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So diverse are the topics, I guess

that two weeks at ICTS

are memorable, though short.

A real bonus was to spot

distant cousins of zeta of ess!
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This is an expository talk on certain combinatorial aspects of
matrix groups over rings.

We discuss different types of bounded factorizations of matrix
groups - including Chevalley groups - over certain commutative
rings - these include semi-local rings, rings of matrix-valued
holomorphic maps on Stein spaces, number rings....

Results are often intimately related to deeper properties such
as the congruence subgroup property (CSP), Kazhdan’s
property T, finiteness of representations etc.

We mention growth (zeta) functions which arise naturally,
whose analytic content encodes group theoretic information.
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Expressions of a matrix in the group SL(2,R) over a Euclidean
ring R as a product of elementary matrices correspond to
continued fractions.

Existence of arbitrary long division chains in Z shows that the
group SL(2,Z) cannot have bounded width in elementary
generators.

We start with the following problem which arises in several
independent contexts:
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Uni-triangular Factorization

For a commutative ring R , find the shortest factorisation
UU−UU− . . .U± of an (elementary) Chevalley group E (Φ,R)
(if one exists), in terms of the unipotent radical U = U(Φ,R)
of a standard Borel subgroup B = B(Φ,R), and the unipotent
radical U− = U−(Φ,R) of the opposite Borel subgroup
B− = B−(Φ,R).

Over fields, there was a vivid interest in explicit calculation of
length.
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Gilbert Strang noticed in 1997 that the groups SL(n,K ) over a
field K admit unitriangular factorisation

SL(n,K ) = U−(n,K )U(n,K )U−(n,K )U(n,K )

of length 4.

Experts in computational linear algebra call this the
LULU-factorisation; amusingly, this result was observed in
linear algebra due to applications in computer graphics.
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(
cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

)
=

(
1 tan(ϕ/2)
0 1

)(
1 0

− sin(ϕ) 1

)(
1 tan(ϕ/2)
0 1

)
.

This ULU-decomposition into ‘shears’ is valuable in computer
graphics, when a plane figure is to be turned. The rotation is
effectively reduced to a series of translations in coordinate
directions.
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A three-dimensional rotation g is completely determined by its
Euler angles (α, β, γ):
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where c(φ) and s(φ) denote cos(φ) and sin(φ), respectively.
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We have a unitriangular factorization of length 3:
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To quote Vavilov: “This fact got to the household of linear
algebra decades after it became standard in algebraic
K -theory, and at that in a much larger generality. However, as
we know, the walls between different branches of mathematics
are high. Many works addressing the length of unitriangular
factorisations show that experts in one field are usually
completely unaware of the standard notions and results in
another field. It is hard to imagine, how much time and energy
could have been saved, should millions of programmers and
engineers learn the words parabolic subgroup and Levi
decomposition, rather than persisting in retarded matrix
manipulations.”
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(Over finite fields), the group U(Φ, q) = U(Φ,Fq) is a Sylow
p-subgroup of the Chevalley group G (Φ, q) = G (Φ,Fq). Thus,
in this case, one seeks to calculate the minimal length of
factorisation of a finite simple group of Lie type in terms of its
Sylow p-subgroups, in the defining characteristic.

Martin Liebeck and Laszlo Pyber proved that finite Chevalley
groups admit unitriangular factorisation

G (Φ, q) = (U(Φ, q)U−(Φ, q))6U(Φ, q)

of length 13.

Laszlo Babai, Nikolay Nikolov and Laszlo Pyber proved that
finite Chevalley groups admit unitriangular factorisation

G (Φ, q) = U(Φ, q)U−(Φ, q)U(Φ, q)U−(Φ, q)U(Φ, q)

of length 5.
B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



We describe a general result (with Vavilov and Smolensky) for
commutative rings of stable rank 1; it generalizes in a uniform
way a number of known results such as these.

We shall also discuss results that address the problem over
number rings (some of these proved with Alexander Morgan
and Andrei Rapinchuk); these have consequences to the
so-called bounded generation problem.
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A ring R has stable rank 1, if for all x , y ∈ R , which generate
R as an ideal, there exists a z ∈ R such that x + yz is
invertible. In this case we write sr(R) = 1.

Examples of ring of stable rank 1 are fields, semi-local rings (in
particular, finite rings), and the ring of all algebraic integers,
ring of entire functions.

More generally, R has stable rank n + 1 if n is the minimal
number such that whenever (a0, a1, · · · , an) is a unimodular
vector in Rn+1, there exist b1, · · · , bn in R such that
(a1 + b1a0, · · · , an + bna0) is a unimodular vector in Rn.
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Theorem 1. Let Φ be a reduced irreducible root system and
R be a commutative ring such that the stable rank sr(R) = 1.
Then the elementary Chevalley group E (Φ,R) admits
unitriangular factorisation

E (Φ,R) = U(Φ,R)U−(Φ,R)U(Φ,R)U−(Φ,R).

of length 4. Further, 4 is the minimum possible for such a
result to hold good if R has a nontrivial unit.

The last assertion is immediate since U−(Φ,R) ∩ B(Φ,R) = 1
and, therefore, one has

T (Φ,R) ∩ U(Φ,R)U−(Φ,R)U(Φ,R) = 1.

In other words, 1 is the only element of the torus T (Φ,R),
that admits a unitriangular factorisation of length < 4.
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Theorem 1 is easily proved for the toy case SL2 (which is the
only place where the condition on stable rank 1 is used).

Lemma 1. Let R be a commutative ring of stable rank 1.
Then

SL(2,R) = U(2,R)U−(2,R)U(2,R)U−(2,R).

In particular, SL(2,R) = E (2,R).
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• For a Dedekind ring of arithmetic type R , the simply
connected Chevalley groups G (Φ,R) = E (Φ,R) of rank ≥ 2
(in contrast with SL2) have bounded width in elementary
generators.

• Wilberd van der Kallen made a striking discovery that in
general Chevalley groups of rank ≥ 2 (even SL(n,C[t]) for
n ≥ 4), may have infinite width in elementary generators.
Thus, in general one can hope to establish existence of
uni-triangular factorisations only over some very special rings
of dimension ≤ 1.
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We briefly recall some definitions and notations while studying
Chevalley groups.

Let Φ be a reduced irreducible root system of rank l ,
W = W (Φ) be its Weyl group and P be a weight lattice
intermediate between the root lattice Q(Φ) and the weight
lattice P(Φ). Further, we fix an order on Φ and denote by
Π = {α1, . . . , αl}, Φ+ and Φ− the corresponding sets of
fundamental, positive and negative roots, respectively.

With this datum, one can associate the Chevalley group
G = GP(Φ,R), which is the group of R-points of an affine
groups scheme GP(Φ,−) - the Chevalley-Demazure group
scheme.
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Since our results, mostly, do not depend on the choice of the
lattice P , in the sequel we usually assume that P = P(Φ) and
omit any reference to P in the notation. Thus, G (Φ,R) will
denote the simply connected Chevalley group of type Φ over R .

Fix a split maximal torus T (Φ,−) of the group scheme
G (Φ,−) and set T = T (Φ,R). As usual, Xα, α ∈ Φ, denotes
a unipotent root subgroup in G , elementary with respect to T .

Fix isomorphisms xα : R 7→ Xα so that Xα = {xα(ξ) | ξ ∈ R},
which are interrelated by the Chevalley commutator formulae;
the elements xα(ξ) are called root unipotents, and E (Φ,R)
denotes the elementary subgroup of G (Φ,R), generated by all
root subgroups Xα, α ∈ Φ.
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For α ∈ Φ and ε ∈ R∗, set hα(ε) = wα(ε)wα(1)
−1, where

wα(ε) = xα(ε)x−α(−ε−1)xα(ε); The elements hα(ε) are called
semisimple root elements.

For a simply connected group one has

T = T (Φ,R) = ⟨hα(ε), α ∈ Φ, ε ∈ R∗⟩.

Let N = N(Φ,R) denote the algebraic normalizer of the torus
T = T (Φ,R), i. e. the subgroup generated by T = T (Φ,R)
and all elements wα(1), α ∈ Φ.
The factor-group N/T is canonically isomorphic to the Weyl
group W , and for each w ∈ W we fix its pre-image nw in N .
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Lemma 2. The elementary Chevalley group E (Φ,R) is
generated by unipotent root elements xα(ξ), α ∈ ±Π, ξ ∈ R ,
corresponding to the fundamental and negative fundamental
roots.

Further, let B = B(Φ,R) and B− = B−(Φ,R) be a pair of
opposite Borel subgroups containing T = T (Φ,R), standard
with respect to the given order; then B and B− are semidirect
products B = T ⋌ U and B− = T ⋌ U−, of the torus T and
their unipotent radicals:

U = U(Φ,R) = ⟨xα(ξ), α ∈ Φ+, ξ ∈ R⟩,

U− = U−(Φ,R) = ⟨xα(ξ), α ∈ Φ−, ξ ∈ R⟩.
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Gauss decomposition over rings of stable rank 1

Let Φ,R ,G ,E ,U ,U−,T etc. be as above.

For the simply connected Chevalley group G (Φ,R) the torus
T (Φ,R) is contained in the elementary subgroup

E (Φ,R) = ⟨U(Φ,R),U−(Φ,R)⟩,

generated by U(Φ,R) and U−(Φ,R).

In general, when the group is not simply connected or the ring
R is not semi-local, elementary subgroup E (Φ,R) can be
strictly smaller than the Chevalley group G (Φ,R) itself.

For a non simply connected group, even the subgroup

H(Φ,R) = T (Φ,R) ∩ E (Φ,R)

spanned by semi-simple root elements hα(ε), α ∈ Φ, ε ∈ R∗,
can be strictly smaller than the torus T (Φ,R).
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A slight modification of the same argument used to prove
theorem 1, gives the following surprising result, asserting that
condition sr(R) = 1 is necessary and sufficient for the
elementary Chevalley group E (Φ,R) to admit a Gauss
decomposition.

Theorem 5. Let Φ be a reduced irreducible root system and
R be a commutative ring such that sr(R) = 1. Then the
elementary Chevalley group E (Φ,R) admits a Gauss
decomposition

E (Φ,R) = H(Φ,R)U(Φ,R)U−(Φ,R)U(Φ,R).

Conversely, if Gauss decomposition holds for some
[elementary] Chevalley group, then sr(R) = 1.
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Note that sr(R) = 1 is equivalent to the condition that
R∗ → (R/I )∗ is surjective for each ideal I .

If R is a commutative ring such that the decomposition
SL(2,R) = U(R)U−(R)H(R)U(R) holds, then for (a, c)

unimodular, the matrix g =

(
a b
c d

)
∈ SL(2,R).

It is expressible in the form(
a b
c d

)
=

(
1 x
0 1

)(
1 0
y 1

)(
s t
0 s−1

)
which gives a = s + sxy , c = sy .

Therefore, a − xc ∈ R∗ thereby showing that sr(R) = 1.
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The above Theorem divorces the existence of Gauss
decomposition from the triviality of K1(Φ,R). In fact, it shows
that the stronger stability conditions are needed only to ensure
that Gsc(Φ,R) = Esc(Φ,R), but are not necessary for the
elementary Chevalley group E (Φ,R) to admit Gauss
decomposition!

Two immediate corollaries of the Theorem are:
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Corollary 1

Let Φ be a reduced irreducible root system and R be a
commutative ring such that sr(R) = 1. Then any element g of
the elementary Chevalley group E (Φ,R) is conjugate to an
element of

U(Φ,R)H(Φ,R)U−(Φ,R).

Corollary 2

Let Φ be a reduced irreducible root system and R be a
commutative ring such that sr(R) = 1. Then the elementary
Chevalley group E (Φ,R) admits unitriangular factorisation

E (Φ,R) = U(Φ,R)U−(Φ,R)U(Φ,R)U−(Φ,R)U(Φ,R)

of length 5.
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This corollary is a generalisation of the results on unitriangular
factorisations over finite fields etc. obtained by others, with a
‘terribly easier’ proof.

Of course, Theorem 1, which is proven by the same method,
starts with a slightly more precise induction base, and asserts
that under condition sr(R) = 1 the elementary Chevalley
group E (Φ,R) admits unitriangular factorisation

E (Φ,R) = U(Φ,R)U−(Φ,R)U(Φ,R)U−(Φ,R)

of length 4.
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Tavgen’s Idea

The proof of theorem 1 relies on the following reduction of
rank result relying on the observation - first used effectively by
Oleg Tavgen - that for systems of rank ≥ 2 every fundamental
root falls into the subsystem of smaller rank obtained by
dropping either the first or the last fundamental root.

Theorem 2. Let Φ be a reduced irreducible root system of
rank ℓ ≥ 2, and R be any commutative ring. Suppose that for
subsystems ∆ = ∆1,∆ℓ the elementary Chevalley group
E (∆,R) admits unitriangular factorisation

E (∆,R) = (U(∆,R)U−(∆,R))L.

Then the elementary Chevalley group E (Φ,R) admits
unitriangular factorisation

E (Φ,R) = (U(Φ,R)U−(Φ,R))L.

of the same length 2L.
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The general proof of Theorem 1 immediately follows from the
toy case Lemma 1, and Theorem 2.

The proof of theorem 2 itself proceeds by considering
Y := (U(Φ,R)U−(Φ,R))L is a subset in E (Φ,R), and
producing a symmetric generating set X ⊆ G satisfying
XY ⊆ Y , then Y = G .
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Proof of Theorem 2

Recall that a subset S in Φ is closed , if for any two roots
α, β ∈ S whenever α + β ∈ Φ, already α + β ∈ S .
For closed S , define E (S) = E (S ,R) to be the subgroup
generated by all elementary root unipotent subgroups Xα,
α ∈ S :

E (S ,R) = ⟨xα(ξ), α ∈ S , ξ ∈ R⟩.

In this notation, U and U− coincide with E (Φ+,R) and
E (Φ−,R), respectively. The groups E (S ,R) are particularly
important in the case where S ∩ (−S) = ∅. In this case
E (S ,R) coincides with the product of root subgroups Xα,
α ∈ S , in some/any fixed order.
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Let again S ⊆ Φ be a closed set of roots; then S can be
decomposed into a disjoint union of its reductive = symmetric
part S r , consisting of those α ∈ S , for which −α ∈ S , and its
unipotent part Su, consisting of those α ∈ S , for which
−α ̸∈ S .
The set S r is a closed root subsystem, whereas the set Su is
special. Moreover, Su is an ideal of S (i.e., if α ∈ S , β ∈ Su

and α + β ∈ Φ, then α + β ∈ Su).
Levi decomposition asserts that the group E (S ,R)
decomposes into semidirect product
E (S ,R) = E (S r ,R)⋌ E (Su,R) of its Levi subgroup E (S r ,R)
and its unipotent radical E (Su,R).
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Elementary parabolic subgroups

The main role in the proof of Theorem 2 is played by Levi
decomposition for elementary parabolic subgroups.

Denote by mk(α) the coefficient of αk in the expansion of α
with respect to the fundamental roots:

α =
∑

mk(α)αk , 1 ≤ k ≤ l .
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Now, fix any r = 1, . . . , ℓ - in fact, in the reduction to smaller
rank it suffices to employ only terminal parabolic subgroups,
the ones corresponding to the first and the last fundamental
roots, r = 1, ℓ.

Denote by
S = Sr = {α ∈ Φ, mr (α) ≥ 0}

the r -th standard parabolic subset in Φ.

As usual, the reductive part ∆ = ∆r and the special part
Σ = Σr of the set S = Sr are defined as

∆ = {α ∈ Φ, mr (α) = 0}, Σ = {α ∈ Φ, mr (α) > 0}.
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The opposite parabolic subset and its special part are defined
similarly

S− = S−
r = {α ∈ Φ, mr (α) ≤ 0}, Σ− = {α ∈ Φ, mr (α) < 0}.

Obviously, the reductive part of S−
r equals ∆.

Denote by Pr the elementary maximal parabolic subgroup of
the elementary group E (Φ,R). By definition,

Pr = E (Sr ,R) = ⟨xα(ξ), α ∈ Sr , ξ ∈ R⟩.
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We have the Levi decomposition,

Pr = Lr ⋌ Ur = E (∆,R)⋌ E (Σ,R).

Recall that

Lr = E (∆,R) = ⟨xα(ξ), α ∈ ∆, ξ ∈ R⟩,

Whereas

Ur = E (Σ,R) = ⟨xα(ξ), α ∈ Σ, ξ ∈ R⟩.

A similar decomposition holds for the opposite parabolic
subgroup P−

r , whereby the Levi subgroup is the same as for
Pr , but the unipotent radical Ur is replaced by the opposite
unipotent radical U−

r = E (−Σ,R).
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As a matter of fact, we use Levi decomposition in the following
form. It will be convenient to slightly change the notation and
write U(Σ,R) = E (Σ,R) and U−(Σ,R) = E (−Σ,R).

Lemma 3

The group ⟨Uσ(∆,R),Uρ(Σ,R)⟩, where σ, ρ = ±1, is the
semidirect product of its normal subgroup Uρ(Σ,R) and the
complementary subgroup Uσ(∆,R).
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In other words, the subgroup U±(∆,R) normalizes each of the
groups U±(Σ,R) so that, in particular, one has the following
four equalities for products

U±(∆,R)U±(Σ,R) = U±(Σ,R)U±(∆,R).

Furthermore, the following four obvious equalities for
intersections hold:

U±(∆,R) ∩ U±(Σ,R) = 1.

In particular, one has the following decompositions:

U(Φ,R) = U(∆,R)⋌U(Σ,R), U−(Φ,R) = U−(∆,R)⋌U−(Σ,R).
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To complete the proof of Theorem 2, note by Lemma 2, that
the group G is generated by the fundamental root elements

X = {xα(ξ) | α ∈ ±Π, ξ ∈ R}.

Thus, it suffices to prove that XY ⊆ Y .

Fix a fundamental root unipotent xα(ξ). Since rk(Φ) ≥ 2, the
root α belongs to at least one of the subsystems ∆ = ∆r ,
where r = 1 or r = ℓ, generated by all fundamental roots,
except for the first or the last one, respectively.
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Set Σ = Σr and express U±(Φ,R) in the form

U(Φ,R) = U(∆,R)U(Σ,R), U−(Φ,R) = U−(∆,R)U−(Σ,R).

Using Lemma 3 we see that

Y = (U(∆,R)U−(∆,R))L(U(Σ,R)U−(Σ,R))L.

Since α ∈ ∆, one has xα(ξ) ∈ E (∆,R), so that the inclusion
xα(ξ)Y ⊆ Y immediately follows from the assumption; the
proof of theorem 2 is completed.
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Relative Factorizations

Sinchuk and Smolensky also developed the above methods to
prove congruence subgroup versions (that is, relative to ideals
versions) of the Gauss decomposition in collaboration with
Sinchuk.

For an ideal I of R , an I -unimodular row in Rn+1 is a
unimodular row (a0, a1, · · · , an) which is congruent to
(1, 0, · · · , 0) modulo I ; one calls it stable, if there are
b1, · · · , bn ∈ I so that (a0 + b1an, a1 + b2an, · · · , an−1 + bnan)
is also I -unimodular.

The stable rank sr(I ) of I is the minimal n for which every
I -unimodular row of length n + 1 is stable.
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Given a simply-connected Chevalley group G (Φ,R) with
respect to an irreducible root system Φ, the normal closure of
the group E (Φ, I ) generated by xα(s), s ∈ I , α ∈ Φ in the
principal congruence subgroup modulo I is denoted by
E (Φ,R , I ).

Using the same Tavgen idea, Sinchuk and Smolensky prove a
relative Gauss decomposition for an ideal I with sr(I ) = 1 in
any commutative ring:

E (Φ,R , I ) = H(Φ,R , I )U(Φ+, I )U(Φ−, I )U(Φ+, I ).

The starting point with SL(2) is a toy case that is checked
easily.
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Further, they also prove using the same approach as in our
first paper, that for the ring OS of S-integers in a number field
admitting a real embedding, the principal S-congruence
subgroup modulo I ⊂ OS of a classical Chevalley group for
rank Φ ≥ 2, has finite width respect to the so-called
Tits-Vaserstein generators tij(a)tji(b)tij(−a) for a ∈ OS and
b ∈ I and i ̸= j .

Recently (2023), in the case of SLn, Pavel Gvozvedsky has
developed the methods to obtain explicit bounds for the width
depending on the degree, discriminant and class number.
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Covering Number

If G is a group, and C is a conjugacy class, some old results
deal with finding the smallest positive integer c (if it exists)
such that C c = G .

For instance, for finite simple (nonabelian) groups, there exist
C such that C 2 = G .

The group PSLn(K ) over a field K of cardinality large enough
with respect to n (for example, an algebraically closed field),
there exists conjugacy classes C for which C 2 = G (proved in
1993 by A. Lev).
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Very recently, Iulian Simion has used the unitriangularization
theorem (Theorem 1) to prove that for a simple algebraic
group G over algebraically closed fields of good characteristic
and for any unipotent conjugacy class C , results of the form
C c = G for appropriate c .

More precisely, he proves that if C is the conjugacy class of a

unipotent u, then C c = G where c ≤ 25.32rank(G)
rank(G)−rank(CG (u))

and

also that c ≤ 29.32dim(G)
dim(C)

.

For distinguished unipotent conjugacy classes (that is, those
for which Cg (u)

0 is unipotent), he gets a uniform bound
c ≤ 72.
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In the most recent issue of Mathematische Annalen, Larsen,
Shalev and Tiep have shown that a very general phenomenon
occurs in the case of finite simple nonabelian groups.

They prove that if w is any nontrivial word, then either
w(G )6 = G for all finite simple nonabelian groups G , or
w(G0) = {1} for some finite, simple nonabelian group G0.
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Rings of holomorphic functions

Very recently, Gaofeng Huang, Frank Kutzschebauch and
Josua Schott have applied the unitriangularization theorem in
the context of the so-called Gromov-Vaserstein problem
(Gromov calls it the Vaserstein problem).

One considers the map of factoring a map f from a
topological space X to SLn(C), which is null-homotopic (i.e.,
homotopic to a constant map) into a product as

f (x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
· · ·

(
1 GN(x)
0 1

)
where Gi are maps: X → Cn(n−1)/2.
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For polynomial maps f : C → SLn(C), such a factorization
evidently exists with Gi ’s polynomials as C[X ] is a Euclidean
ring.

On the other hand, polynomials of degree 2 do not always
admit such a factorization; a famous example due to P.M.

Cohn is f (X ,Y ) =

(
1− XY X 2

−Y 2 1 + XY

)
.

For degrees ≥ 3, they do have a unitriangular factorization by
a theorem of Suslin.
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Gromov and Vaserstein considered factoring holomorphic maps
f : Cm → SLn(C) into finite products of holomorphic maps
sending Cm to unitriangular matrices.

Björn Ivarsson and Frank Kutzschebauch solved the problem
(a paper in Annals of Mathematics in 2012) using the
so-called Oka principle which is referred by René Thom as the
most beautiful principle in analysis - roughly, the principle
asserts that if a continuous solution exists, then a holomorphic
one also does.
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If X is a reduced Stein space, whose smooth part has
dimension n, then Alexander Brudnyi proved in 2019 that the
stable rank of the ring O(X ) of holomorphic functions is
⌊dim(X )⌋+ 1.

In the 2024 paper, Huang, Kutzschebauch and Schott prove
that there exists a minimal upper bound t(n, d) such that
every null-homotopic holomorphic map f : X → Sp2n(C) from
a d-dimensional reduced Stein space X factorizes into a
product of at most t unitriangular factors.

Also t(n, d) ≤ t(1, d), t(n, 1) = 4 and t(n, 2) ≤ t(1, 2) ≤ 5
for all n ≥ 1.
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The above-mentioned paper also proves that the
path-connected component at identity Sp2n(O(X ))0 has
Kazhdan’s property (T) when n ≥ 2 - we will talk about
property (T) later in the context of bounded generation.

Earlier Ivarsson and Kutzschebauch had also shown that
SLn(O(X )) has property (T) when n ≥ 3. These are examples
of non-locally-compact groups with property (T).
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Commutator Width

Unitriangular factorizations or Gauss decompositions discussed
above are intimately related to another combinatorial problem
- one of width with respect to commutators.

A group G is said to have commutator width N if N is the
least positive integer such that every element of [G ,G ] is a
product of at the most N commutators; we write c(G ) = N ;
this could be infinite or 0 (when G is abelian).

Ore conjecture (which is proved now) asserts that the
commutator width of every finite simple, nonabelian group is
1. Also, the symmetric groups on infinite sets have
commutator width 1.
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Vaserstein and others obtained in the 1990’s, bounds for
commutator width of classical groups over commutative rings;
they proved that GL(n,R) for n ≥ 3, has commutator width
≤ 2 if sr(R) = 1, and for other classical groups, there are
(worse) bounds under more assumptions on R .

If the stable rank is finite, it is possible that c(GLn(R)) = ∞
but, if there is n ≥ sr(R) + 1 such that c(GLn(R)) < ∞, then
c(GLn(R)) ≤ 4 for n >> 0.
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Andrei Smolensky used the methods we had developed in the
earlier works to prove in 2019 that all elementary Chevalley
groups of rank ≥ 2 over a ring with sr(R) = 1 have
commutator width ≤ 3, 4 or 5.

In contrast, SLn(C[X ]) has infinite commutator width; so, one
cannot generalize the earlier results even to SLn over rings
with stable rank 2.
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Smolensky uses the unitriangular factorisation
E (Φ,R) = U+(Φ(R))U−(Φ(R))U+(Φ(R))U−(Φ(R)) we had
proved earlier.

Apart from using the above factorization to carry out
induction, he considers weight diagrams, and simple ideas from
linear algebra such as proving that given u ∈ U+, there exists
x ∈ U+ such that xuπx−1 is a ‘companion matrix’ where π is
a lift of a Coxeter element.
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In other words

Images of general word maps (not just commutators) have
been studied extensively.

For simple algebraic groups, any nontrivial word is dominant -
as shown by Borel.

A more general version of Ore conjecture on commutators has
been proved for any nontrivial word map w on a finite simple
(nonabelian) group G ; it is known that w(G )w(G ) = G
provided O(G ) >> 0.
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Avni, Gelander, Kassabov and Shalev proved that if p is a
prime and n|(p− 1) is a proper divisor, then c(PSLn(Zp)) = 1.

If O is a local ring, they also prove that every element of
SLn(O) which is outside the congruence subgroup of matrices
congruent to a scalar modulo the maximal ideal m, is a single
commutator in case n < |O/m| − 1.
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For general words on p-adic semisimple groups, they prove:

If G is a simply connected, semisimple Q-algebraic group, and
w1,w2,w3 are nontrivial words, then
w1(G (Zp))w2(G (Zp))w3(G (Zp)) = G (Zp) if p is a large
enough prime.

Instead of G (Zp) for a single prime p, if we consider the adelic

group G (Ẑ), then an analogue of the above result due to Dan
Segal says that the image is open.
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Some more old results on c(G )

We have c(GLn(F )) = 1 if F is an algebraically closed field;
c(GLn(F )) ≤ 2 for any real-closed field F ; and c(SLn(F )) ≤ n
for any infinite field F .

For any connected compact topological group G in which
[G ,G ] is dense (these include all connected compact
semi-simple Lie groups), c(G ) = 1.

If Gi (1 ≤ i ≤ n) are nonabelian, finitely presented groups,
then the free product G = G1 ∗ G2 ∗ · · · ∗ Gn has
c(G ) ≥

∑n
i=1 c(Gi) ≥ n.
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If G varies over finite groups with [G ,G ] cyclic, the values of
c(G ) are unbounded, but if G varies only over nilpotent
groups with this property, then c(G ) = 1.

For the ring R of continuous functions from R to itself, we
have c(SLn(R)) < ∞ if n ≥ 3 and ∞ if n = 2.

The universal cover S̃L2(R) has infinite commutator width.

For any PID R , we have c(SLn(R)) ≤ 6 for n >> 0 in case
c(SL3(A)) < ∞ (note that the latter is infinite for the PID
C[X ]).
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Number rings

Number-theoretic rings are usually more complicated as they
have stable rank > 1; over the ring Z[1/p], we proved in the
unitriangular factorization paper:

Theorem. Let p be a prime. The elementary Chevalley group
E
(
Φ,Z

[
1
p

])
admits unitriangular factorisation

E
(
Φ,Z

[1
p

])
=

(
U
(
Φ,Z

[1
p

])
U−

(
Φ,Z

[1
p

]))3

of length 6.

B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



The theorem was deduced from the one below for SL2 which
has the stronger bound of 5:

SL2
(
Z
[1
p

])
= UU−UU−U = U−UU−UU−.

Later, with Morgan and Rapinchuk, we have dealt with all
rings of S-integers which have infinitely many units; these
imply a property of bounded generation with respect to cyclic
subgroups, and we briefly digress to discuss this notion.
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Bounded generation

An abstract group G is said to be boundedly generated of
degree ≤ n if there exists a sequence of (not necessarily
distinct) elements g1, · · · , gn such that

G =< g1 >< g2 > · · · < gn >

that is,
G = {g a1

1 g a2
2 · · · g an

n : ai ∈ Z}.

A free, non-abelian group (and therefore, SL2(Z) also) is not
boundedly generated.

On the other hand, a group like SLn(Z) for n ≥ 3, is
boundedly generated by elementary matrices (an elementary
proof of this can be given using Dirichlet’s theorem on primes
in arithmetic progressions).
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In fact, Bogdan Nica has shown more recently that if n ≥ 3
and F is a finite field, the group SLn(F [X ]) is boundedly

generated by 29 + n(3n−1)
2

elementary matrices, and the proof
over F [X ] is based on the following analogue of Dirichlet’s
theorem due to Kornblum and Artin:

If f , g ∈ F [X ] and g ̸= 0, then there are infinitely many
primes congruent to g mod f . Further, such a prime can have
arbitrary degree provided the degree is sufficiently large.
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Finitely generated matrix groups over polynomial rings arise
naturally also in other contexts; for example, the wreath
product Z ≀ Z is a finitely generated subgroup of
GL(2,Z[t, 1/t]).

This group can be realized as the group of 2× 2 matrices(
tm tnf (t)
0 1

)
where f is any polynomial with integer coefficients and m, n
are any integers.

It has an infinitely generated abelian subgroup but, is itself,
generated by just two matrices:
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(
t 0
0 1

)
and

(
1 1
0 1

)
This group does not have bounded generation (a more general
result proved with Nikolay Nikolov shows that A ≀ B can have
BG if, and only only if, A has BG and B is finite; this uses a
beautiful combinatorial group theoretic theorem of B H
Neumann which asserts that when a group is written as a
union of finitely many left cosets of subgroups, those
subgroups which are of infinite index can be dropped!
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Carter and Keller proved BG for SLn(O) for rings of integers
O in number fields and n ≥ 3 - they used the properties of
so-called Mennicke symbols.

Tavgen proved bounded generation of arithmetic groups in
rank > 1 split and quasi-split groups.

Bounded generation of S-arithmetic subgroups in isotropic, but
not necessarily quasi-split, orthogonal groups of quadratic
forms over number fields was established (under some natural
assumptions) by Igor Erovenko and Andrei Rapinchuk.
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Bounded generation for arithmetic groups, when valid, has
deep consequences to the congruence subgroup problem and
finiteness of character variety etc.

For instance, Rapinchuk proved that if G is an abstract group
with bounded generation and has the Fabulous property FAb
(Hab is finite for each H of finite index), then it has only
finitely many completely reducible representations in any given
dimension (in positive characteristic, this is due to Abert,
Lubotzky and Pyber).

Here is a quick indication of the idea of proof when
G = SL(n,Z) with n ≥ 3.
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Let ρ : G → GL(r ,C) and consider its restriction to the upper
triangular unipotent subgroup U of G .

As U is solvable, there is a normal subgroup V of finite index
(d say) in U such that ρ(V ) is upper triangular; then
ρ([V ,V ]) is unipotent.

Since X d2

ij = [Xik(d),Xkj(d)] ∈ [V ,V ], we have ρ(Xij(1))
d2

is
unipotent for all i ̸= j .

Since Xij(1) are mutually conjugate for i ̸= j , the
Zariski-closure of ρ(Xij(1)) has dimension ≤ 1.

As G =< g1 > · · · < gk > with each gi some Xij(1), the
Zariski closure of ρ(G ) has dimension ≤ k ; from this, the
semisimple-rigidity asserted can be obtained.
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A profinite group G is said to be boundedly generated as a
profinite group if there exists a sequence of (not necessarily
distinct) elements g1, · · · , gn such that

G = < g1 >< g2 > · · ·< gn >.

It follows from Lazard’s deep work on p-adic Lie groups and
the solution to the restricted Burnside problem that a pro-p
group has bounded generation (as a profinite group) if and
only if it is a p-adic compact Lie group; this can be thought of
as an analogue of Hilbert’s 5th problem for the p-adic case.
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If an abstract group has bounded generation, then so do its
pro-p completions for each prime p (as does the full profinite
completion).

This gives a sufficient criterion for an abstract group to have a
faithful linear representation - viz., if it has bounded
generation and is virtually residually-p.

We can use this fact to show, in particular, that the
automorphism group of a free group does not have bounded
generation (as it does not have a faithful finite-dimensional
representation).
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A characterization such as the one above for pro-p groups by
Lazard, does not hold good for general profinite groups.

For instance, even though the profinite completion of SL(n,Z)
is boundedly generated for n ≥ 3, the Sylow pro-p subgroups
of are not even finitely generated.

The profinite completion of an S-arithmetic group is
boundedly generated if, and only if, it has the S-congruence
subgroup property.
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Very recently, Corvaja, Rapinchuk, Ren and Zannier proved
stunningly surprising results, which show that co-compact
S-arithmetic lattices NEVER have bounded generation (even if
their profinite completions do).

The last-mentioned work which proves that S-arithmetic
groups in a K -anisotropic, simple algebraic group over a
number field K cannot have bounded generation - note that
all elements of G (K ) must be semi-simple - actually proves
something more general:

Let Γ ≤ GLn(K ) be any linear group over a field K of
characteristic zero. Assume Γ is not virtually solvable. Then,
in any possible BG-representation for Γ, at least two of the
elements must be non-semi-simple.
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The above result is not a necessary and sufficient criterion, but
they are able to deduce the following criterion:

A linear group Γ ≤ GLn(K ) over a field of characteristic zero
tnat consists entirely of semisimple elements, has (BG) if, and
only if, it is finitely generated and virtually abelian.

Over any field of positive characteristic, it turns out - as
shown by Abert, Lubotzky and Pyber - that the only possible
linear groups that have bounded generation are the virtually
abelian ones.

B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



In 1999, Yehuda Shalom noticed a connection of Kazhdan’s
property (T) with bounded generation; recall that property (T)
means the trivial representation is isolated in the space of all
unitary representations.

An easy consequence of property (T) for a discrete group is
that it is finitely generated and has finite abelianization.

For the groups SL(n,Z) with n ≥ 3 (using explicit bounded
generation), Shalom obtained explicit Kazhdan constants.
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More interestingly, he showed that for SL(n,Z[X1, · · · ,Xm])
has property T if we know that it has bounded generation with
respect to the elementary matrices.

The above groups are finitely generated and are generated by
the elementary matrices, as proved by Suslin.

It is an open question whether the above groups
SL(n,Z[X1, · · · ,Xm]) (or the groups SL(n,Q[X ])) have
bounded generation or not.
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It has been proved by van der Kallen that SL(n,F [X ]) does
NOT have bounded generation by elementaries if F is a field
with infinite transcendence degree over Q.

The proof is K-theoretic and depends strongly on the fact that
F is a field; so, it doesn’t work for rings like the p-adic
integers.
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The subgroups SL(n,Z[X1, · · · ,Xm]) are sometimes called
‘universal lattices’ because many lattices in SL(d ,K ) for
various fields K , are images of these groups.

Kassabov and Nikolov have proved in 2006 that these
universal lattices have a weaker property called property tau; a
residually finite group has property τ if the trivial
representation is isolated in the space of unitary
representations with finite images.
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In 2006, property (T) itself was proved for the groups
SL(n,Z[X1, · · · ,Xm]) for n ≥ m + 3 by Shalom; this gives
uniform Kazhdan constants for SL(n,O) for many rings of
integers in different number fields, independent of the field.

As mentioned earlier, bounded generation is still open for
these universal lattices but Shalom circumvented this cleverly.
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Basically, Shalom uses the fact that if R is a ring with stable
range n + 1, then the elementary group En+1(R) has finite
width with respect to the set of conjugate subgroups of En(R)
(which is embedded as the lower right-hand corner subgroup).

In addition, he notices the following bounded generation
lemma:
Assume that a group G has finite width with respect to a
family of subgroups {Hi}. If an isometric action of G on a
Hilbert space admits a fixed point for each Hi , then G fixes a
point.

Note that R = Z[X1, · · · ,Xm] has stable range m + 3 and by
Suslin, En = SLn over R .
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Common conjecture of CSP and CmSP

We briefly mention a very exciting result by Yehuda Shalom
and George Willis that generalizes the Margulis normal
subgroup theorem.

They study something called the commensurator subgroup
problem (CmSP) using bounded generation.

An arithmetic group like SL(2,Z) is commensurated by a
larger S-arithmetic subgroup SL(2,Z[1/p]).
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The CmSP is the question as to whether any S-arithmetic
subgroup Γ of G (K ) (K a number field and S-rank of G is at
least 2) has the property that the only infinite subgroups it
commensurates are S1-arithmetic subgroups for a subset S1 of
S .

A related property is the inner commensurator-normaliser
property: each commensurated subgroup is commensurable
with a normal subgroup. One calls it the outer
commensurator-normalizer property if the above property
holds under any homomorphism.

Both the commensurator subgroup property and the outer
commensurator-normalizer property for G (OK ) are proved for
higher rank G (assuming bounded generation is by
unipotents). Shalom-Willis go on to formulate a conjecture
which generalizes both the CmSP and the CSP simultaneously!
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In this context, here is an interesting open question:

Do there exist constants a, b > 0 such that each matrix in
SL(2,Z) is a product of at the most a elementary matrices in
SL(2,Q) whose denominators are bounded in absolute value
by b?
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SL(2,O) - work with Morgan and Rapinchuk

Let O be the ring of S-integers in a number field k whose
group of units O× is infinite.
We show that every matrix in Γ = SL2(O) is a product of at
most 9 elementary matrices.
As a consequence, we obtain that Γ is boundedly generated as
an abstract group by 9[k : Q] + 10 cyclic subgroups. We can
also deduce that for n ≥ 3, the abstract group SLn(O) can be

boundedly generated by 4 + n(3n−1)
2

elementary generators.
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The key notion we use is that of Q-split prime: we say that a
prime p of a number field k is Q-split if it is non-dyadic and its
local degree over the corresponding rational prime is 1.
Some simple properties of Q-split primes are listed as:
Let p be a Q-split prime in O, and for n ≥ 1 let
ρn : O → O/pn be the corresponding quotient map. Then:
(a) the group of invertible elements (O/pn)× is cyclic for any
n;
(b) if c ∈ O is such that ρ2(c) generates (O/p2)× then ρn(c)
generates (O/pn)× for any n ≥ 2.
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Among other things, we prove and use the following
refinement of Dirichlet’s theorem:

Let O be the ring of S-integers in a number field k for some
finite S ⊂ V k containing V k

∞. If nonzero a, b ∈ O are
relatively prime (i.e., aO+ bO = O), then there exist infinitely
many principal Q-split prime ideals p of O with a generator π
such that π ≡ a (modulo bO) and π > 0 in all real
completions of k .
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Bounded Presentations

We mentioned that bounded generation for arithmetic groups
has bearing on the congruence subgroup property; here, we go
the other way and show how the CSP plays a role in bounded
presentations for finite simple groups.

The group SL2(Z[1/2]) has the congruence subgroup property
as Mennicke proved in 1967; using this, he proved in
collaboration with Behr in 1968 that for any odd prime p, the
group PSL2(Fp) has the presentation

< S ,T |Sp,T 2, (ST )3, (S2TS (p+1)/2T )3 > .

CSP implies that for odd m, the normal subgroup generated

by

(
1 m
0 1

)
is the full congruence subgroup of level m.
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Guralnick, Kantor, Kassabov and Lubotzky proved some very
surprising results regarding finite simple groups.

Without even using CFSG, they show that there is an absolute
bound C ≤ 100 such that every finite simple group with the
possible exception of the Ree groups 2G2(q) has a presentation
with 2 generators and ≤ C relations; one can take C = 8 for
all An’s and all Sn’s.

They use the bounded presentation for PSL2(p) along with its
usual embedding in Sp+1 in order to obtain a bounded
presentation for Sp+2 for primes p > 3. Gluing together such
presentations for two copies of Sp+2, they obtain bounded
presentations for all Sn.
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For n ≥ 6, the groups SLn(Z) can be presented by 4
generators and 16 relations.

The (non-linear) group Aut(Fn) for n ≥ 3 can be generated by
5 generators and 18 relations.
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B H Neumann

Here is the result proved with Nikolov that was mentioned
earlier:
If A and B are groups then A ≀ B has bounded generation if
and only if A has bounded generation and B is finite.

The proof depends on the following elementary but beautiful
group theoretic result of B H Neumann which asserts that
when a group is written as a union of finitely many left cosets
of subgroups, those subgroups which are of infinite index can
be dropped!
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Subgroup Growth

Lubotzky, Mann, and Segal proved the remarkable theorem
that a finitely generated, residually finite group G has PSG if,
and only if, it is virtually solvable, and of finite rank.
Equivalently, these things happen if, and only if, G is virtually
solvable and is linear over Q.

Amazingly, this needs an analogue of the Hilbert 5th problem
for p-adic groups; in fact, they show that a finitely generated,
pro-p group G is a p-adic Lie group if, and only if, G has PSG
(as a profinite group).
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The main point of the proof is that for finitely generated,
linear groups which are not virtually solvable,
an ≥ nc log n/ log log n for some constant c > 0.

In particular, there is a gap in the possible growths of finitely
generated, linear groups.

The proof also involves the prime number theorem.
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Fritz Grunewald and Marcus du Sautoy proved for a finitely
generated, infinite, nilpotent group that:

(i) the abscissa of convergence α(G ) of ζG (s) is a rational
number and ζG (s) can be meromorphically continued to
Re(s) > α(G )− δ for some δ > 0. The continued function is
holomorphic on the line Re(s) = α(G ) except for a pole at
s = α(G );

(ii) there exist a nonnegative integer b(G ) and real numbers
c , c ′ such that

sn ∼ cnα(G)(logn)b(G)

sα(G)
n ∼ c ′(logn)b(G)+1

as n → ∞.
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Lubotzky related subgrowth for arithmetic groups (in
characteristic 0) with the congruence subgroup property; he
proved that the growth of congruence subgroups in
characteristic 0 satisfies the inequalities

nc1logn/loglogn ≤ cn ≤ nc2logn/loglogn.

This implies that if CSP does not hold good, then sn ≥ nclogn

for some c and infinitely many n.

In other words, the growth rate of all subgroups of finite index
is strictly greater than the growth rate of the congruence of
subgroups among them.
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For PSG groups, one defines the degree deg(G ) of subgroup
growth as the ‘smallest’ positive real number c such that
an(G ) = O(nc+ϵ) for all ϵ > 0.

Shalev showed that the degree cannot lie in the intervals
(0, 1), (1, 3/2), (3/2, 5/3) - note that the Heisenberg group
has degree 3/2.

It is not known whether the degree could be irrational and,
whether the set of degrees forms a countable set.

Marcus du Sautoy proved the deep result that the zeta
function of a compact p-adic Lie group is a rational function
of p−s , and that the degree in this case is always rational.
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Representation Zeta Functions

There are other types of zeta functions defined; for instance,
one on which there have been lectures already in the first
week, and there will be more talks in this conference encodes
the number of representations of a given dimension which is
called the representation zeta function.

Liebeck and Shalev followed by Larsen and Lubotzky in 2008,
and later Avni, Klopsch, Onn and Voll have proved deep
results on the representation zeta functions of p-adic analytic
groups and, of arithmetic groups.
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If rn(G ) denotes the number of irreducible representations of
dimension n for a group G , then for groups for which
rn(G ) < ∞ for all n (this includes all arithmetic groups
satisfying the CSP), the representation zeta function is defined
as ζ repG (s) =

∑
n≥1 rn(G )n−s .

Lubotzky and Martin showed that rn(Γ) is polynomially
bounded (i.e., polynomial representation growth holds) if, and
only if, Γ satisfies the CSP.
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If G is an absolutely simple group defined over a global field
K , then Larsen and Lubotzky proved the following results;
they showed that for any infinite linear group Γ, the abscissa
of convergence ρ(Γ) ≥ 1/15.

For G (C) itself, they proved that ρ is r/κ where r is the
absolute rank and κ = |Φ+|, the number of absolute roots;
note that r/κ = 2/h, where h is the Coxeter number. For
every finite place v , they show ρ(G (Ov )) ≥ r/κ. For a division
algebra of degree d over a local field K , the abscissa of
convergence is 2/d .
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Larsen-Lubotzky proved also that the representation zeta
function of arithmetic groups admits an Euler product. They
also conjectured some general results for arithmetic groups,
and proved it for the special case of products of SL2’s.
They proved: if G =

∏ℓ
i=1 SL2(Ki) where Ki are local fields of

characteristics different from 2 and ℓ ≥ 2, any irreducible
lattice Γ (which is hence S-arithmetic) satisfying the CSP
(always conjectured to be so), they proved ρ(Γ) = 2.
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Avni had shown ρ(Γ) is a rational number when Γ satisfies the
CSP.

Avni, Klopsch, Onn and Voll proved quantitative results on
ρ(Γ) for arithmetic groups, proving, in particular, the
Larsen-Lubotzky conjecture in many cases.

Their methods involve the Kirillov orbit method, p-adic
integrals and mathematical logic as well.

B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



More precisely, they prove that for any irreducible root system
Φ, there exists a constant ρΦ such that ρ(G (OS)) = ρΦ if
G (OS) has the CSP, where OS is the ring of S-integers in a
number field K (with S finite), and where G is an affine group
scheme over OS whose generic fiber is connected, simply
connected, absolutely almost simple, with absolute root
system Φ.

The conjecture of Larsen-Lubotzky proved by these four
authors asserts that ρ is the same for different irreducible
lattices (in the same semisimple group of characteristic 0)
which satisfy the CSP.

Avni proved ρA2 = 1; nothing much is known about general ρΦ.
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2, 3-generation etc.

A (2, 3)-generated group is a group generated by an element
of order 2 and an element of order 3; therefore, these are
precisely the quotient groups of the modular group PSL2(Z).

The problem of classifying all such groups is hopeless; there
are 2N0 isomorphism classes of infinite simple (2,3)-generated
groups.

We briefly mention some results for classical matrix groups
over Z and also some conjectures.
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We mention in passing an important result for FINITE groups:

Theorem (Liebeck, Shalev, 1996). Let G run through
some infinite set of finite classical groups, other than
PSp4(p

k)). Then

lim|G |→∞Prob(x2 = y 3 = 1;G =< x ; y >) = 1.

B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



Further, such a result remains true if we either fix the field and
let the rank tend to infinity or if we fix the type and let the
size of the field tend to infinity.

For PSp4(p
k) with p ≥ 5, the probability tends to 1/2 as k

tends to infinity, and it tends to 0 if p = 2 or 3.

B.Sury Indian Statistical Institute Bangalore, India Email:surybang@gmail.com Combinatorial Methods in Enumerative AlgebraBounded Factorizations for Matrix Groups over Rings, and Applications - an Exposition



These methods involve intricate estimations of the number of
maximal subgroups and their indices etc. and do not provide
any set of generators explicitly.

Nevertheless, these tools provide remarkable combinatorial
applications - for instance, to the question of isomorphism
classes of simple, primitive subgroups of Sn.

The latter type of question has number-theoretic
interpretations of independent interest - for example, can a
given positive integer n be expressed as a binomial coefficient(
m
k

)
in more than O(1) ways?
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Classical groups over Z

SLn(Z ) and GLn(Z ) are (2,3)-generated precisely when n ≥ 5 -
a combination of results proved by Tamburini, Vsemirnov et al.

Note that SL2(Z ) is NOT (2, 3)-generated as it contains no
non-central involution; SL4(Z ) and GL4(Z ) are NOT
(2,3)-generated as SL4(2) = GL4(2) ∼= A8.
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Symplectic case

Theorem (Vasiliev, Vsemirnov, 2008-2011).
Sp2(Z ), Sp4(Z ), and Sp6(Z ) are NOT (2,3)-generated.
Sp8(Z ), Sp10(Z ) are (2,3)-generated.
Sp2n(Z ) is (2,3)-generated for 2n ≥ 50.

The cases 12 ≤ 2n ≤ 48 remain open; the answer is expected
to be positive.
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Problem 1 Does the group SLn(Z[X1, · · · ,Xm]) have
bounded generation with respect to elementary matrices if n is
large enough compared to n?

Problem 2 Under assumption sr(R) = 1 prove that any
element of Ead(Φ,R) is a product of ≤ 2 commutators in
Gad(Φ,R).

Problem 3 Under assumption sr(R) = 1 prove that any
element of E (Φ,R) is a product of ≤ 3 commutators in
E (Φ,R).
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Problem 4 If the stable rank sr(R) of R is finite, and for some
m ≥ 2 the elementary linear group E (m,R) = Esc(Am−1,R)
has bounded word length with respect to elementary
generators, then for all Φ of sufficiently large rank one has

E (Φ,R) = (U(Φ,R)U−(Φ,R))3.

Problem 5 If the stable rank sr(R) of R is finite, and for
some m ≥ 2 the elementary linear group E (m,R) has bounded
word length with respect to elementary generators, then for all
Φ of sufficiently large rank any element of E (Φ,R) is a
product of ≤ 4 commutators in E (Φ,R).
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Problem 6 Let R be a Dedekind ring of arithmetic type with
infinite multiplicative group. Prove that any element of
Ead(Φ,R) is a product of ≤ 3 commutators in Gad(Φ,R).

Problem 7 Find for a Chevalley group of rank ≥ 2 the
minimal L such that

G (Φ,Z) = (U(Φ,Z)U−(Φ,Z))L.

Problem 8 Is it true that U−UU−UU− = UU−UU−U?
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Problem 9 Calculate the width of the elementary Chevalley
group E (Φ,R) over a semilocal ring R in terms of unipotent
radicals UP and U−

P of two opposite parabolic subgroups.

Problem 10 Calculate the width of the elementary subgroup
E (R) of an isotropic reductive group G (R) over a semilocal
ring R , in terms of unipotent radicals UP and U−

P of two
opposite parabolic subgroups.

Problem 11 Prove that the elementary subgroup E (R) of an
isotropic reductive group G (R) of relative rank ≥ 2 has
bounded width with respect to the unipotent radicals UP and
U−
P of two opposite parabolic subgroups, in the case where

R = OS is a Dedekind ring of arithmetic type.
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