement?



Thank you!



E(v) = maxs

(
vs

seq
+ Γ(s)

)

E3(v) =


Ē3(v) v ≤ v∗1
Γ̄3(s∗) +

s∗

seq
v v∗1 ≤ v ≤ v∗2

E2(v) v ≥ v∗2



𝐽!(𝑡)𝐻!

𝐽!(𝑡)𝐻!Random 
Lorentzian
evolution: 

𝑞

dim = 𝑞

For 

Fixed  
Euclidean 
evolution: 

𝑆": dim = 𝑞 𝑎

𝑏

𝑐

𝑑

In terms of ↑ = MAX #$|MAX⟩%&  ,        ↓ = MAX $%|MAX⟩#&

𝐴',')*Fixed  
Euclidean 
evolution: 

dim = 2

average  over  𝐽!(𝑡)

Random GUE 𝐻!(𝑡)


