Supposing the source is the inspiral of a super massive black hole binary: what is the typical scale of the time variation of the metric perturbation?

$$f(\tau) = \frac{1}{\pi} \left(\frac{5}{256}\right)^{3/8} \frac{1}{(GM_c)^{5/8} \tau^{3/8}} \simeq 10^{-8} \,\mathrm{Hz}$$
 for $\frac{M_c \simeq 10^9 \,M_\odot}{\tau = 4 \times 10^4 \,\mathrm{yrs}}$

Chirp mass
$$M_c = \frac{(m_1 \, m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

GW varies on a scale of about 3 years

Period of the pulsar: millisecond

 $f_{\rm GW}P \ll 1$

$$\Delta T = \frac{1}{2} \frac{\hat{u}^i \hat{u}^j}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}} \int_{t_s - \hat{\mathbf{k}} \cdot \mathbf{r_s}}^{t_e + L - \hat{\mathbf{k}} \cdot \mathbf{r_e} - L \hat{\mathbf{k}} \cdot \mathbf{u}} dX \left[h_{ij}(X + P) - h_{ij}(X) \right]$$
Taylor expand

Relative change in the rate of the pulses measured on Earth because of the GW passing by:

$$\frac{\Delta T}{P} \simeq \frac{1}{2} \frac{\hat{u}^i \hat{u}^j}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}} \left[h_{ij}(t_e + L, \mathbf{r_o}) - h_{ij}(t_e, \mathbf{r_e}) \right]$$

Earth term

Pulsar term

Supposing the source is the inspiral of a super massive black hole binary: what is the typical scale of the time variation of the metric perturbation?

$$f(\tau) = \frac{1}{\pi} \left(\frac{5}{256}\right)^{3/8} \frac{1}{(G\,M_c)^{5/8}\,\tau^{3/8}} \simeq 10^{-8}\,\mathrm{Hz} \qquad \text{for} \qquad \frac{M_c \simeq 10^9\,M_\odot}{\tau = 4\times 10^4\,\mathrm{yrs}}$$
 Time to coalescence
$$M_c = \frac{(m_1\,m_2)^{3/5}}{(m_1+m_2)^{1/5}} \qquad \text{GW varies on a scale of about 3 years Period of the pulsar: millisecond} \qquad f_{\mathrm{GW}}P \ll 1$$

$$\Delta T = \frac{1}{2} \frac{\hat{u}^i \hat{u}^j}{1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}} \int_{t_e-\hat{\mathbf{k}}\cdot\mathbf{r_e}}^{t_e+L-\hat{\mathbf{k}}\cdot\mathbf{r_e}-L\hat{\mathbf{k}}\cdot\mathbf{u}} \mathrm{d}X \left[h_{ij}(X+P)-h_{ij}(X)\right] \qquad \text{Taylor expand}$$

NB: this is the change in the frequency of the pulses due to the GWs, calculated between two successive geodesics, and NOT the redshift experienced by a photon on the same geodesic (usual gravitational redshift, depending on \dot{h}_{ij})

However, the two expressions become the same in the limit of infinitesimal P

Relative change in the rate of the pulses measured on Earth because of the GW passing by:

$$\frac{\Delta T}{P} \simeq \frac{1}{2} \frac{\hat{u}^i \hat{u}^j}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}} \left[h_{ij}(t_e + L, \mathbf{r_o}) - h_{ij}(t_e, \mathbf{r_e}) \right]$$

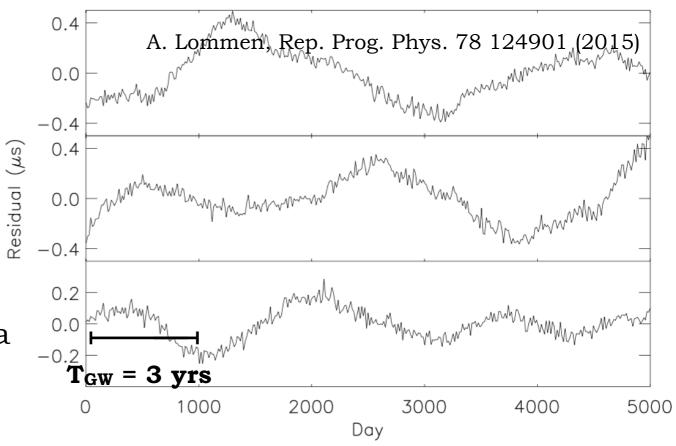
$$\sim 7 \cdot 10^{-23} \, \frac{\text{pc}}{d_L} \left(\frac{M_c}{M_\odot} \right)^{5/3} \left(\frac{f_{\text{GW}}}{10^{-8} \, \text{Hz}} \right)^{2/3} \simeq 7 \cdot 10^{-16}$$

Timing residuals: $R(T)=\int_{t_{\rm ref}}^{t_{\rm ref}+T}{\rm d}t\,rac{\Delta T}{P}$ $M_c\simeq 10^9\,M_\odot$ $d_L=100\,{
m Mpc}$

$$R(T_{\rm GW} = 3 \, {\rm yrs}) \simeq 60 \, {\rm nsec}$$

A GW with period of a few years induces a timing residual of order 100 nsec, the precision of pulsar monitoring!

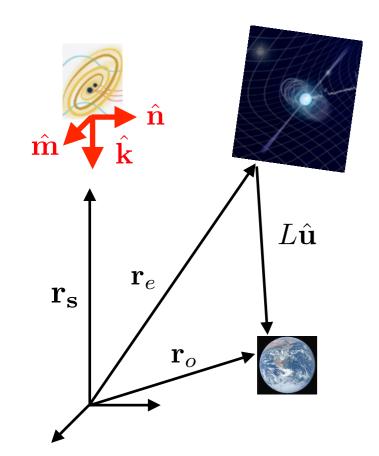
This renders the measurement possible, provided one has at least a few years of data



HOWEVER! The signal from a single pulsar is very noisy: varying morphology of the pulses, propagation noise due to the dispersion by the interstellar medium, time referencing (time standards and solar system barycentre)...

Correlation between many pulsars to beat down the noise

$$\frac{\Delta T}{P} \simeq \frac{1}{2} \frac{\hat{u}^i \hat{u}^j}{1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}} \left[h_{ij}(t_e + L, \mathbf{r_o}) - h_{ij}(t_e, \mathbf{r_e}) \right]$$



Earth term: GW left the source at time

$$t_e + L - |\mathbf{r_o} - \mathbf{r_s}|$$
 $t_e - |\mathbf{r_e} - \mathbf{r_s}|$

Pulsar term: GW left the source at time

$$t_e - |\mathbf{r_e} - \mathbf{r_s}|$$

This term is different for each pulsar

In the correlation the Earth term in general dominates, but the pulsar term can create noise (unless one can determine the delay of each pulsar)

Response of a pair of pulsars to a stochastic GW background

$$\langle R_a(T)R_b(T)\rangle = \int_{t_{\text{ref}}}^{t_{\text{ref}}+T} dt' \int_{t_{\text{ref}}}^{t_{\text{ref}}+T} dt'' \langle \frac{\Delta T}{P}(t') \Big|_a \frac{\Delta T}{P}(t'') \Big|_b \rangle$$

$$\frac{\Delta T}{P}(t')\bigg|_a = \sum_r \int \frac{\mathrm{d}\mathbf{k}^3}{(2\pi)^3} h_r(\mathbf{k}) F_a^r(\hat{\mathbf{k}}) e^{-ik(t'-\hat{\mathbf{k}}\cdot\mathbf{r}_o)} \left[1 - e^{ikL_a(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}}_a)}\right]$$
 "Detector response"
$$F_a^r(\hat{\mathbf{k}}) = \frac{\hat{u}_a^i \hat{u}_a^j e_{ij}^r(\hat{\mathbf{k}})}{2(1-\hat{\mathbf{k}}\cdot\hat{\mathbf{u}})} \quad \text{put Earth at origin to simplify} \quad \text{Earth Pulsar term}$$

"Detector response"
$$F_a^r(\hat{\mathbf{k}}) = \frac{\hat{u}_a^i \hat{u}_a^j e_{ij}^r(\hat{\mathbf{k}})}{2(1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}})}$$
 put Earth at enterpolar to simplify

$$\langle h_r(\mathbf{k}, \eta) h_p^*(\mathbf{q}, \eta) \rangle = \frac{8\pi^5}{k^3} \delta^{(3)}(\mathbf{k} - \mathbf{q}) \delta_{rp} h_c^2(k, \eta)$$

$$\left[1 - e^{ikL_a(1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}_a)}\right] \left[1 - e^{-ikL_b(1 - \hat{\mathbf{k}} \cdot \hat{\mathbf{u}}_b)}\right] \simeq 1$$

 $a \neq b$

$$kL_a = \mathcal{O}(2\pi \cdot 10^{-8} \,\text{Hz} \cdot 500 \,\text{pc}) = \mathcal{O}(3000) \gg 1$$

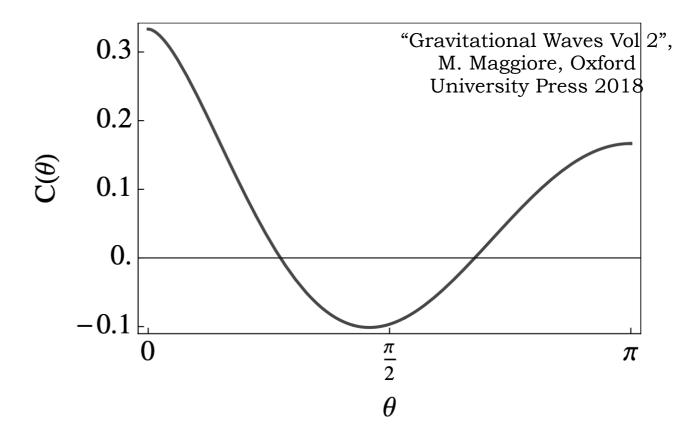
Response of a pair of pulsars to a stochastic GW background

$$\langle R_a(T)R_b(T)\rangle = \int_{t_{\text{ref}}}^{t_{\text{ref}}+T} dt' \int_{t_{\text{ref}}}^{t_{\text{ref}}+T} dt'' \langle \frac{\Delta T}{P}(t') \Big|_a \frac{\Delta T}{P}(t'') \Big|_b \rangle$$

$$\begin{array}{ll} \text{angle} \\ \theta_{ab} \text{ between} \\ \text{pulsars} \end{array} = \mathcal{C}(\theta_{ab}) \int_0^\infty \mathrm{d}f \, \frac{h_c^2(f)}{(2\pi)^2 f^3} \left[1 + \cos(2\pi f (T - t_{\mathrm{ref}}))\right] \end{array}$$

Hellings and Downs curve, characteristic of a GW signal because consequence of the quadrupolar nature of GWs

$$C(\theta_{ab}) = \int \frac{d\hat{\mathbf{k}}}{4\pi} \sum_{r} F_r^a(\hat{\mathbf{k}}) F_r^b(\hat{\mathbf{k}})$$
$$= \frac{1}{3} - \frac{1}{6} x_{ab} + x_{ab} \log(x_{ab})$$
$$x_{ab} = \frac{1}{2} (1 - \cos \theta_{ab})$$



Observation of the *Hellings and Downs curve* is **smoking gun evidence** of GW detection

(not only SGWB but also from a single SMBHB - Cornish & Sesana arXiv:1305.0326)

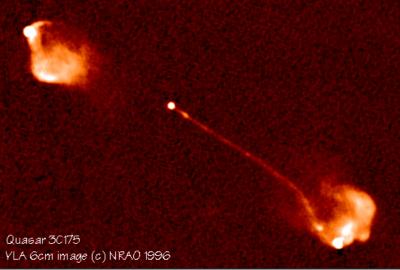
time referencing errors generate a correlated noise but:

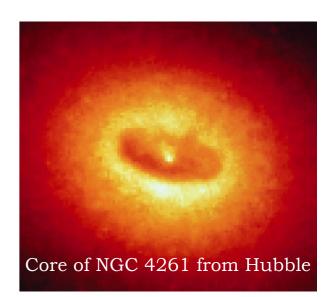
- noise from uncertainties on the time standards on Earth is independent on the pulsar angles
- noise from uncertainties on the solar system barycentre position take the form of a (rotating) dipole (dependent on the cosinus of the angle) -> can contaminate the quadrupole

A SGWB from SMBHBs is the best candidate source in PTA frequency band

What are SMBHBs?

- They have been observed in the core of galaxies and are the central engine of active galactic nuclei
- They can originate from the collapse of massive stars (~100 M_{\odot}) or gas clouds (~ $10^4 M_{\odot}$), and then grow in mass through gas accretion and/or mergers following the collision of their host galaxies (but their origin is still to be confirmed, they can also be primordial...)
- JWST sees SMBHs up to very high redshift $z \sim 11$
- Their presence is linked to the formation of galaxies and matter structure in the Universe

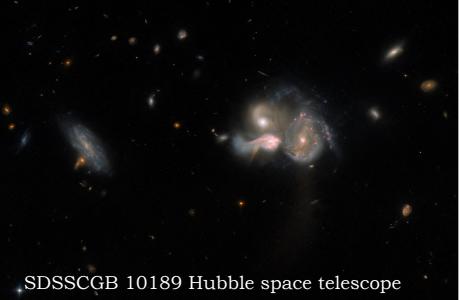


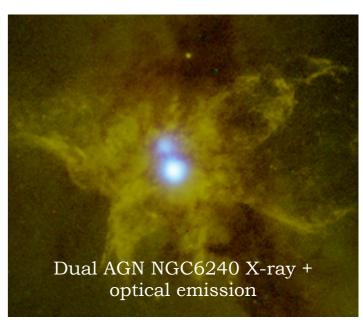


HOWEVER!

- To emit GWs, SMBHs must be paired in gravitationally bound binaries in the GW emitting regime: separation of ~ 0.01-0.001 pc
- Binaires can be formed after the collision of two galaxies: the MBH previously at the centre of galaxies get to ~ kpc separation (X-ray evidence from dual AGNs)
- Dynamical friction drives the two MBH towards the centre of the new galaxy until they form a bound binary
- 3-body interaction with the surrounding stars subsequently shrinks the binary to poseparation
- How to get them to the millipc separation necessary for GW emission and merger within one Hubble time? "LAST PARSEC PROBLEM"
- maybe more stars arrive, or there is gas drag from interaction with a circumbinary disk, and/or another MBH arrives...

If PTAs observe the SGWB from SMBHBs it means that SMBHBs exist and merge in the universe!





Prediction from SMBHBs formation scenarios

How does the SGWB from SMBHBs look like?

Characteristic strain:
$$h_c(f) = A \left(\frac{f}{f_{\rm ref}}\right)^{-\alpha}$$
 with $\alpha = \frac{2}{3}$ $f_{\rm ref} = 1 \, {\rm yr}^{-1}$

Circular binary

Timing residuals power spectral density: Also red spectrum

$$S_{ab}(f) = \mathcal{C}(\theta_{ab})\Phi(f)$$

$$\Phi(f) = \frac{A^2}{(2\pi)^2} f_{\text{ref}}^{-3} \left(\frac{f}{f_{\text{ref}}}\right)^{-\gamma} \quad \text{with} \quad \gamma = 2\alpha + 3 = \frac{13}{3}$$

Where does this spectral shape come from?

$$h_c(f) = A \left(\frac{f}{f_{\text{ref}}}\right)^{-\alpha} \text{ with } \alpha = \frac{2}{3}$$

in terms of the power spectrum of the GW energy density becomes

$$\Omega_{\rm GW}(f) = \frac{2\pi^2}{3H_0^2} f^2 h_c^2(f) = \Omega_{\rm GW}(f_{\rm ref}) \left(\frac{f}{f_{\rm ref}}\right)^{2/3}$$

$$\frac{\rho_{\text{GW}}^{(\text{tot})}}{\rho_c} = \int_0^\infty \frac{\mathrm{d}f}{f} \,\Omega_{\text{GW}}(f) = \int \mathrm{d}\xi \int \mathrm{d}V_c \int \mathrm{d}\tau_c \,\frac{\mathrm{d}^3 N(z, \tau_c, \xi, \theta)}{\mathrm{d}\xi \mathrm{d}V_c \mathrm{d}\tau_c} \,\frac{\rho_{\text{GW}}^{(\text{event})}}{\rho_c}$$

Parameters of the binary signal (essentially chirp mass) Coming volume

Time to coalescence

Number density of GW sources (given within an astrophysical model for the binary population)

GW energy emitted by a single event

At the source
$$\frac{\rho_{\rm GW}^{\rm (event)}}{\rho_c} = \frac{1}{16\pi G \rho_c} \frac{\langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle}{(1+z)^4}$$

$$\dot{h}_{+}(t_{S}) = \frac{4\pi^{2/3}}{a(t_{S})r} (GM_{c})^{5/3} \left(\frac{1+\cos^{2}\theta}{2}\right) \frac{\mathrm{d}[f^{2/3}(t_{S})\cos(2\Phi(t_{S}))]}{\mathrm{d}t_{S}}$$

In the limit of circular orbit with slowly varying radius

$$\dot{f}_S \ll f_S^2$$

$$\simeq -f^{2/3}(t_S)2\dot{\Phi}(t_S)\sin(2\Phi(t_S))$$

$$\downarrow$$

$$\pi f_S$$

$$\langle \dot{h}_{+}^{2}(t_{S}) \rangle = \frac{32}{a_{S}^{2}r^{2}} (\pi G M_{c})^{10/3} \left(\frac{1+\cos^{2}\theta}{2}\right)^{2} f_{S}^{10/3}$$

$$\frac{\rho_{\text{GW}}^{(\text{tot})}}{\rho_c} = \int d\xi \int d\tau_c \int dz \frac{d^2_M}{H(z)} \frac{d^3N(z, \tau_c, \xi, \theta)}{d\xi dV_c d\tau_c} \frac{1}{16\pi G\rho_c (1+z)^4}$$

$$\frac{32}{32} \left(\frac{GM_c c}{\sigma_c} \right) \frac{10/3}{\sigma_c} \int dz \frac{d^3N(z, \tau_c, \xi, \theta)}{d\xi dV_c d\tau_c} \frac{1}{2\sigma_c^2} \frac{$$

$$\frac{32}{a_S^2 r^2} (\pi G M_c f_S)^{10/3} \int d\Omega \left[\left(\frac{1 + \cos^2 \theta}{2} \right)^2 + \cos^2 \theta \right]$$

$$d_M = a_0 r$$

Extra factor $(1+z)^2$

$$\mathrm{d}V_c = \frac{d_M^2}{H(z)} \mathrm{d}\Omega \,\mathrm{d}z$$

Express the integral over time to coalescence in terms of frequency and change to frequency at the observer

$$\frac{\mathrm{d}f_S}{\mathrm{d}\tau_c} = \frac{96\pi^{8/3}}{5} (GM_c)^{5/3} f_S^{11/3}$$

$$f_S = f(1+z)$$

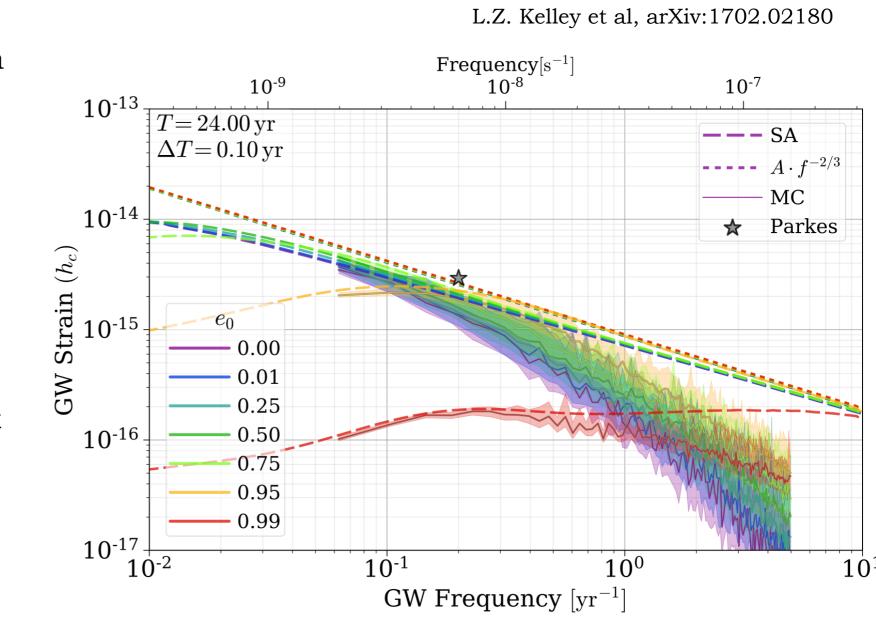
$$\frac{\rho_{\text{GW}}^{(\text{tot})}}{\rho_c} = \frac{\pi^{2/3}}{3 G \rho_c} \int \frac{\mathrm{d}f}{f} f^{2/3} \int \mathrm{d}\xi \int \frac{\mathrm{d}z}{H(z)(1+z)^{4/3}} (GM_c)^{10/3} \frac{\mathrm{d}^3 N(z, \tau_c, \xi, \theta)}{\mathrm{d}\xi \mathrm{d}V_c \mathrm{d}\tau_c}$$

$$\frac{\rho_{\text{GW}}^{(\text{tot})}}{\rho_c} = \int_0^\infty \frac{\mathrm{d}f}{f} \,\Omega_{\text{GW}}(f) \qquad \qquad \Omega_{\text{GW}}(f) = \Omega_{\text{GW}}(f_{\text{ref}}) \left(\frac{f}{f_{\text{ref}}}\right)^{2/3}$$

SGWB amplitude determined by the population characteristics and the cosmology

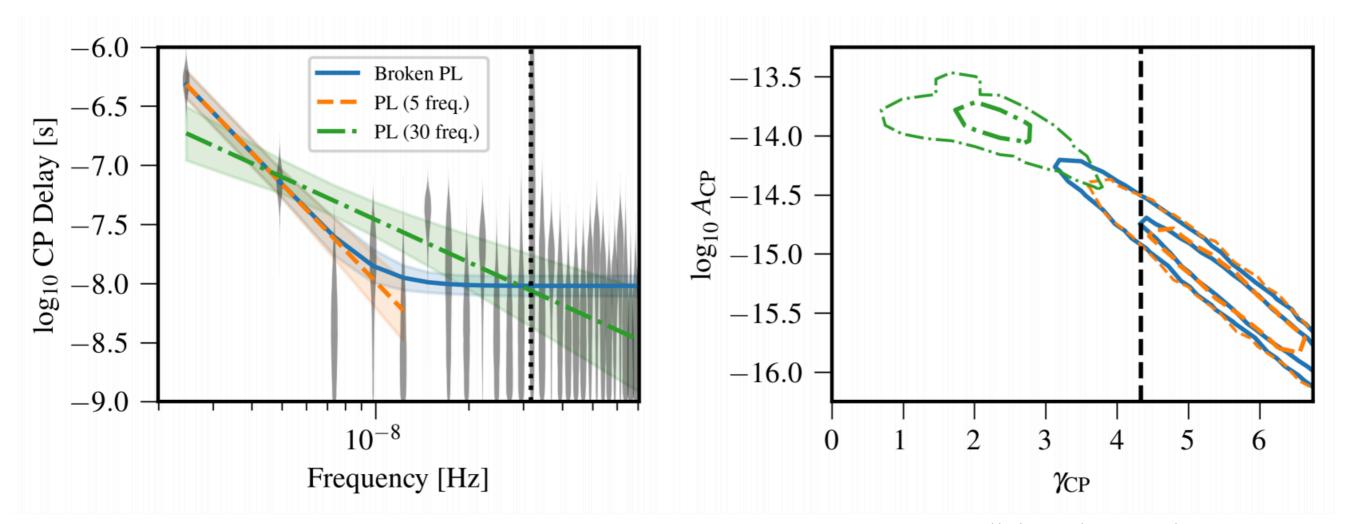
The features of the SGWB power spectrum (amplitude A, slope a...) depend on the population characteristics such as the binary merger rate, its dependence with mass and redshift, the surrounding stellar density, the initial binary eccentricity...

- The assumption of homogeneous and isotropic SGWB isn't justified at high frequency: SMBHBs are less numerous, the SGWB slope is steeper, and discreteness starts to appear with spikes due to the loudest SMBHBs
- Interactions with the binary environment makes hardening stronger and suppresses SGWB power at low frequency
- Eccentricity enhances GW emission at higher frequencies



In 2020, NANOGrav (followed by EPTA and PPTA) has announced the presence of a common red noise in their 12.5 years data

$$\Phi(f) = \frac{A^2}{(2\pi)^2} f_{\text{ref}}^{-3} \left(\frac{f}{f_{\text{ref}}}\right)^{-\gamma} \quad \text{with} \quad \gamma = 2\alpha + 3 = \frac{13}{3}$$



NANOGrav collaboration: arXiv:2009.04496

Last year, all PTAs have confirmed the observation of a common red noise supplemented by evidence for the Hellings-Downs correlation

EPTA results:

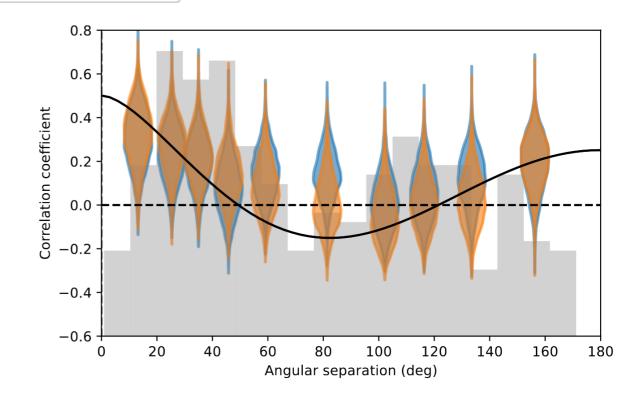


DR2new (10.3 yrs):

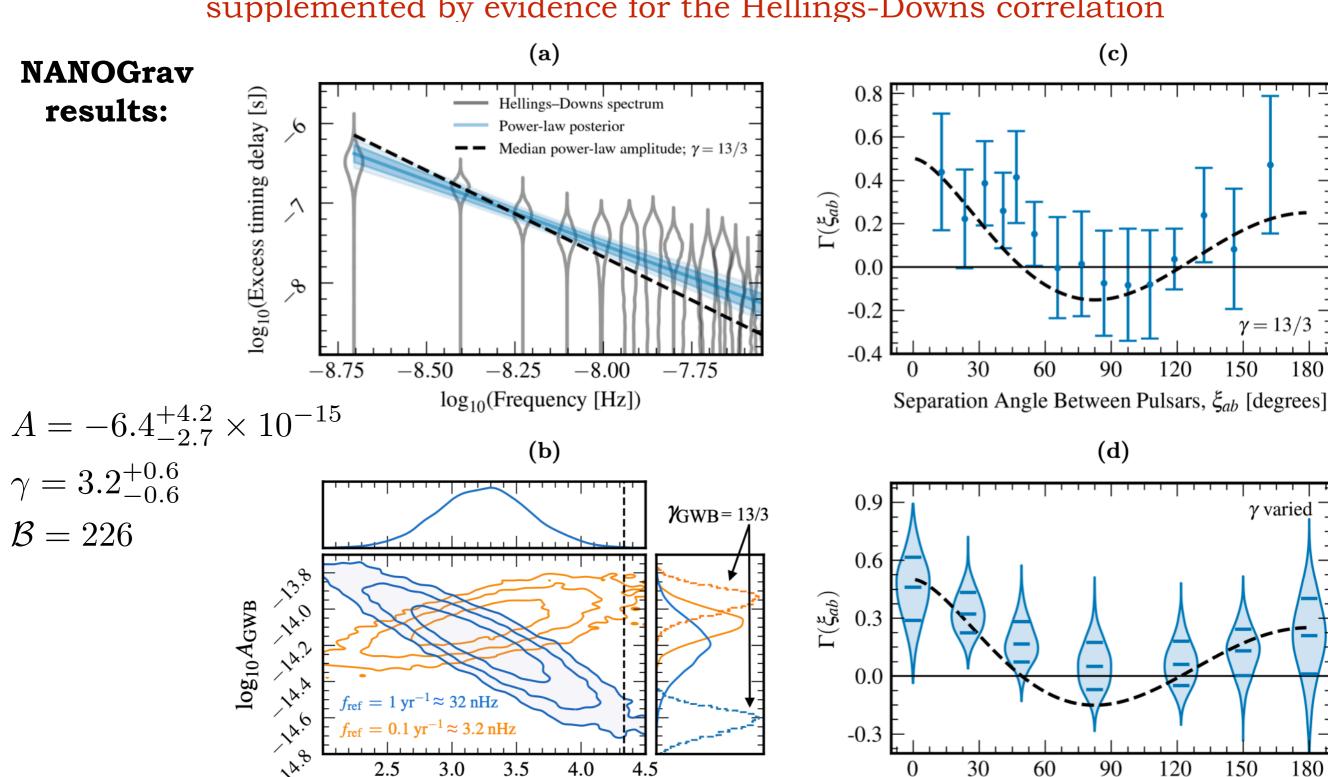
$$\log A = -13.94^{+0.23}_{-0.48}$$
 $\gamma = 2.71^{+1.18}_{-0.73}$ $\mathcal{B} = 60$

DR2full (25 yrs):

$$\log A = -14.54^{+0.28}_{-0.41}$$
 $\gamma = 4.19^{+0.73}_{-0.63}$ $\mathcal{B} = 4$



Last year, all PTAs have confirmed the observation of a common red noise supplemented by evidence for the Hellings-Downs correlation

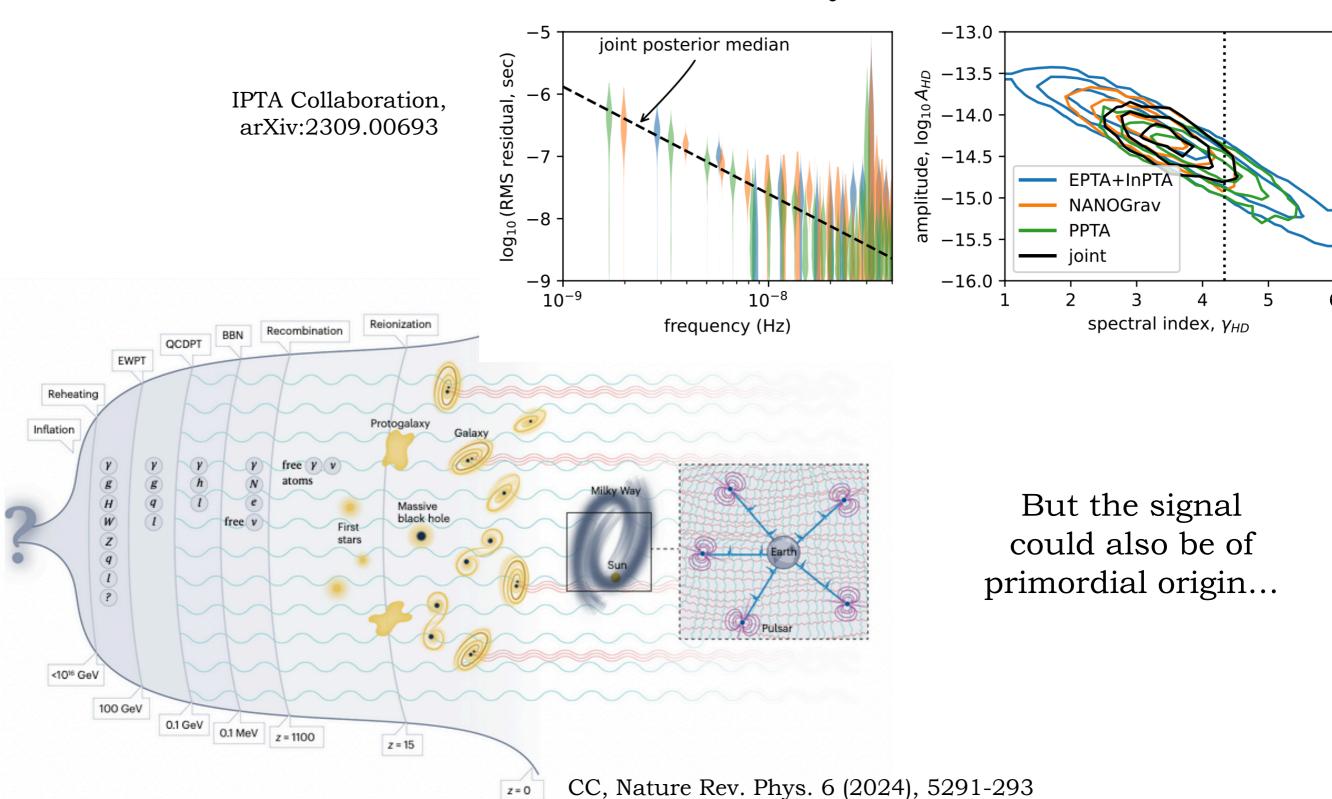


Separation Angle Between Pulsars, ξ_{ab} [degrees]

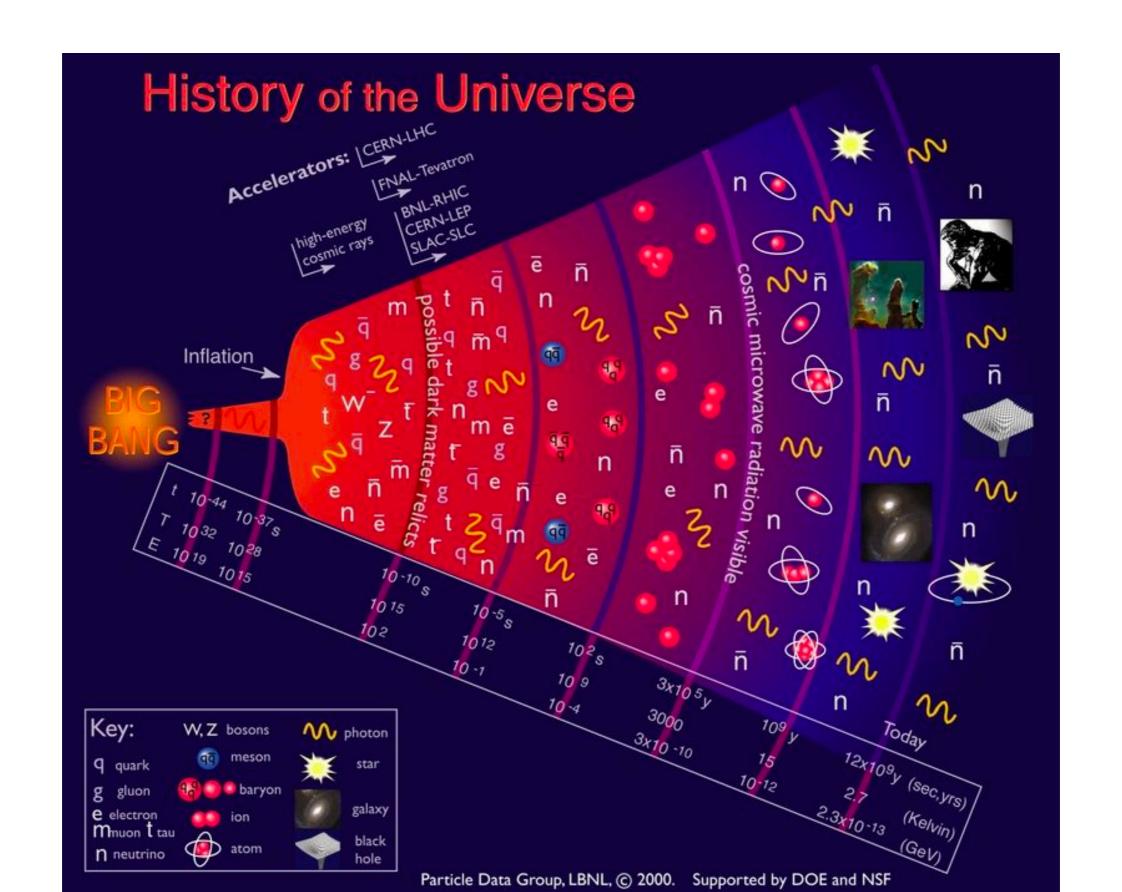
YGWB

G. Agazie et al, arXiv:2306.16213

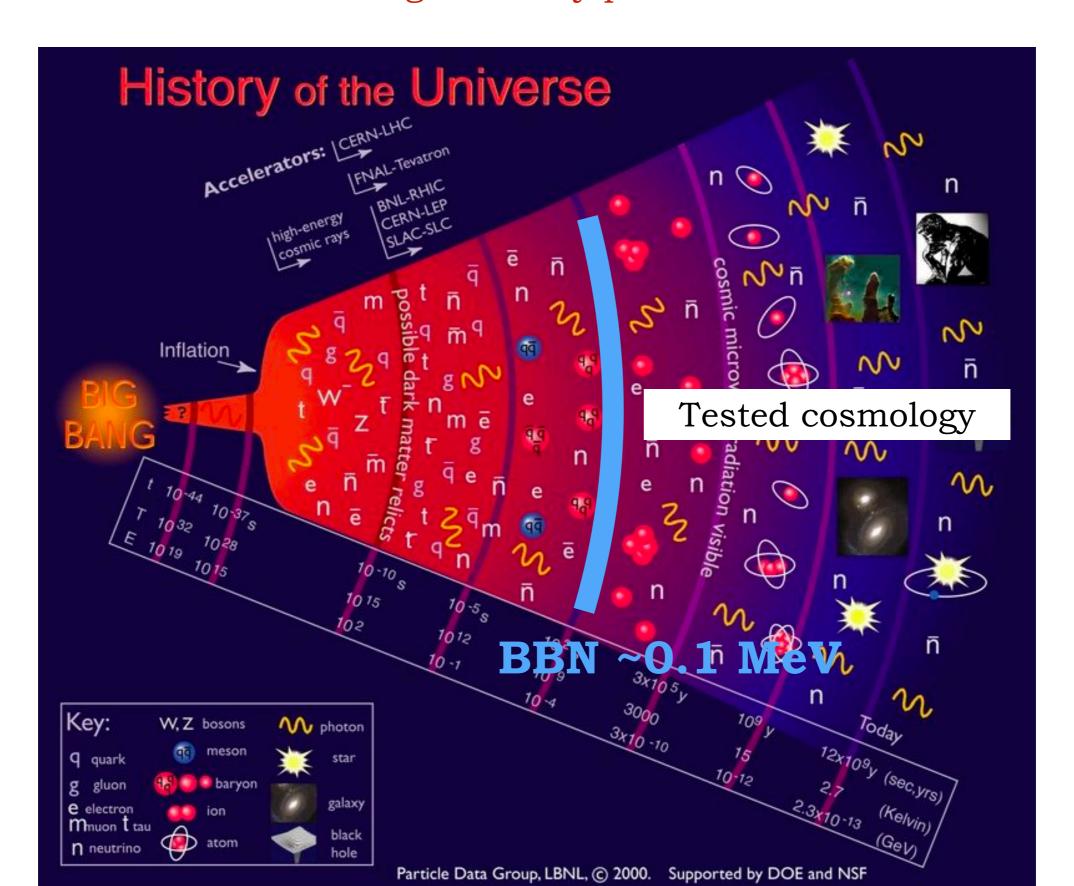
- The slopes are shallower than 13/3 (but maybe the model isn't fully adapted...)
- The amplitude is consistent with the one from a SMBHBs SGWB
- All datasets are consistent within 1σ as shown by IPTA



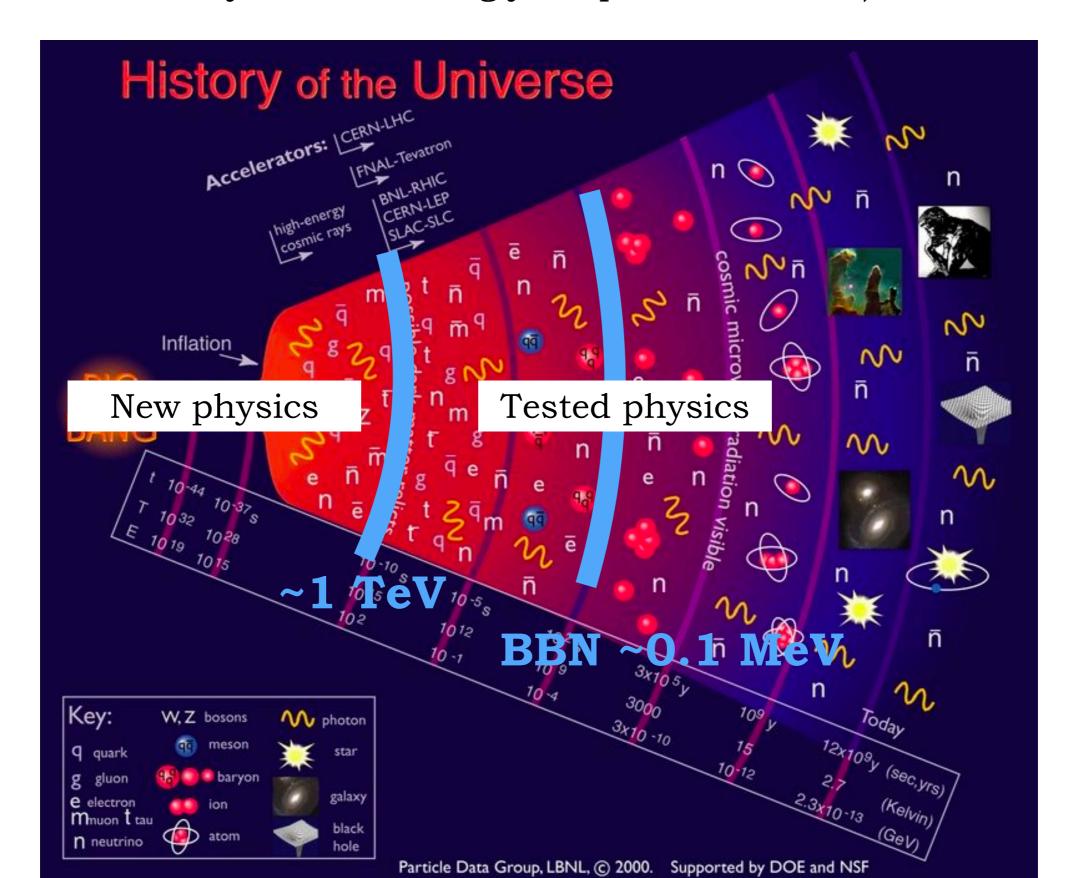
Examples of SGWB sources in the early universe



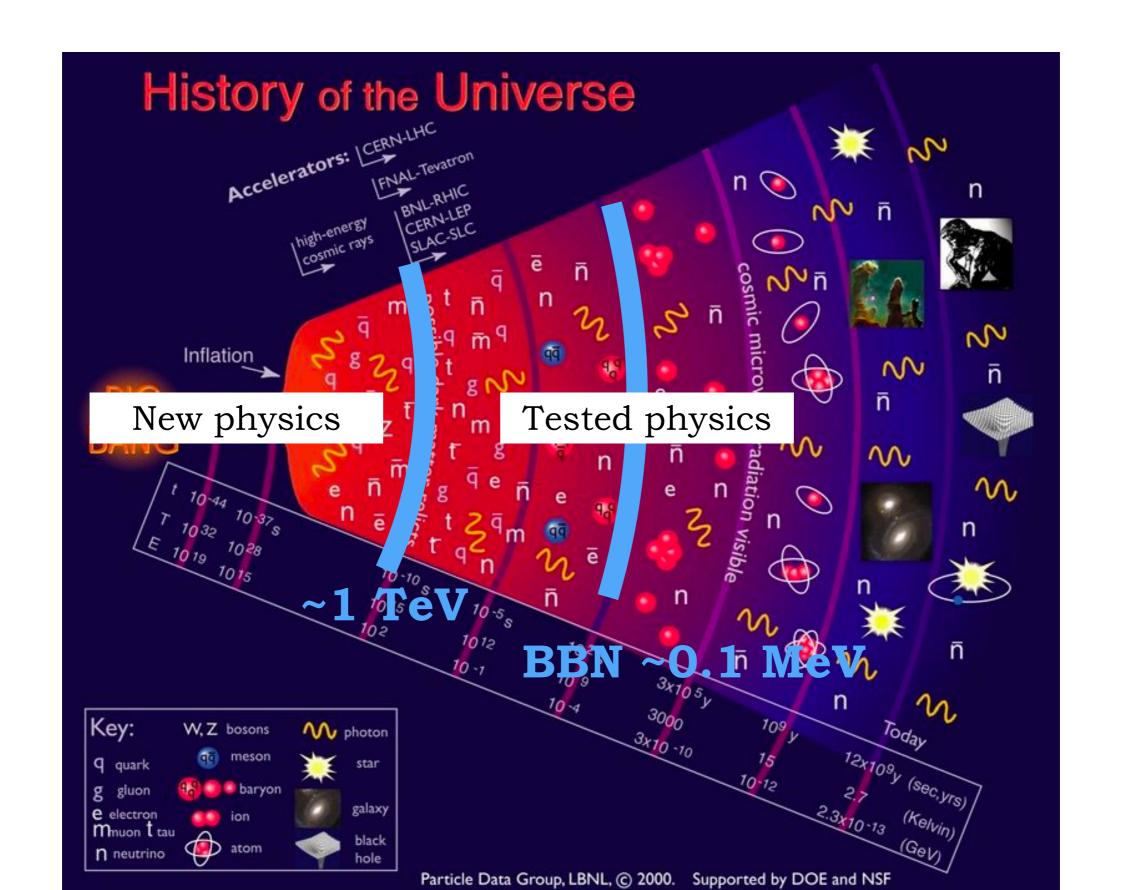
GWs can bring direct information from very early stages of the universe evolution, to which we have no direct access through em radiation —> amazing discovery potential



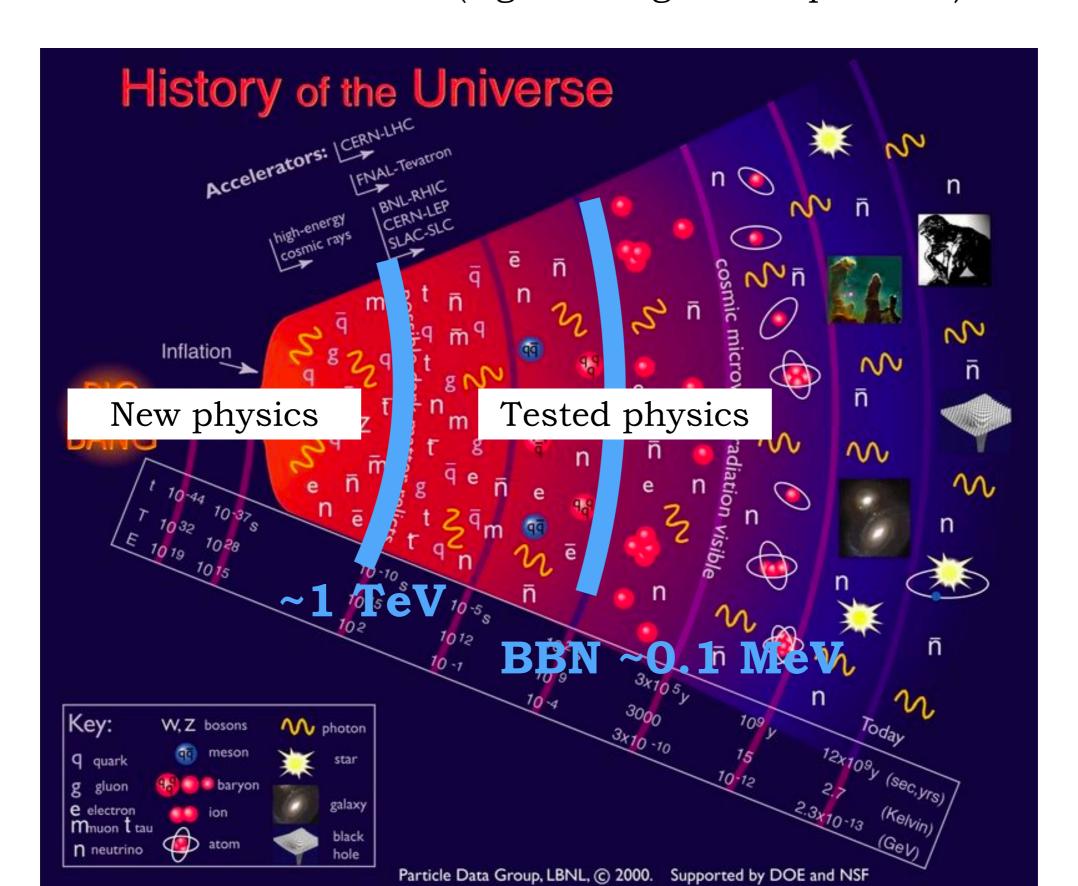
No guaranteed GW signal: predictions rely on untested phenomena, and are often difficult to estimate (non-linear dynamics, strongly coupled theories...)



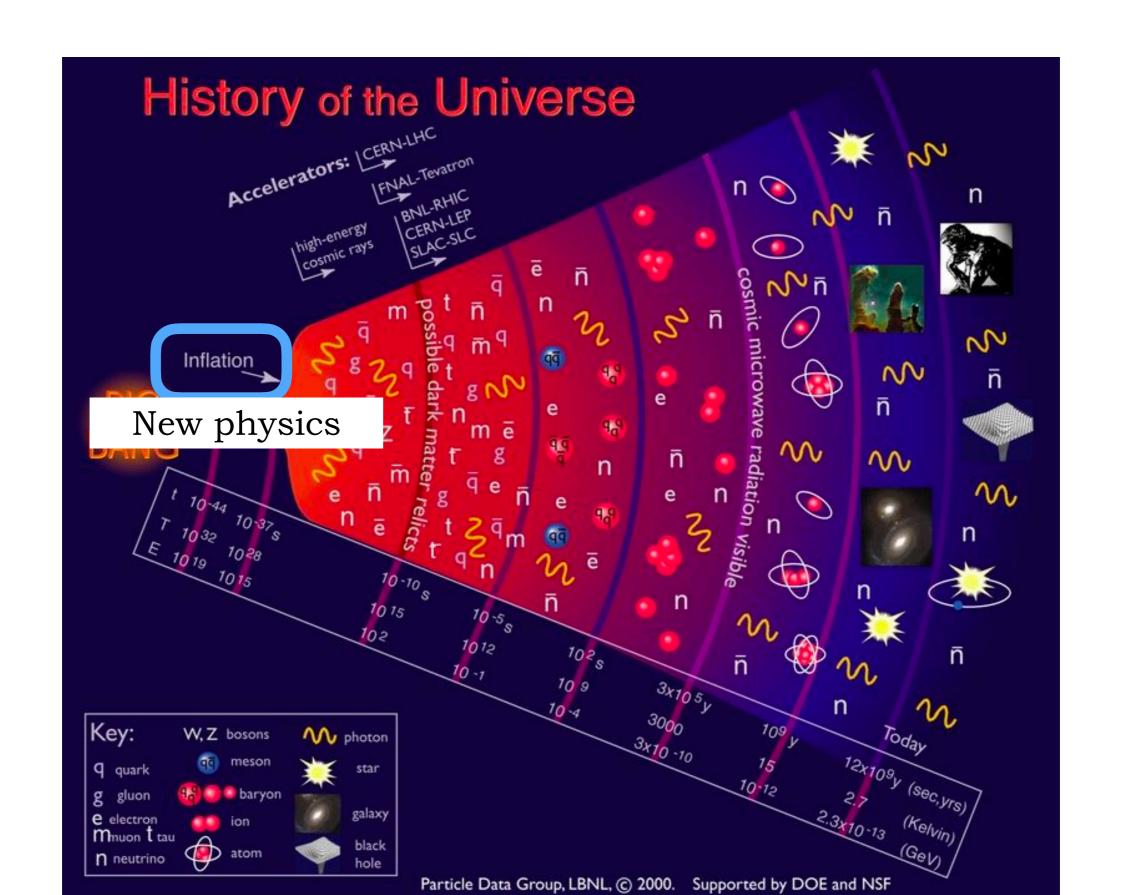
Many GW generation processes are related to PHASE TRANSITIONS



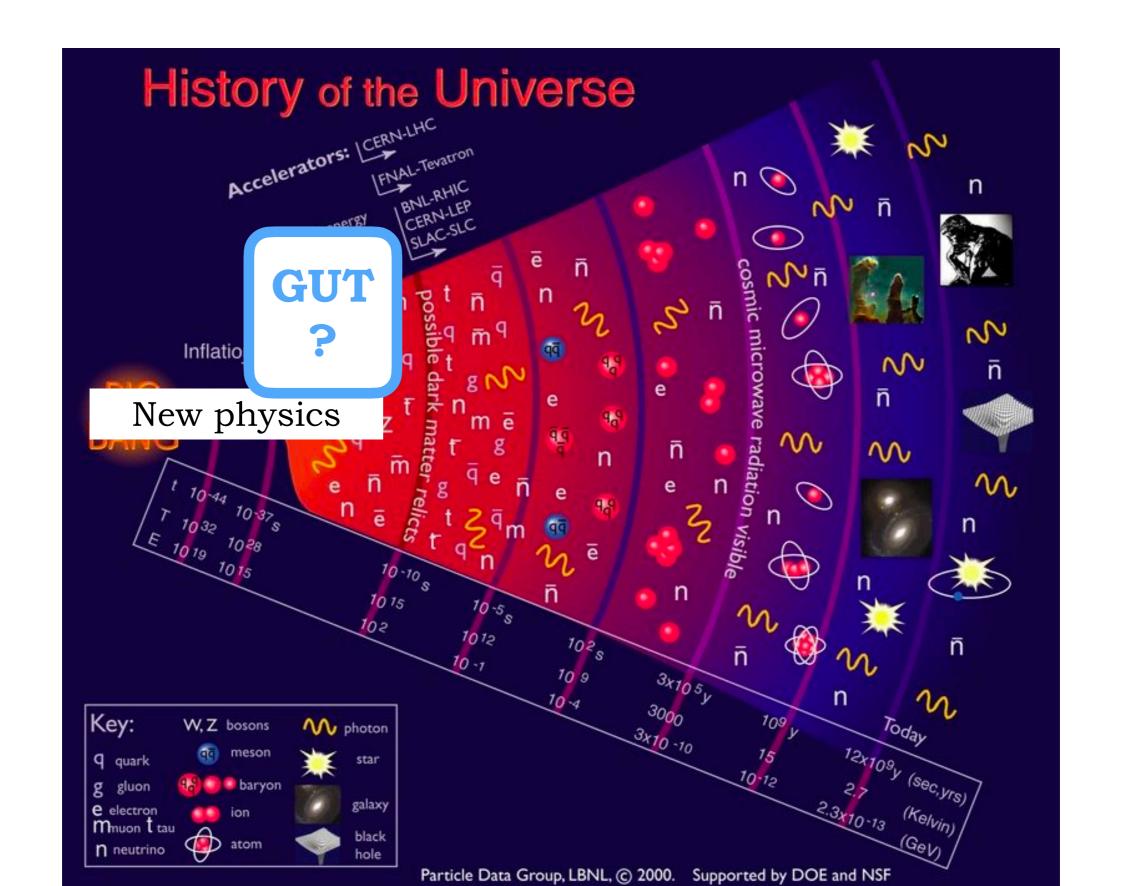
Phase transition: some field in the universe changes from one state to another, which has become more energetically favourable due to a change in external conditions (e.g. a change in temperature)



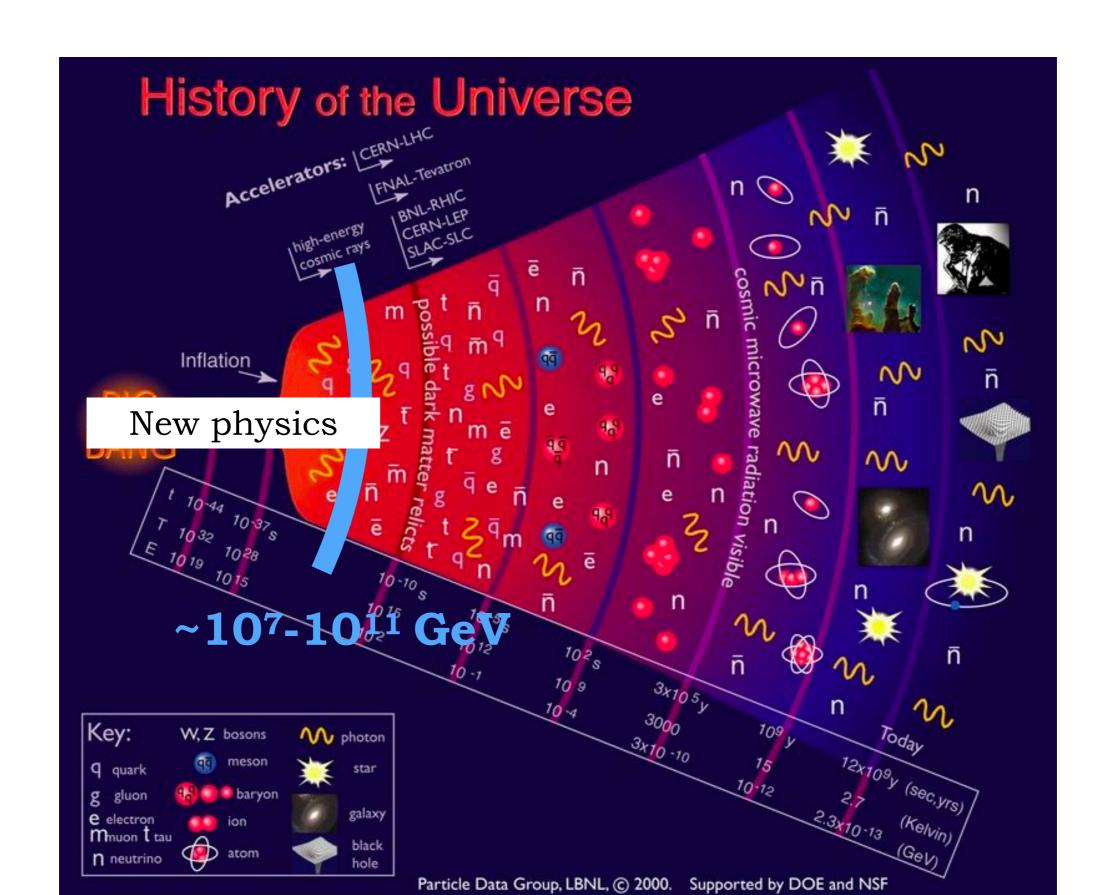
Inflation: phase transition of the Inflaton field



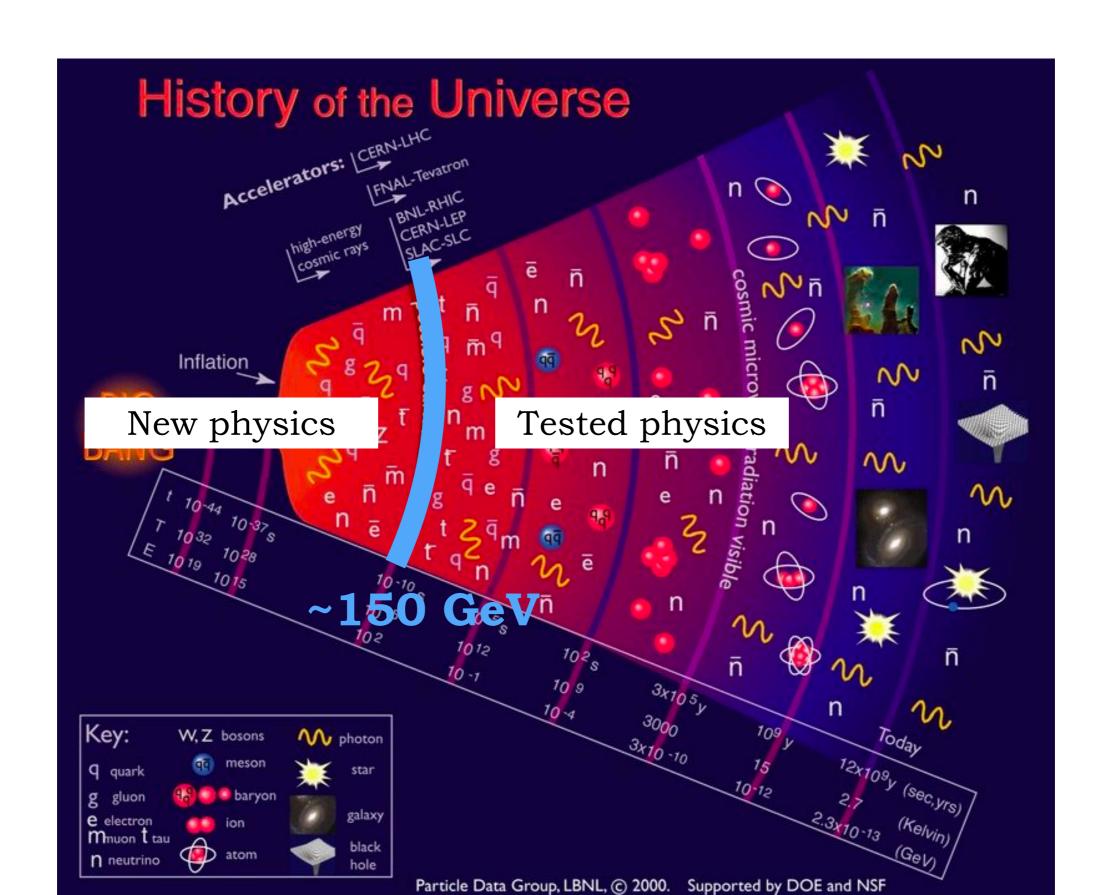
GUT phase transition or similar: related to the breaking of the symmetries of the high-energy theory describing the universe



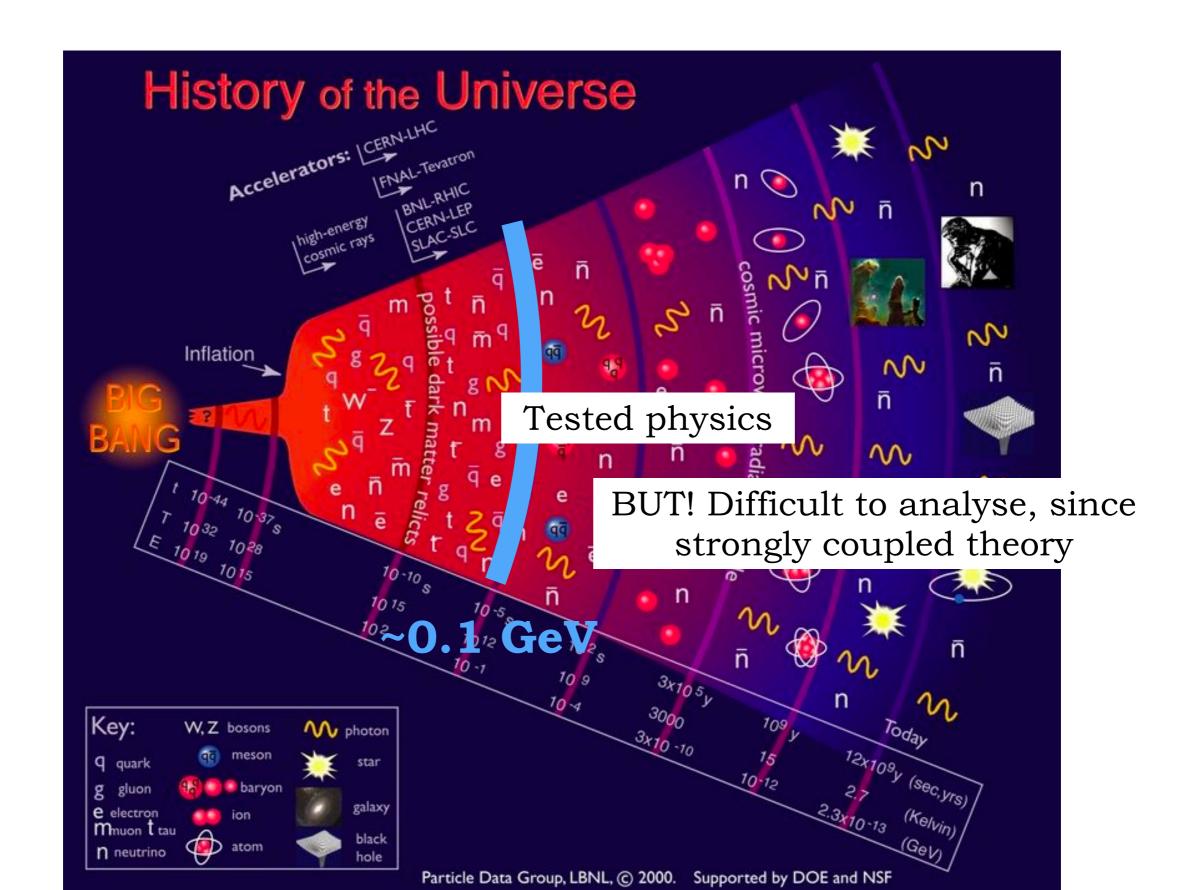
Peccei-Quinn phase transition: invoked to solve the strong CP problem



Electroweak phase transition: phase transition of the Higgs field, driven by the temperature decrease as the universe expands



QCD phase transition: phase transition related to the strong interaction, confinement of quarks into hadrons



Examples of GW sources in the early universe:

- irreducible SGWB from inflation
 - also sourced by second order scalar perturbations
- beyond the irreducible SGWB from inflation
 - particle production during inflation (scalar, gauge fields... coupled to the inflaton)
 - spectator fields
 - second order tensor from enhanced scalar perturbations, with primordial black holes
 - breaking symmetries (space-dependent inflaton, massive graviton)
 - modified gravity during inflation (massive GWs with $c \neq 1$)
 - ...
- preheating and non-perturbative phenomena
 - parametric amplification of bosons/fermions
 - symmetry breaking in hybrid inflation
 - decay of flat directions
 - oscillons
 - ...
- first order phase transition
- true vacuum bubble collision
- sound waves
- (M)HD turbulence
- •
- cosmic topological defects
 - irreducible SGWB from topological defect networks
 - decay of cosmic string loops
 - ...

$$h_r''(\mathbf{k}, \eta) + 2 \mathcal{H} h_r'(\mathbf{k}, \eta) + k^2 h_r(\mathbf{k}, \eta) = 16\pi G a^2 \Pi_r(\mathbf{k}, \eta)$$

Possible sources of tensor anisotropic stress in the early universe:

- Scalar field gradients $\Pi_{ij} \sim [\partial_i \phi \partial_j \phi]^{TT}$
- Bulk fluid motion $\Pi_{ij} \sim [\gamma^2(\rho+p)v_iv_j]^{TT}$
- Gauge fields $\Pi_{ij} \sim [-E_i E_j B_i B_j]^{TT}$
- Second order scalar perturbations, Π_{ij} from a combination of $\partial_i \Psi, \partial_i \Phi$

• ...

The components of the anisotropic stress must be treated as random variables

because we cannot access the detailed properties of the generation processes at the moment they operated

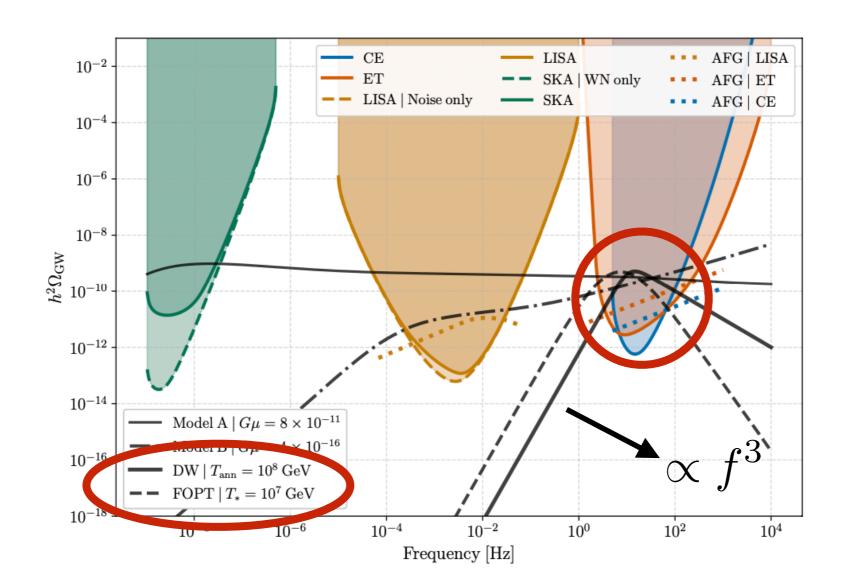
unequal time correlator of the anisotropic stress

$$\langle \Pi_r(\mathbf{k}, \tau) \Pi_p^*(\mathbf{q}, \zeta) \rangle = \frac{(2\pi)^3}{4} \, \delta^{(3)}(\mathbf{k} - \mathbf{q}) \, \delta_{rp} \, \Pi(k, \tau, \zeta)$$

Anisotropic stress power spectral density at unequal time

We now proceed with two approximate analytical solutions of the GW propagation equation:

• **Fast source** operating for less than one Hubble time -> peaked SGWB power spectrum



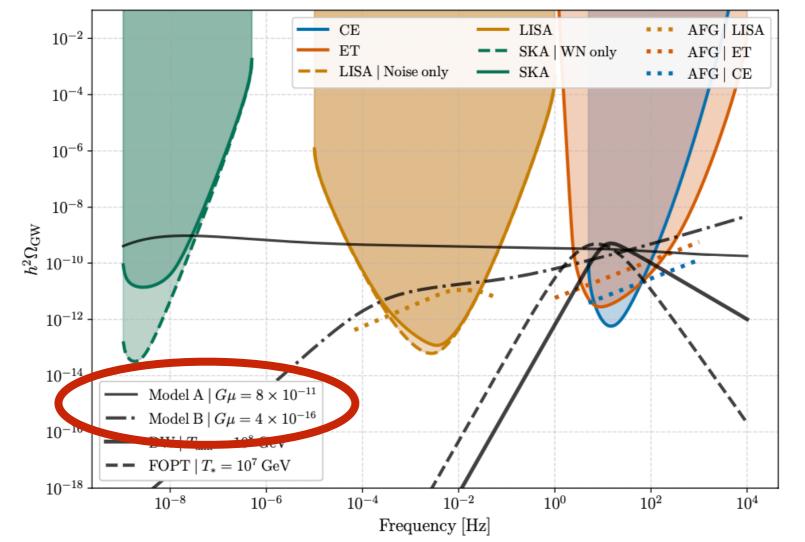
unequal time correlator of the anisotropic stress

$$\langle \Pi_r(\mathbf{k}, \tau) \Pi_p^*(\mathbf{q}, \zeta) \rangle = \frac{(2\pi)^3}{4} \, \delta^{(3)}(\mathbf{k} - \mathbf{q}) \, \delta_{rp} \, \Pi(k, \tau, \zeta)$$

Anisotropic stress power spectral density at unequal time

We now proceed with two approximate analytical solutions of the GW propagation equation:

• Continuous source operating for several Hubble times -> flat SGWB power spectrum



Possibility of coincident detection at several observatories

unequal time correlator of the anisotropic stress

$$\langle \Pi_r(\mathbf{k}, \tau) \Pi_p^*(\mathbf{q}, \zeta) \rangle = \frac{(2\pi)^3}{4} \, \delta^{(3)}(\mathbf{k} - \mathbf{q}) \, \delta_{rp} \, \Pi(k, \tau, \zeta)$$
 stress power spectral density

Anisotropic stress power at unequal time

Fast source operating in a time interval η_{fin} - η_{in} in the radiation dominated era

Typical example: first order phase transition

$$H_r^{\text{rad}}(\mathbf{k}, \eta > \eta_{\text{fin}}) = A_r^{\text{rad}}(\mathbf{k})\cos(k\eta) + B_r^{\text{rad}}(\mathbf{k})\sin(k\eta)$$

Matching at η_{fin} with the homogeneous solution to find the GW signal today

$$A_r^{\text{rad}}(\mathbf{k}) = \frac{16\pi G}{k} \int_{\eta_{\text{in}}}^{\eta_{\text{fin}}} d\tau \, a(\tau)^3 \sin(-k\tau) \, \Pi_r(\mathbf{k}, \tau),$$
$$B_r^{\text{rad}}(\mathbf{k}) = \frac{16\pi G}{k} \int_{x_{\text{in}}}^{x_{\text{fin}}} d\tau \, a(\tau)^3 \cos(k\tau) \, \Pi_r(\mathbf{k}, \tau)$$

GW amplitude power spectrum today for modes $k\eta_0 \gg 1$

$$\langle h_r(\mathbf{k}, \eta_0) h_p^*(\mathbf{q}, \eta_0) \rangle = \frac{1}{a_0^2} [\langle A_r(\mathbf{k}) A_p^*(\mathbf{q}) \rangle + \langle B_r(\mathbf{k}) B_p^*(\mathbf{q}) \rangle]$$
$$= 8\pi^5 \delta^{(3)}(\mathbf{k} - \mathbf{q}) \delta_{rp} \frac{h_c^2(k, \eta_0)}{k^3}$$

GW energy density power spectrum today for modes $k\eta_0 \gg 1$

$$\frac{d\rho_{\rm GW}}{d{\log}k} = \frac{k^2 \, h_c^2(k,\eta_0)}{16\pi G \, a_0^2} \qquad \text{(freely propagating sub-Hubble modes)}$$

Hubble modes)

$$\frac{d\rho_{\rm GW}}{d\log k}(k,\eta_0) = \frac{4}{\pi} \frac{G}{a_0^4} k^3 \int_{\eta_{\rm in}}^{\eta_{\rm fin}} d\tau \, a^3(\tau) \int_{\eta_{\rm in}}^{\eta_{\rm fin}} d\zeta \, a^3(\zeta) \, \cos[k(\tau-\zeta)] \, \Pi(k,\tau,\zeta)$$

GW amplitude power spectrum today for modes $k\eta_0 \gg 1$

$$\langle h_r(\mathbf{k}, \eta_0) h_p^*(\mathbf{q}, \eta_0) \rangle = \frac{1}{a_0^2} [\langle A_r(\mathbf{k}) A_p^*(\mathbf{q}) \rangle + \langle B_r(\mathbf{k}) B_p^*(\mathbf{q}) \rangle]$$
$$= 8\pi^5 \delta^{(3)}(\mathbf{k} - \mathbf{q}) \delta_{rp} \frac{h_c^2(k, \eta_0)}{k^3}$$

GW energy density power spectrum today for modes $k\eta_0 \gg 1$

$$\frac{d\rho_{\text{GW}}}{d\log k} = \frac{k^2 h_c^2(k, \eta_0)}{16\pi G a_0^2}$$

(freely propagating sub-Hubble modes)

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,\eta_0) = \frac{4}{\pi} \frac{G}{a_0^4} k^3 \int_{\eta_{\text{in}}}^{\eta_{\text{fin}}} d\tau \, a^3(\tau) \int_{\eta_{\text{in}}}^{\eta_{\text{fin}}} d\zeta \, a^3(\zeta) \cos[k(\tau - \zeta)] \, \Pi(k,\tau,\zeta)$$

$$a_*^3 \simeq 1 \qquad \Pi(k)$$

SUPPOSE:

$$\Delta \eta = \eta_{\rm fin} - \eta_{\rm in} \ll \mathcal{H}_*^{-1}$$
 $k\eta_{\rm in} \ll 1$ $\Pi(k, \tau, \eta)$ constant over $\Delta \eta$

GW energy density parameter today for modes $1/\eta_0 \ll k \ll 1/\eta_{in}$

$$h^{2}\Omega_{\mathrm{GW}}(k,\eta_{0}) = \frac{3}{2\pi^{2}}h^{2}\Omega_{\mathrm{rad}}^{0}\left(\frac{g_{0}}{g_{*}}\right)^{\frac{1}{3}}(\Delta\eta\mathcal{H}_{*})^{2}\left(\frac{\rho_{\Pi}}{\rho_{\mathrm{rad}}}\right)^{2}(k\ell_{*})^{3}\tilde{P}_{\mathrm{GW}}(k)$$
$$\Pi(k) = \rho_{\Pi}^{2}\tilde{P}_{\mathrm{GW}}(k)$$

From the time integrals

GW energy density parameter today for modes $1/\eta_0 \ll k \ll 1/\eta_{in}$

$$h^2 \Omega_{\text{GW}}(k, \eta_0) = \frac{3}{2\pi^2} h^2 \Omega_{\text{rad}}^0 \left(\frac{g_0}{g_*}\right)^{\frac{1}{3}} (\Delta \eta \mathcal{H}_*)^2 \left(\frac{\rho_{\Pi}}{\rho_{\text{rad}}}\right)^2 (k\ell_*)^3 \tilde{P}_{\text{GW}}(k)$$

$$\mathcal{O}(10^{-9})$$

$$\mathcal{O}(10^{-6})$$

$$\mathcal{O}(10^{-3})$$

Value detected at PTA

Factor depending slightly on the generation epoch through the number of relativistic d.o.f.

Only slow, very anisotropic processes have the chance to generate detectable SGWB signals for sub-Hubble sources

Value for detection at LISA

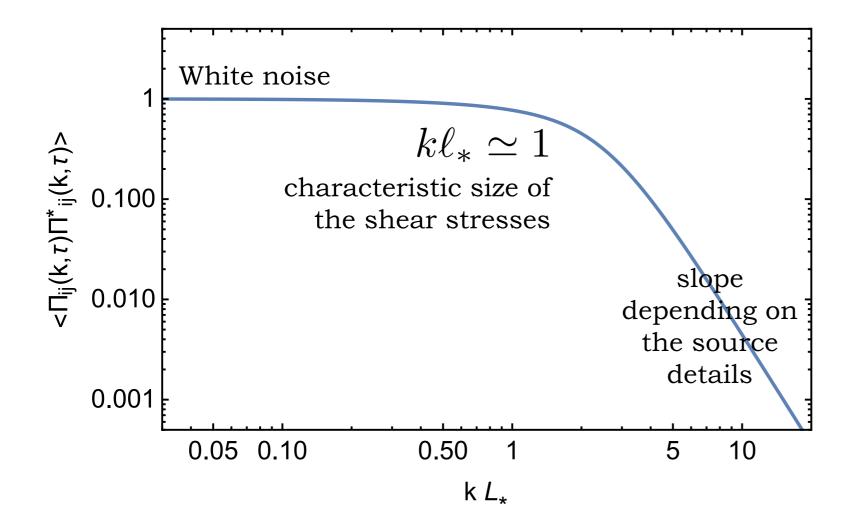
$$\mathcal{O}(10^{-11})$$

$$\mathcal{O}(10^{-6})$$

$$\mathcal{O}(10^{-5})$$

GW energy density parameter today for modes $1/\eta_0 \ll k \ll 1/\eta_{in}$

$$h^2 \Omega_{\text{GW}}(k, \eta_0) = \frac{3}{2\pi^2} h^2 \Omega_{\text{rad}}^0 \left(\frac{g_0}{g_*}\right)^{\frac{1}{3}} (\Delta \eta \mathcal{H}_*)^2 \left(\frac{\rho_{\Pi}}{\rho_{\text{rad}}}\right)^2 (k\ell_*)^3 \tilde{P}_{\text{GW}}(k)$$



Fast source:
independent on k for
large enough scales
(uncorrelated)

$$\ell_* \le H_*^{-1}$$

GW energy density parameter today for modes $1/\eta_0 \ll k \ll 1/\eta_{in}$

$$h^2 \Omega_{\text{GW}}(k, \eta_0) = \frac{3}{2\pi^2} h^2 \Omega_{\text{rad}}^0 \left(\frac{g_0}{g_*}\right)^{\frac{1}{3}} (\Delta \eta \mathcal{H}_*)^2 \left(\frac{\rho_{\Pi}}{\rho_{\text{rad}}}\right)^2 (k\ell_*)^3 \tilde{P}_{\text{GW}}(k)$$

$$1/\eta_0 \ll k \ll \mathcal{H}_* \ll 1/(a_*\ell_*)$$

Range of validity Causality of the of the solution

sourcing process

$$\Omega_{\rm GW}(k) \propto (k\ell_*)^3$$

Characteristic time of the source evolution

$$\delta t_c = \frac{\ell_*}{v_{\rm rms}}$$

Characteristic time of the GW production from the Green's function:

$$\delta t_{\rm gw} \sim \frac{1}{k}$$

GW production goes faster than source evolution for all relevant wave-numbers including the spectrum peak

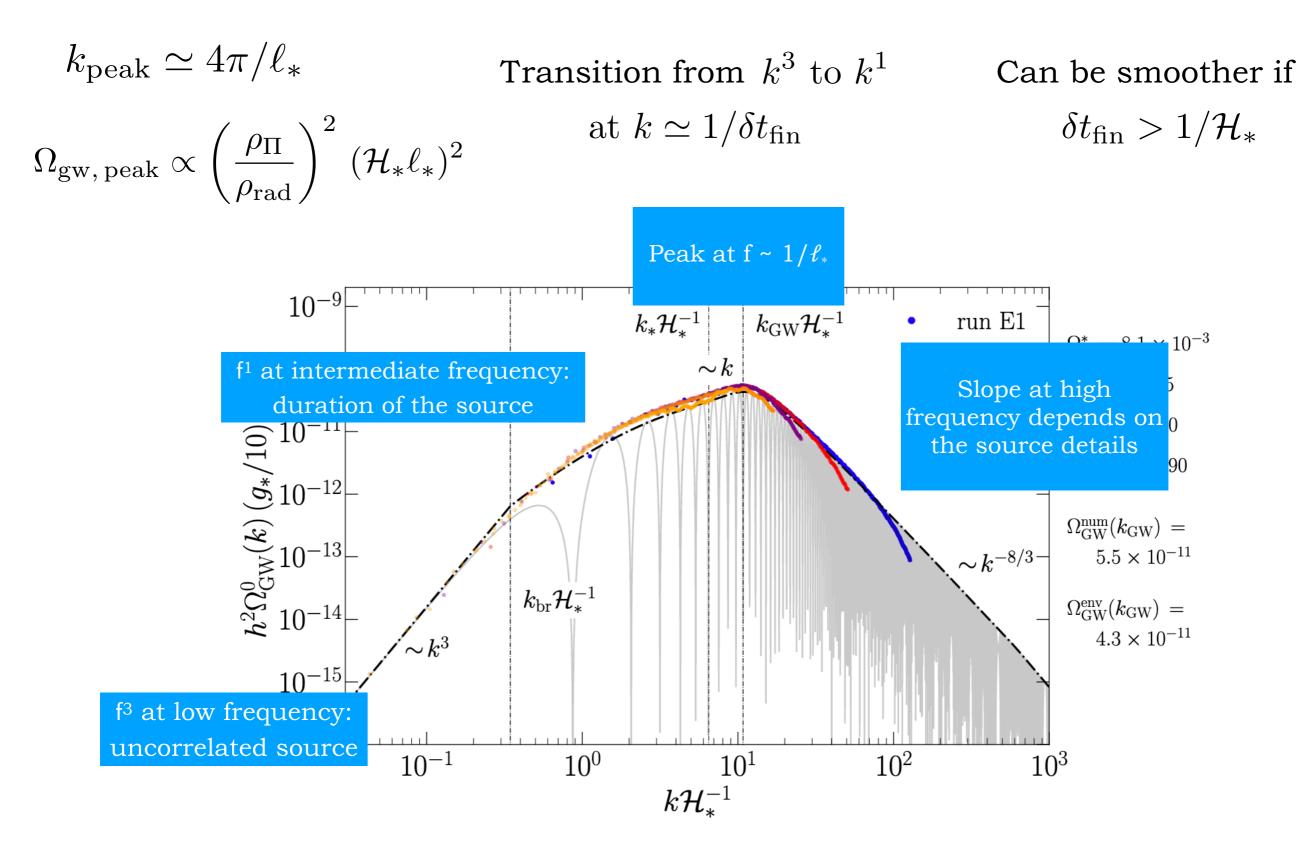
$$k > \frac{v_{\rm rms}}{\ell_*}$$

One assumes that the source is constant in time for a finite time interval (which can be larger than the Hubble time)

$$\delta t_{\rm fin} \sim \mathcal{N} \delta t_c$$

One can then easily integrate to find the GW spectrum

$$h^2 \Omega_{\rm GW}(k, \eta_0) \propto h^2 \Omega_{\rm rad}^0 \left(\frac{g_0}{g_*}\right)^{\frac{1}{3}} \left(\frac{\rho_{\rm II}}{\rho_{\rm rad}}\right)^2 (k\ell_*)^3 \tilde{P}_{\rm GW}(k) \begin{cases} \ln^2[1 + \mathcal{H}_* \delta t_{\rm fin}] & \text{if } k \, \delta t_{\rm fin} < 1 \\ \ln^2[1 + (k/\mathcal{H}_*)^{-1}] & \text{if } k \, \delta t_{\rm fin} \ge 1 \end{cases}$$



Typical example: topological defects

Suppose the source is operating continuously in the radiation dominated era

- No matching at the end time of the source
- No free sub-Hubble modes

$$H_r^{\text{rad}}(\mathbf{k}, \eta) = \frac{16\pi G}{k} \int_{\eta_{\text{in}}}^{\eta} d\tau \, a(\tau)^3 \, \sin[k(\eta - \tau)] \, \Pi_r(\mathbf{k}, \tau)$$

$$H_r(\mathbf{k}, \eta) = a \, h_r(\mathbf{k}, \eta)$$

$$h_r'(\mathbf{k}, \eta) = \frac{16\pi G}{a(\eta)} \int_{\eta_{\text{in}}}^{\eta} d\tau \, a(\tau)^3 \, \cos[k(\eta - \tau)] \, \Pi_r(\mathbf{k}, \tau)$$

$$\langle h'_r(\mathbf{k}, \eta) h'_p{}^*(\mathbf{q}, \eta) \rangle = \frac{8\pi^5}{k^3} \delta^{(3)}(\mathbf{k} - \mathbf{q}) \delta_{rp} h'_c{}^2(k, \eta) \qquad \frac{d\rho_{GW}}{d\log k} = \frac{h'_c{}^2(k, \eta)}{16\pi G a^2(\eta)}$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,\eta) = \frac{4}{\pi} \frac{G}{a^4} k^3 \int_{\eta_{\text{in}}}^{\eta} d\tau \, a(\tau)^3 \int_{\eta_{\text{in}}}^{\eta} d\zeta \, a(\zeta)^3 \, \mathcal{G}(k,\eta,\tau,\zeta) \, \Pi(k,\tau,\zeta)$$

Typical example: topological defects

Suppose the source is operating continuously in the radiation dominated era

- Scaling (property of the topological defects network)
- Decays very fast in off-diagonal $k au
 eq k\zeta$
- ullet Decays as a power law on the diagonal $k au=k\zeta$

D. Figueroa et al, arXiv:1212.5458

$$\Pi(k,\tau,\zeta) = \frac{v^4}{\sqrt{\tau\zeta}} \frac{\mathcal{U}(k\tau,k\zeta)}{a(\tau)a(\zeta)}$$

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,\eta) = \frac{4}{\pi} \frac{G}{a^4} k^3 \int_{\eta_{\text{in}}}^{\eta} d\tau \, a(\tau)^3 \int_{\eta_{\text{in}}}^{\eta} d\zeta \, a(\zeta)^3 \, \mathcal{G}(k,\eta,\tau,\zeta) \, \Pi(k,\tau,\zeta)$$

Typical example: topological defects

Suppose the source is operating continuously in the radiation dominated era

$$h^2 \Omega_{\rm GW}(f) = \frac{32}{3} h^2 \Omega_{\rm rad} \left(\frac{v}{M_{\rm Pl}}\right)^4 F_{\rm RD}^{[\mathcal{U}]}(\infty)$$

D. Figueroa et al, arXiv:1212.5458

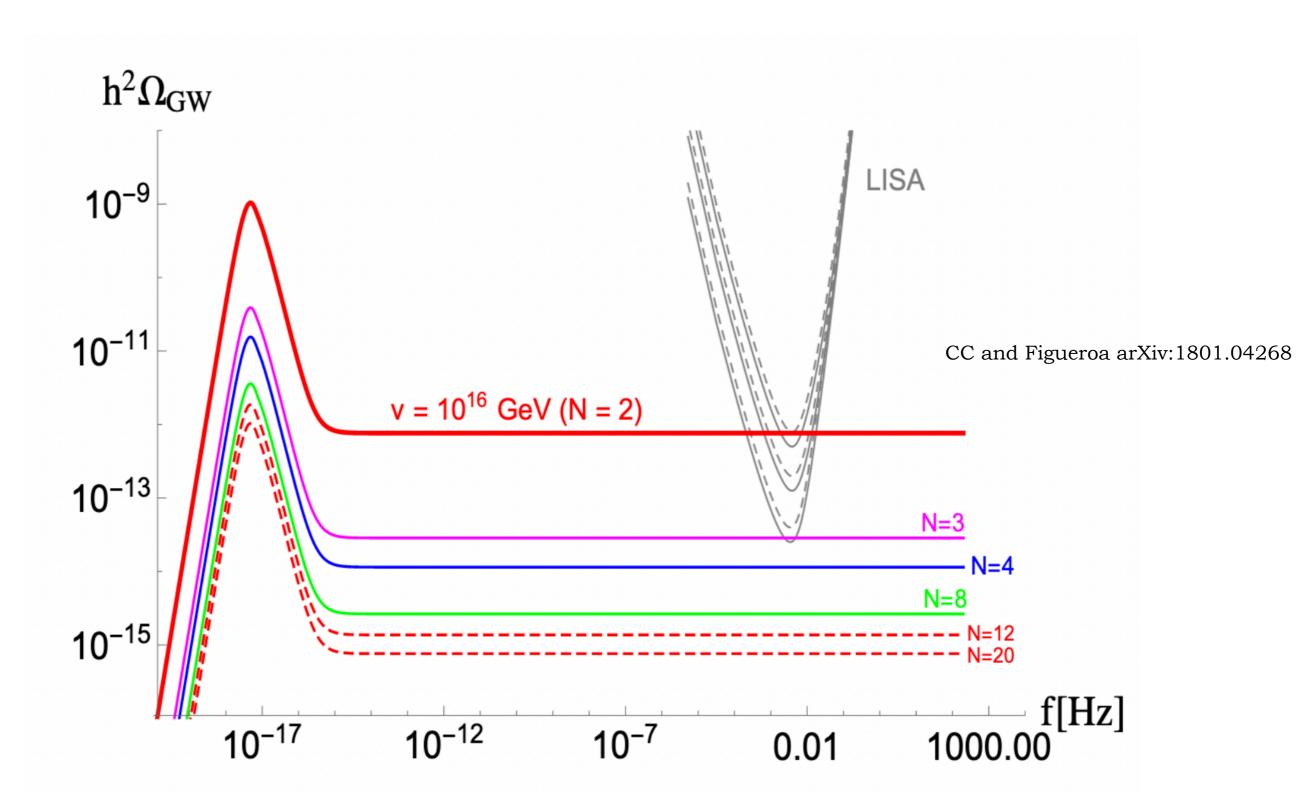
TODAY FLAT SPECTRUM
AT SUB-HORIZON MODES
IN THE RADIATION ERA

Progressively independent on the upper bound

$$\frac{d\rho_{\text{GW}}}{d\log k}(k,\eta) = \frac{32}{3}\Omega_{\text{rad}}\frac{\rho_c}{a^4} \left(\frac{v}{M_{\text{Pl}}}\right)^4 \int_{x_{\text{in}}}^x dx_1 \int_{x_{\text{in}}}^x dx_2 \sqrt{x_1 x_2} \,\mathcal{G}(x,x_1,x_2) \,\mathcal{U}(x_1,x_2)$$

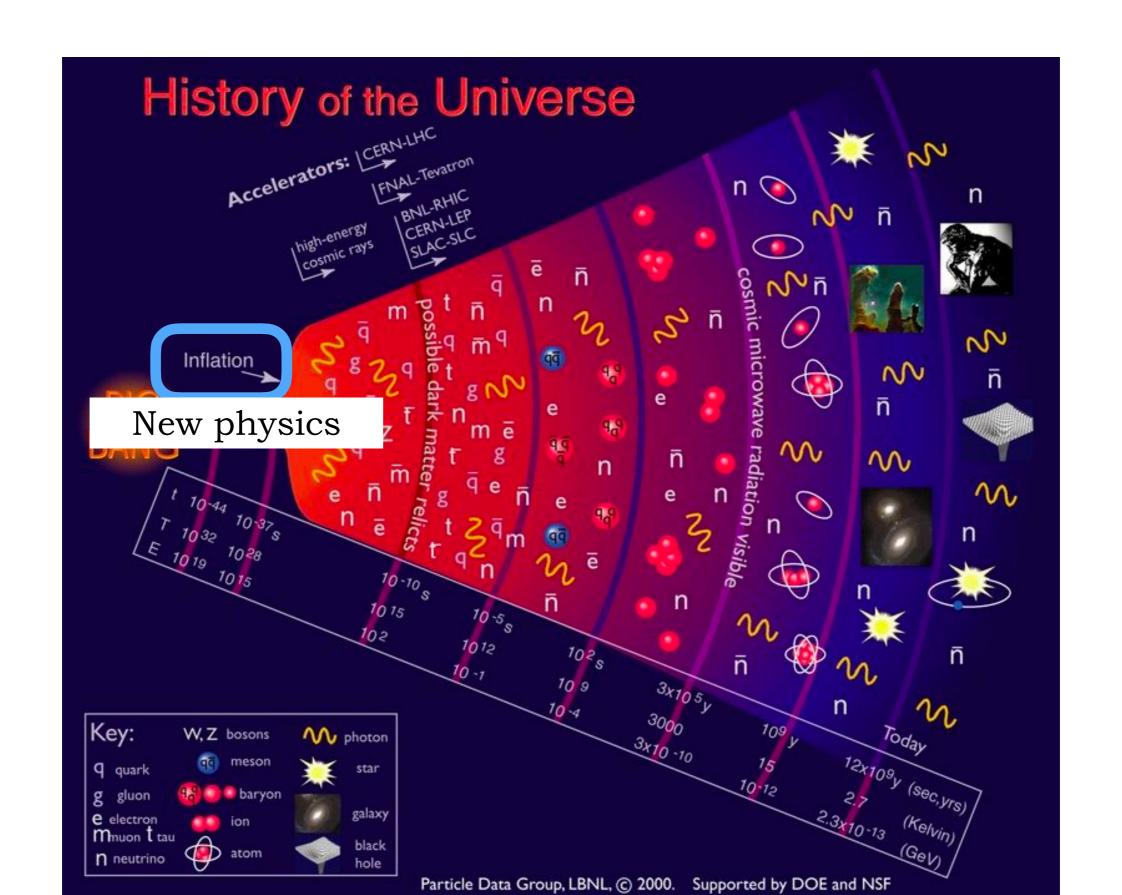
D. Figueroa et al, arXiv:1212.5458

Typical example: topological defects



Examples of signals

Inflation: phase transition of the Inflaton field

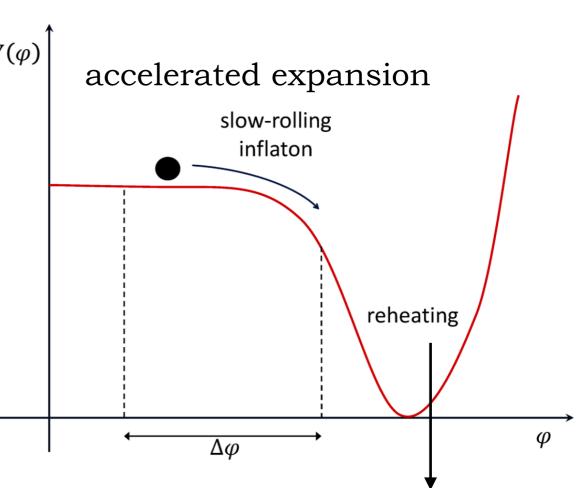


Inflation: phase transition of the Inflaton field

- Inflation is required in the present cosmological scenario as it *solves the flatness and horizon problems*, and provides *the seeds for the matter structure formation*
- It is the best model explaining *CMB black body spectrum, temperature anisotropies and polarisation*
- The universe at the end of inflation is characterised by *small metric fluctuations of quantum origin*, both *scalar* (of the order of 10⁻⁵, providing density perturbations) and *tensor* (yet undetected, providing GWs)

Universe dominated by a scalar field

$$\ddot{\varphi} + 3H\dot{\varphi} - \nabla^2\varphi + V'(\varphi) = 0$$



Generation of a thermodynamical state: particles in thermal equilibrium, radiation-dominated phase

Image credit: Guzzetti et al, arXiv:1605.01615

GW signal from inflation

Amplification of tensor metric vacuum fluctuations by the exponential expansion

$$h_r''(\mathbf{k}, \eta) + 2 \mathcal{H} h_r'(\mathbf{k}, \eta) + k^2 h_r(\mathbf{k}, \eta) = 16\pi G a^2 \Pi_r(\mathbf{k}, \eta)$$

- \checkmark canonically normalised free field $v_{\pm} = a M_{Pl} h_{\pm}$
- ✓ quantisation
- ✓ homogeneous wave equation: harmonic oscillator with time dependent frequency

$$v_{\pm}''(t) + (k^2 - a^2H^2)v_{\pm}(t) = 0$$

 $k\gg a\,H$ sub-Hubble modes k<

$$\omega^2(t) = k^2$$

free field in vacuum zero occupation number

 $k \ll a \, H$ super-Hubble modes

$$\omega^2(t) = -a^2 H^2$$

super-Hubble modes have very large occupation number

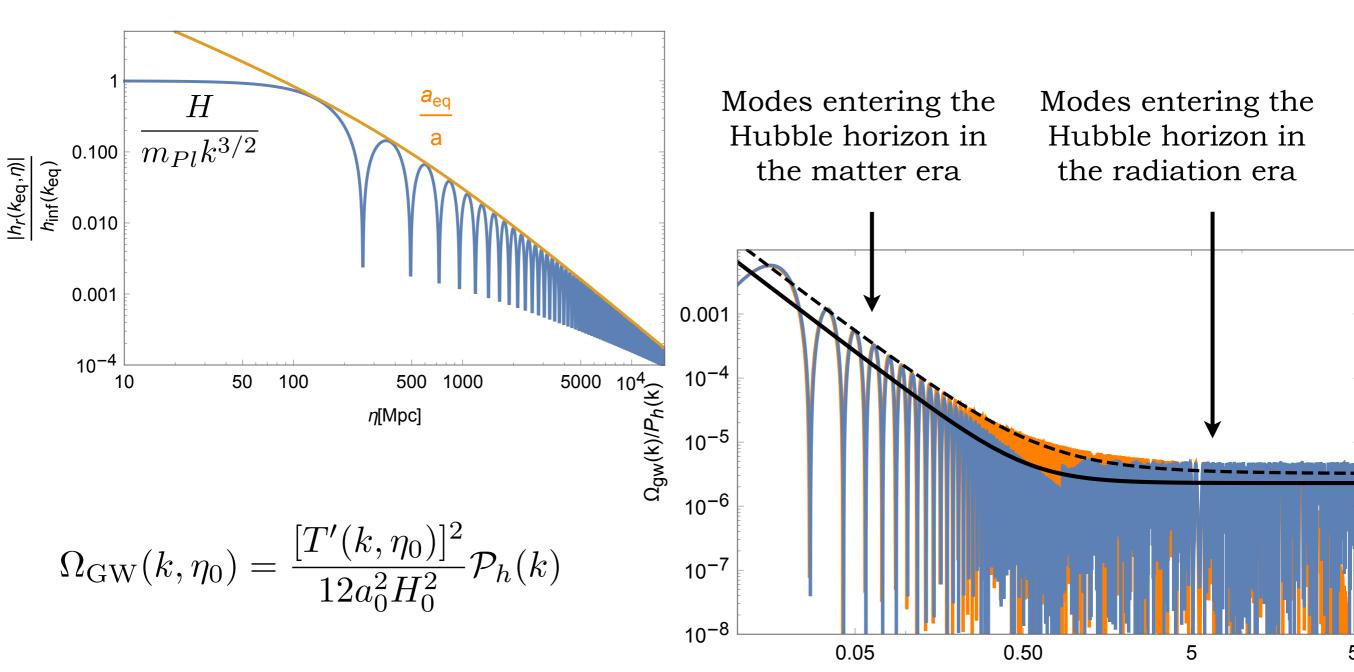
GW signal from (slow roll) inflation

tensor spectrum

$$\mathcal{P}_h = \frac{2}{\pi} \frac{H^2}{m_{Pl}^2} \left(\frac{k}{aH}\right)^{-2\epsilon} \qquad \epsilon \equiv \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$

k/keq

 transfer function from inflation to today, as modes re-enter the Hubble horizon



GW signal from (slow roll) inflation

tensor spectrum

$$\mathcal{P}_h = \frac{2}{\pi} \frac{H^2}{m_{Pl}^2} \left(\frac{k}{aH}\right)^{-2\epsilon} \qquad \epsilon \equiv \frac{M_P^2}{2} \left(\frac{V'}{V}\right)^2 \ll 1$$

$$\Omega_{\text{GW}}(f) = \frac{3}{128} \,\Omega_{\text{rad}} \, r \, \mathcal{P}_{\mathcal{R}}^* \left(\frac{f}{f_*}\right)^{n_T} \left[\frac{1}{2} \left(\frac{f_{\text{eq}}}{f}\right)^2 + \frac{16}{9}\right]$$

• tensor to scalar ratio $r = \mathcal{P}_h/\mathcal{P}_{\mathcal{R}}$ $r_* < 0.038$

$$r = \mathcal{P}_h/\mathcal{P}_{\mathcal{R}}$$

$$r_* < 0.038$$

Planck+BICEP+A CT+BAO limit

scalar amplitude at CMB pivot scale

$$\mathcal{P}_{\mathcal{R}}^* \simeq 2 \cdot 10^{-9}$$

$$k_* = \frac{0.05}{\text{Mpc}}$$

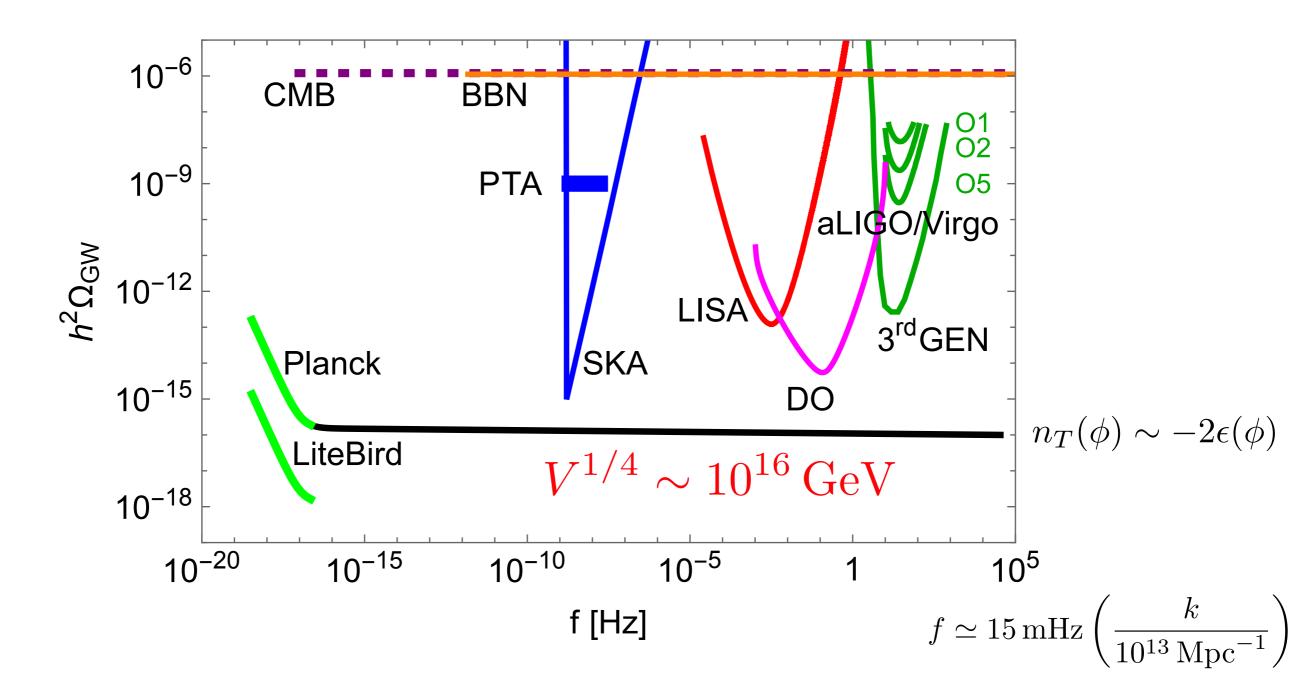
• GW signal extended in frequency: $H_0 \le f \le H_{\rm inf}$

continuous sourcing of GW as modes re-enter the Hubble horizon

GW signal from (slow roll) inflation

Gw detectors offer the amazing opportunity to probe the inflationary power spectrum (and the model of inflation) down to the tiniest scales

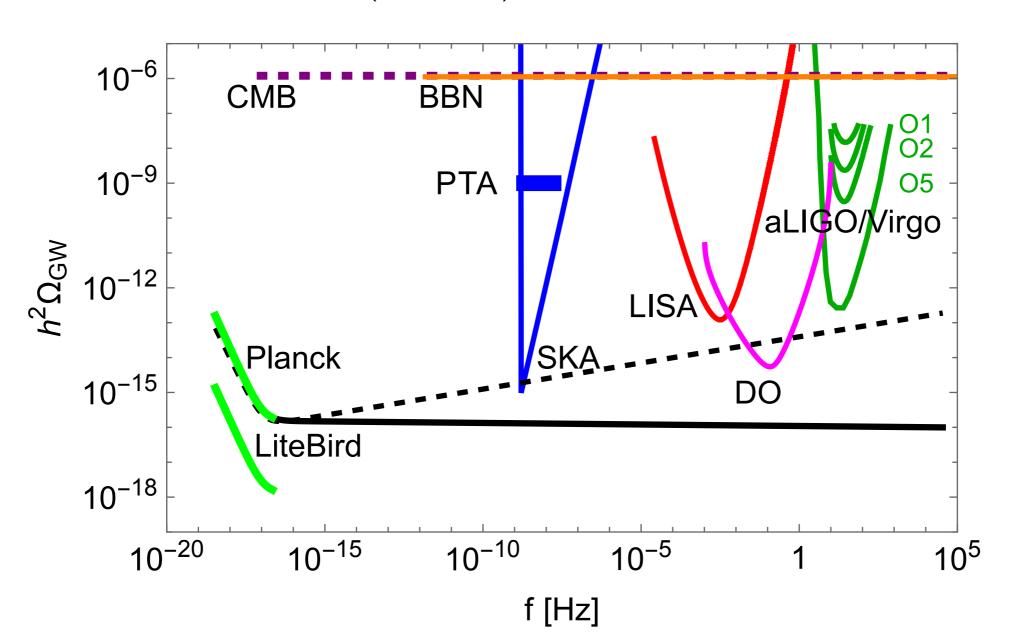
BUT! The signal in the standard slow roll scenario is too low because of CMB observational bound



GW signal from (non-standard) inflation

There is the possibility to enhance the signal going beyond the standard inflationary scenario: adding extra fields, modifying the inflaton potential, modifying the gravitational interaction, adding a phase with stiff equation of state...

$$H_r''(\mathbf{k}, \eta) + \left(k^2 - \frac{a''}{a}\right) H_r(\mathbf{k}, \eta) = 16\pi G a^3 \Pi_r(\mathbf{k}, \eta)$$



Example: inflaton-gauge field coupling

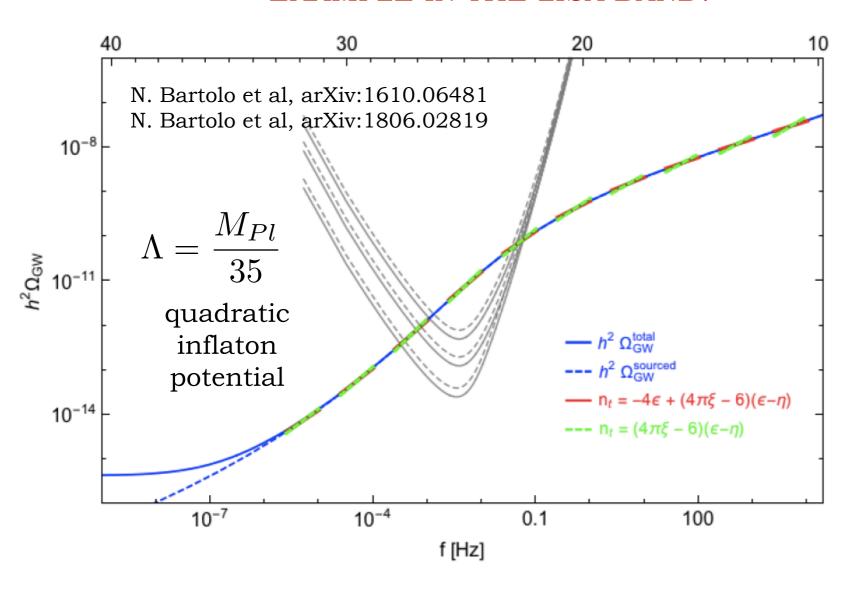
Add a term in the Lagrangian coupling pseudo-scalar inflaton to gauge fields

$$V(\phi) + \frac{\phi}{4\Lambda} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Production of gauge fields and consequently of GWs through the source

$$\Pi_{ij} \sim [-E_i E_j - B_i B_j]^{TT}$$

EXAMPLE IN THE LISA BAND:



OTHER SIGNATURES/ CONSTRAINTS: non-gaussianity, chirality, primordial black holes

Predictions of the signal must be refined accounting for non-linearity of the system

Example: GW signal from second order scalar perturbations and associated primordial black holes

- At linear order in cosmological perturbation theory, scalar and tensor perturbations are decoupled and evolve separately, but at second order they mix
- Gradients in the scalar component can source the tensor component at second order: since the scalar fluctuations are order of 10-5, the tensors are small $\partial_i \Psi, \partial_i \Phi$
- However, *if the scalar component is enhanced*, the induced tensor component can be important (e.g. from a phase of ultra slow-roll close to reheating)
- The enhanced scalar density fluctuations can collapse upon horizon reentry and produce primordial black holes whose properties are linked to those of the tensor spectrum

$$\Omega_{\text{GW}}(f) = \Omega_{\text{rad}} \int_0^\infty dv \int_{|1-v|}^{1+v} du \, \mathcal{K}(u,v) \mathcal{P}_{\mathcal{R}}(uk) \mathcal{P}_{\mathcal{R}}(vk)$$

Second order in curvature perturbation

0.6

 ϕ/ϕ_0

0.8

1.0

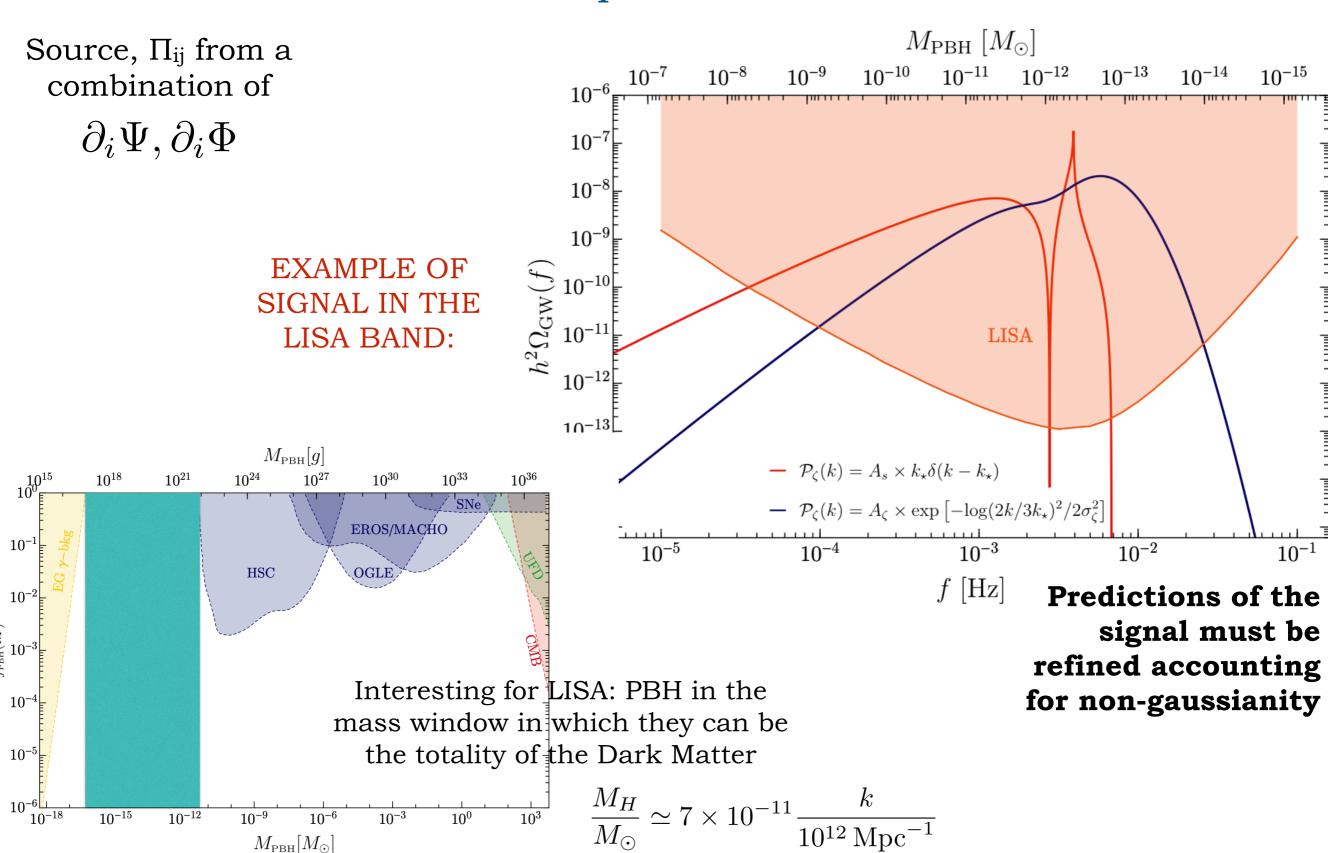
0.4

0.2

 $\phi_0 = 3M_{\rm P}$ and $V_0 = 2.3 \cdot 10^{-10} M_{\rm P}^4$

The signal depends on the shape of the curvature power spectrum, several phenomenological models are proposed

Example: GW signal from second order scalar perturbations and associated primordial black holes



A. Riotto, https://indico.math.cnrs.fr/event/5766/contributions/5153/attachments/2801/3587/Paris2021.pdf

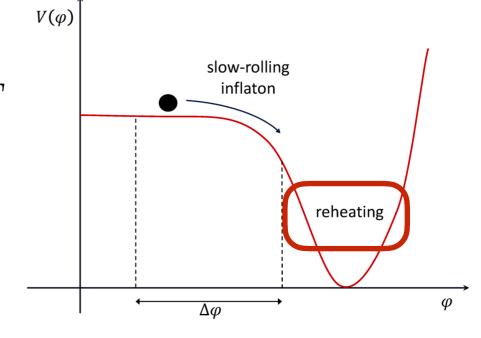
Example: resonant particle production at preheating

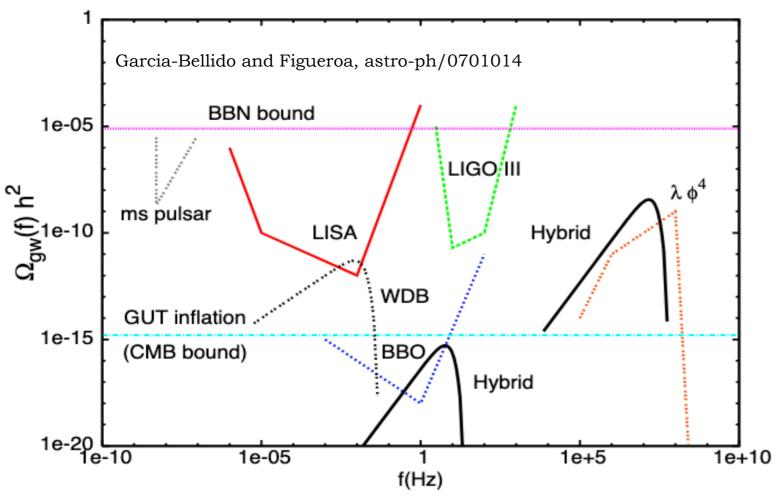
$$V(\phi) + \frac{1}{2}g^2\phi^2\chi^2$$

Kofman et al. arXiv:hep-ph/9704452

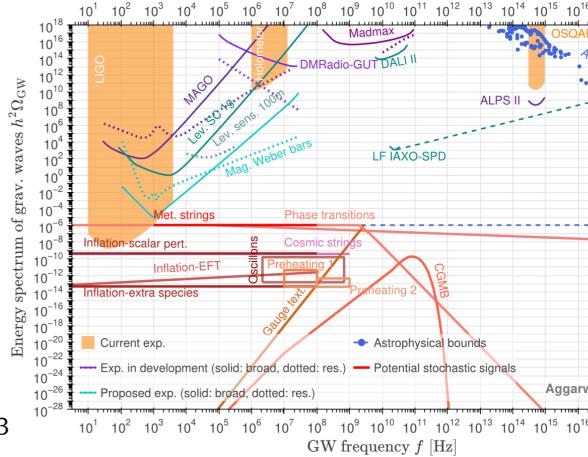
GW sourced from inhomogeneous field

$$\Pi_{ij} \sim [\partial_i \chi \partial_j \chi]^{TT}$$





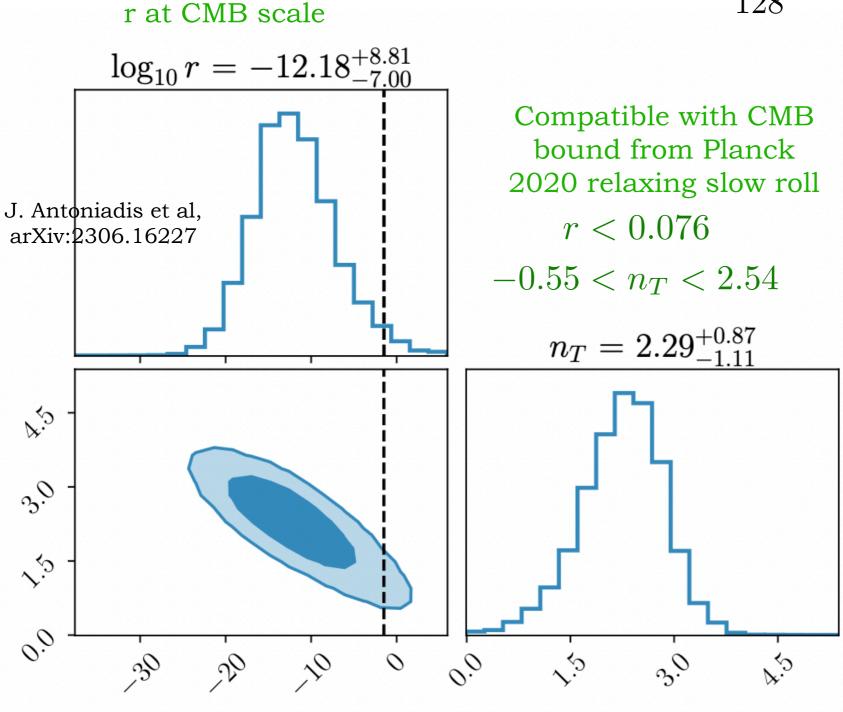
high frequency detectors up to 10¹⁸ GeV, sensitivity still above BBN and CMB bounds



An example of possible detection at PTA?

 n_T

Very small value of r at CMB scale



$$\Omega_{\text{GW}}(f) = \frac{3}{128} \,\Omega_{\text{rad}} \, r \, \mathcal{P}_{\mathcal{R}}^* \left(\frac{f}{f_*}\right)^{n_T} \left[\frac{1}{2} \left(\frac{f_{\text{eq}}}{f}\right)^2 + \frac{16}{9}\right]$$

tble with CMB from Planck $\times \left(\frac{f}{f_{\mathrm{RD}}} \right)^{\frac{2(3w-1)}{3w+1}}$

Would this be compatible with slow roll and a stiff equation of state? Marginally

$$\gamma = 5 - n_T + \frac{2(1 - 3w)}{3w + 1}$$

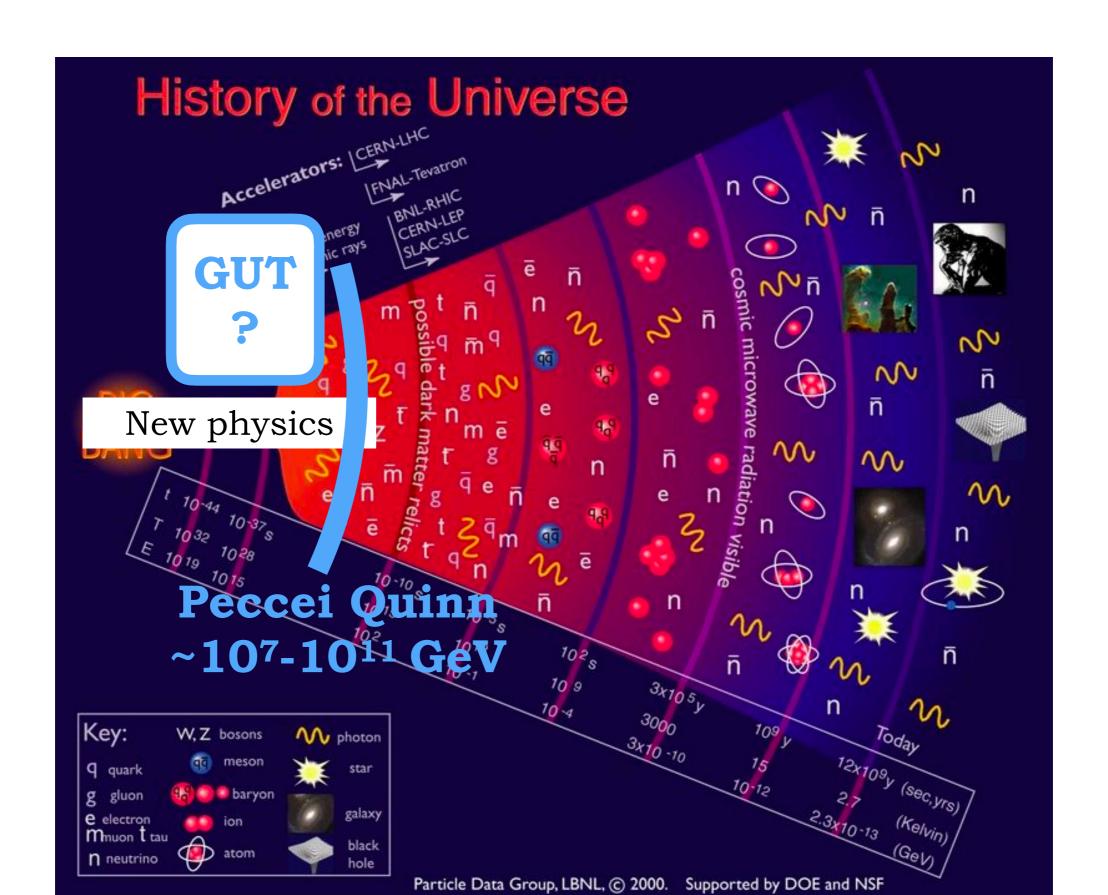
Bound between 0 and -2

$$\gamma_{\rm best \, fit} \simeq 2.7 \longrightarrow n_T \gtrsim 0.3$$

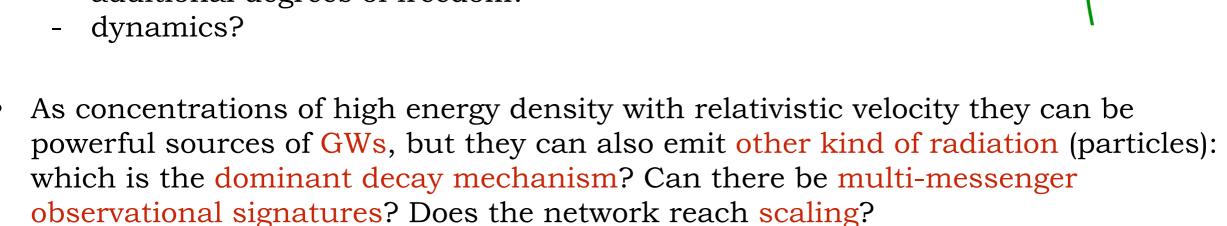
Strong degeneracy between the two parameters $n_T = -0.16 \log_{10} r + 0.46$

 $\log_{10} r$

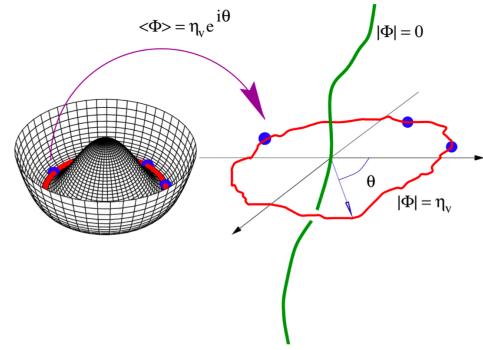
phase transitions at high energy: GUT, Peccei-Quinn... They can lead to topological defects sourcing GWs



- They can be formed by a symmetry breaking, whenever the system is symmetric under a group while the ground-state is invariant only under a subgroup, depending on the topology of the degenerate ground-state manifold
- The properties of the defects depend on the underlying action:
 - which kind of defects (strings, domain walls...)?
 - Are they stable?
 - thickness? energy per unit length/surface?
 - interaction (inter-commutation, presence of junctions...)?
 - additional degrees of freedom?



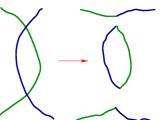
- Numerical simulations are necessary to model their evolution, but they need very large dynamical range, and should in principle contain the gravitational back-reaction
- Predictions of the GW signal from topological defects is inevitably model dependent



Local cosmic strings

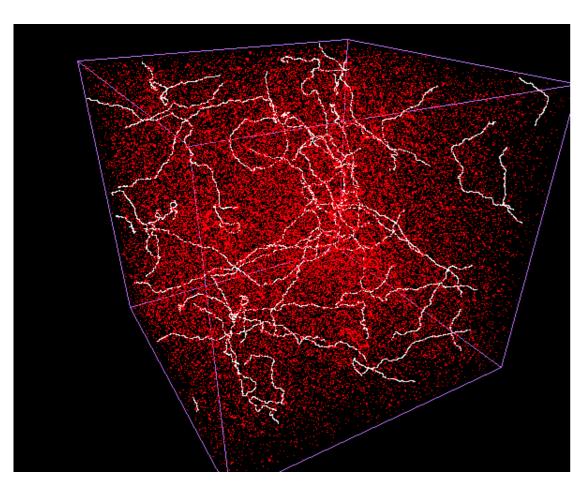
- Formed e.g. at the breaking of a local U(1) symmetry at energy scale η
- All gravitational properties related to $G\mu \sim 10^{-6} \left(\frac{\eta}{10^{16}~{\rm GeV}}\right)^2$
- Cosmic strings can be described by the Nambu Goto action: w ~ $1/\eta << \ell$
- Intercommutation generates loops with kinks and cusps
 - -> loops self-intersects and fragment until they reach stable nonself-intersecting trajectories
 - -> loop oscillations produce GWs
 - -> loops decay with GW emission
 - -> the network reaches scaling together with an associated SGWB





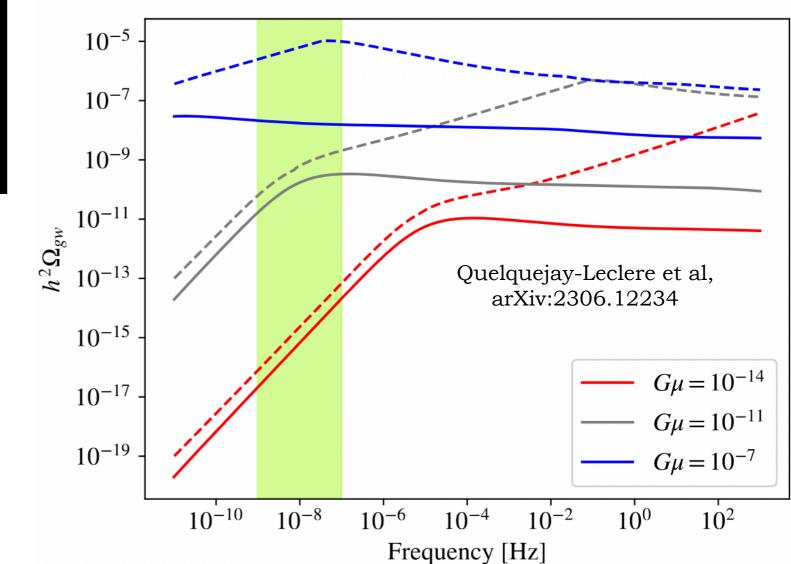
- What is the GW power radiated by a loop? Does the loop also emit other kinds of radiation?
- What is the distribution of non-self-intersecting loops of given length at a given time?
- What is the role played by gravitational back-reaction on the loops?

Local cosmic strings



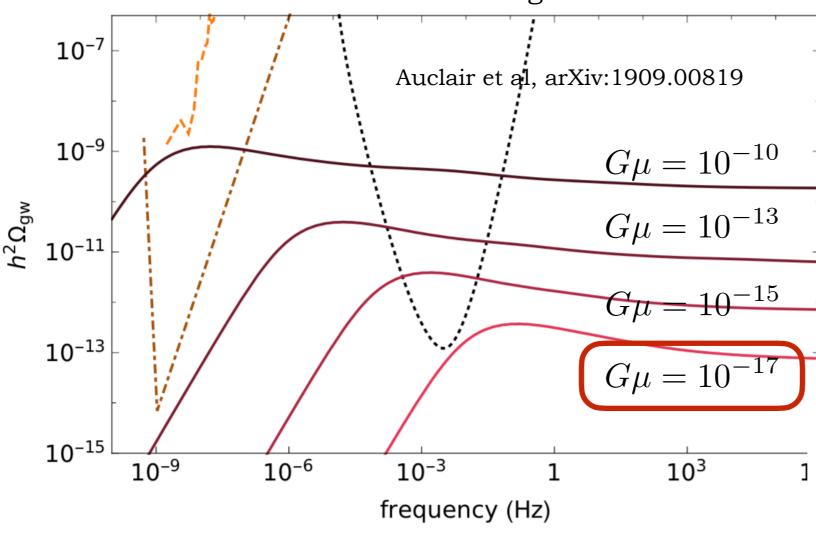
https://curl.irmp.ucl.ac.be/~chris/strings.html

Different numerical simulations provide different predictions for the GW signal



Local cosmic strings

One model of Nambu Goto local strings in the LISA band

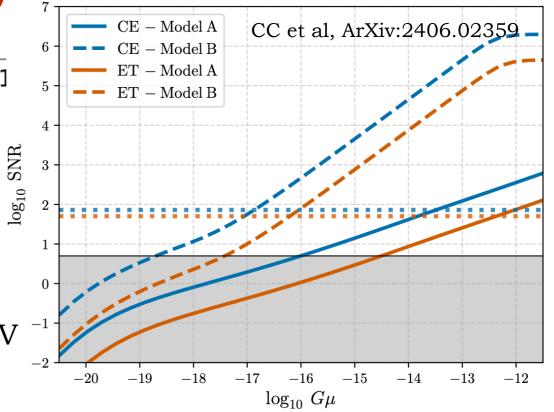


LVK constraints:

$$G\mu \lesssim 9.6 \cdot 10^{-9} \pmod{A}$$

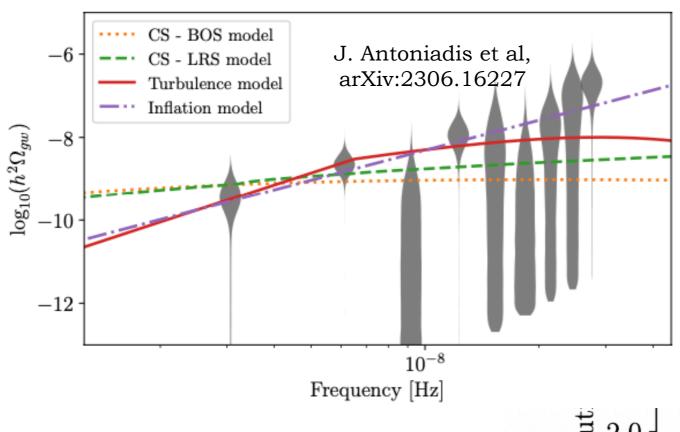
$$G\mu \lesssim 10^{-15} \; (\text{model B})$$

3G detectors can probe scales down to $\eta \sim 10^{(11-12)}$ GeV



An example of possible detection at PTA?

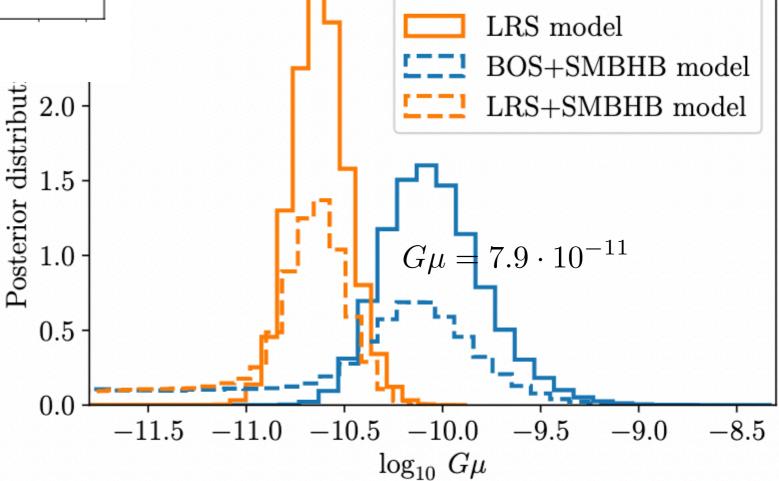
Local cosmic strings



cosmic strings aren't a good fit to the data, because the spectrum is too shallow

$$\eta \sim M_{\rm Pl} \sqrt{G\mu} \sim 10^{14} \, {\rm GeV}$$

BOS model

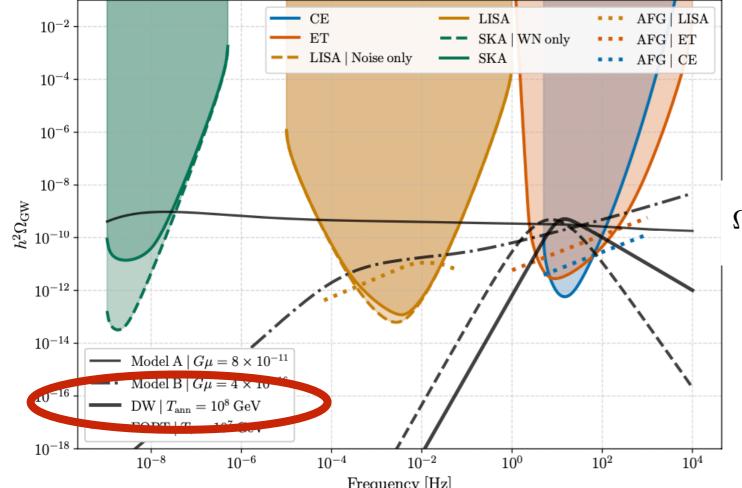


Domain walls

- Formed when a discrete symmetry is broken and the ground state is disconnected
- The network reaches a scaling regime by reconnection and radiation emission
- The energy density decays too slowly
 - -> they can dominate the universe
 - -> they need an annihilation mechanism

$$\rho_{\rm DW} \propto \sigma H$$

• Explicit breaking of the discrete symmetry -> vacuum non-degeneracy favouring the true vacuum $H(T_{\rm ann})\sim \Delta V/\sigma$



• GW emission can occur both during scaling and during annihilation

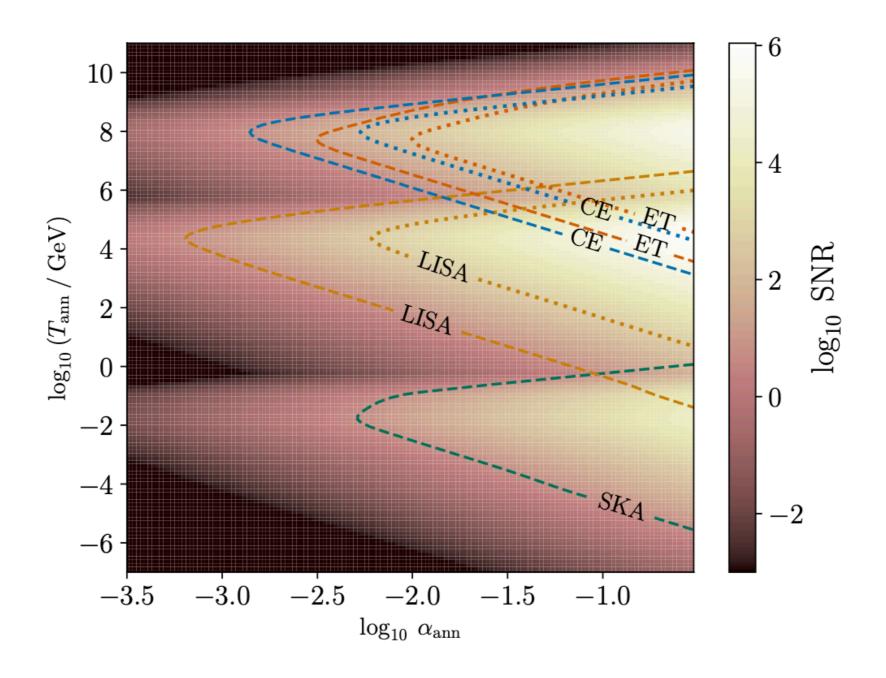
$$lpha_{
m ann} \equiv rac{
ho_{
m DW}}{3H^2M_p^2}igg|_{
m ann}$$

$$\Omega_{\text{GW,DW}}(f)h^2 \simeq 10^{-10} \,\tilde{\epsilon} \left(\frac{10.75}{g_*(T_{\text{ann}})}\right)^{\frac{1}{3}} \left(\frac{\alpha_{\text{ann}}}{0.01}\right)^2 S\left(\frac{f}{f_p^0}\right)$$

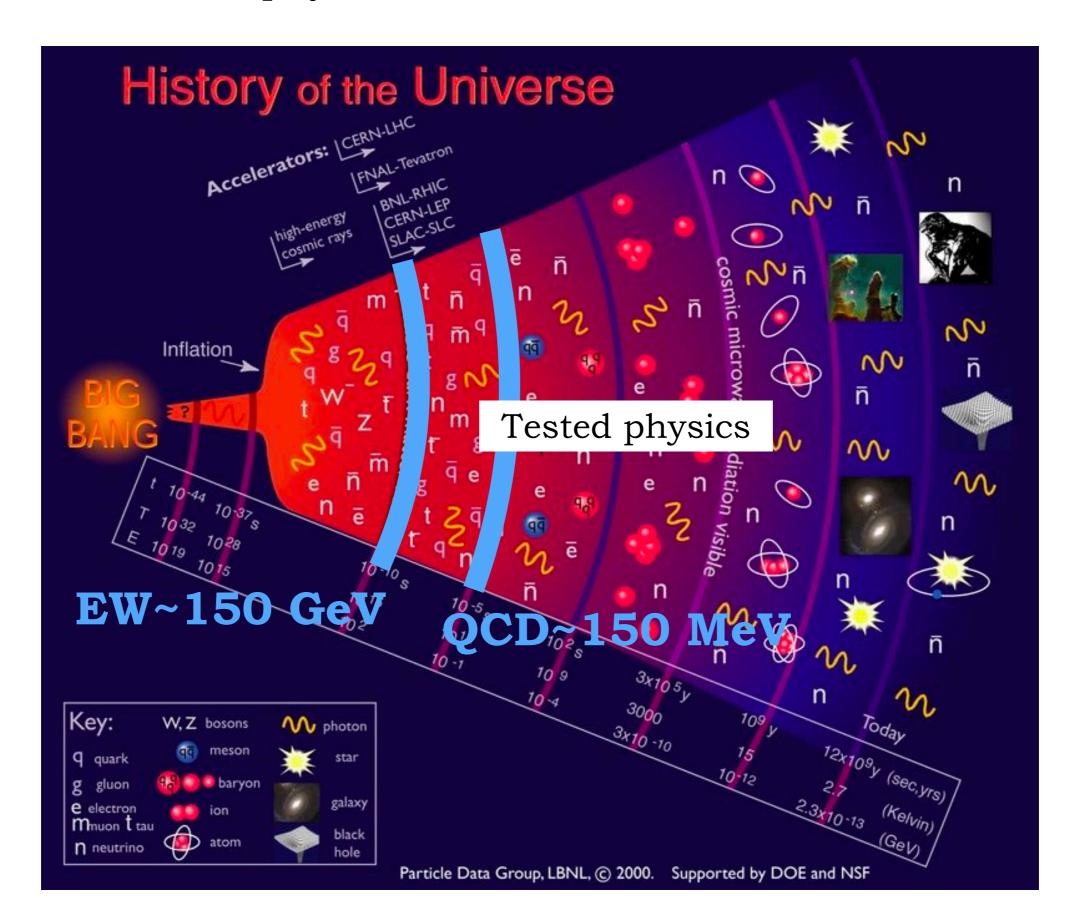
$$f_p = H_{\rm ann}$$

Domain walls

Assuming the spectral shape from numerical simulations (exponents 3 and -1), we have explored the reach of 3G detectors, LISA and PTA to DW parameter space

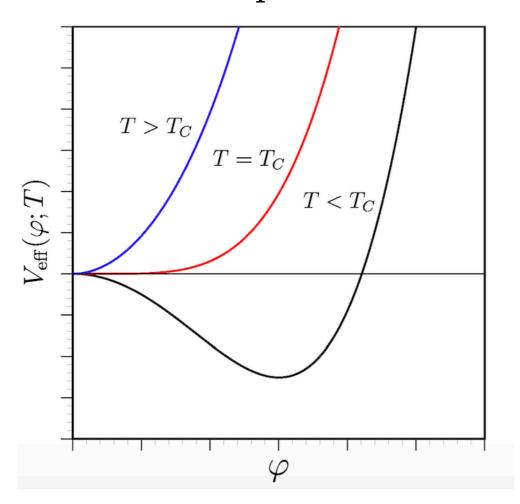


phase transitions predicted by the standard model of particle physics: electroweak and QCD



- We know that at least two PTs occurred in the universe, the EW one and the QCD one: according to the standard model, they are both **crossovers**
- However, *sizeable (detectable) GW generation requires a first order PT*, proceeding through the *nucleation of true vacuum bubbles*

Second order phase transition



First order phase transition

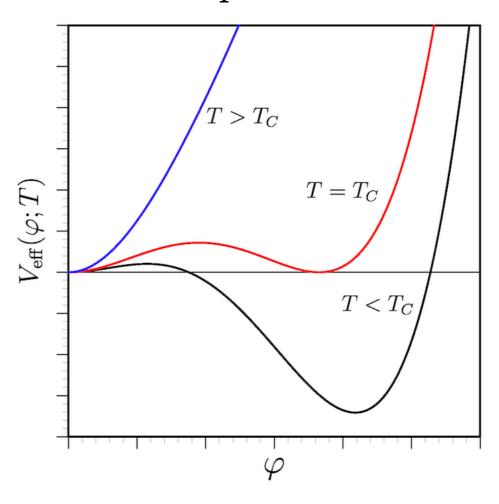
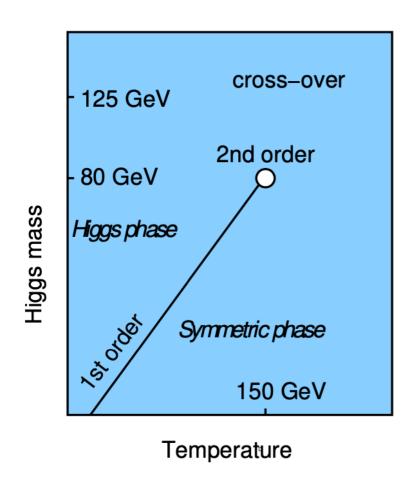
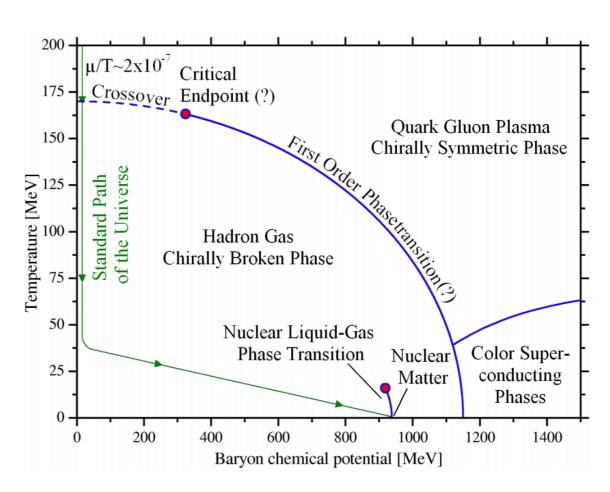


Image credit: E. Senaha, Symmetry 2020

- We know that at least two PTs occurred in the universe, the EW one and the QCD one: according to the standard model, they are both crossovers
- However, sizeable (detectable) GW generation requires a first order PT, proceeding through the nucleation of true vacuum bubbles

EWPT QCDPT





T. Boekel and J. Schaffner-Bielich, arXiv:1105.0832

- We know that at least two PTs occurred in the universe, the EW one and the QCD one: according to the standard model, they are both **crossovers**
- However, sizeable (detectable) GW generation requires a first order PT, proceeding through the nucleation of true vacuum bubbles

EWPT

QCDPT

might become first order in BSM EW sector extensions:

SM + light scalars (SM+singlet, SUSY, 2HDM, composite Higgs...)

Depends on the conditions in the early universe: might become first order if the lepton asymmetry in the universe is large

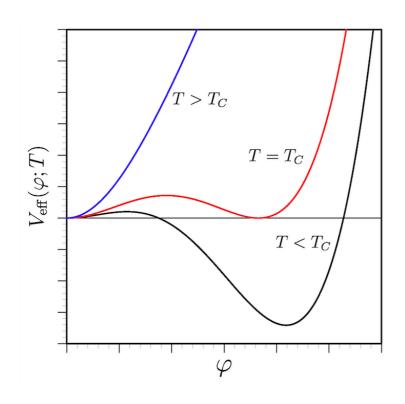
D. Schwarz and Stuke, arXiv:0906.3434 M. Middeldorf-Wygas et al, arXiv:2009.00036

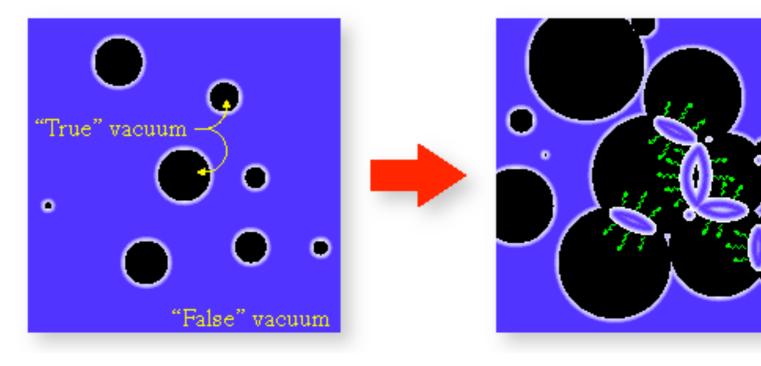
OTHER EXAMPLES OF POSSIBLE FOPTs:

- **Effective approaches:** heavy new physic represented by higher dimensional operators
- Conformal models: e.g. conformal symmetry breaking with dilaton
- **New symmetries:** extend the SM with e.g. U(1)_{B-L}
- **Hidden sectors:** provide also dark matter candidates, PT can be as strong as one wants
- Peccei Quinn can be first order depending on the realisation

Opportunity to probe high energy physics scenarios beyond the standard model

Sources of tensor anisotropic stress (and thereby GWs) at a first order phase transition:





Several processes, rich phenomenology!

- Bubble collision (scalar field gradients)
- Bulk fluid motion
- Electromagnetic fields

$$\Pi_{ij}^{TT} \sim [\partial_i \phi \partial_j \phi]^{TT}$$

$$\Pi_{ij}^{TT} \sim [\gamma^2(\rho+p)v_iv_j]^{TT}$$

$$\Pi_{ij}^{TT} \sim [-E_i E_j - B_i B_j]^{TT}$$

sound waves and/ or turbulence

The signal depends on the following parameters

- The temperature of the FOPT T*
- The amount of energy available in the source K, connected to the PT strength
- The size of the anisotropic stresses, connected to the bubble size $R_* = v_w/\beta$
- The bubble wall velocity v_w

$$T_*, \ \alpha, \ \frac{\beta}{H_*}$$
 Determined by the effective potential v_w, K Determined by the bubble expansion dynamics and interaction, and by the fluid dynamics (sound speed fixed)

If the PT is strong and non-linearities in the bulk fluid develop: fraction $\varepsilon = \frac{K_{\rm turb}}{K}$ of kinetic energy in turbulent motions

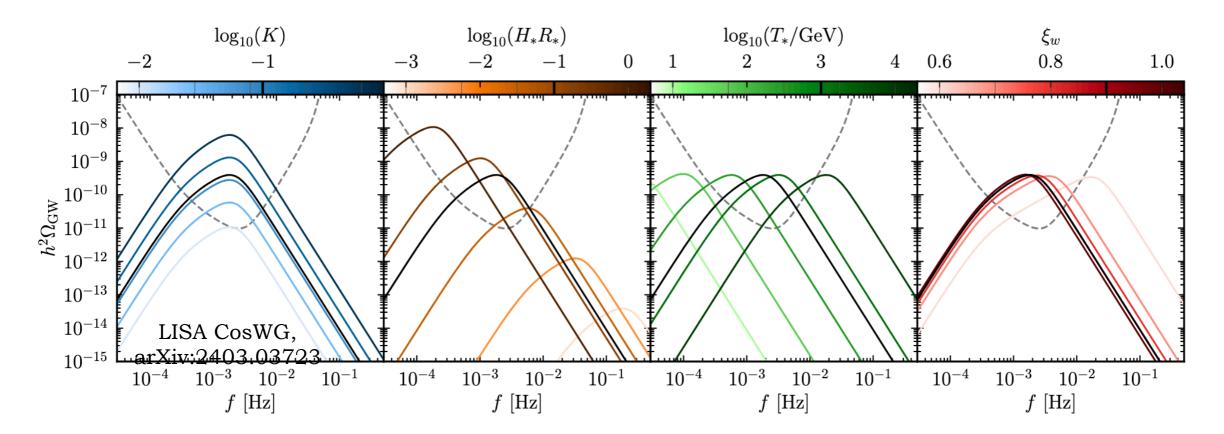
Most of these parameters are known (at least in principle) given a PT model + numerical simulations of the fluid dynamics

numerical simulations are necessary to infer the GW signal because of non-linear dynamics and/or complicated fluid shells profiles and/or intrinsic randomness of the process

The signal depends on the following parameters

- The temperature of the FOPT T*
- The amount of energy available in the source K, connected to the PT strength
- The size of the anisotropic stresses, connected to the bubble size $R* = v_w/\beta$
- The bubble wall velocity v_w

$$T_*, \ \alpha, \ \frac{\beta}{H_*}$$
 Determined by the effective potential v_w, K Determined by the bubble expansion dynamics and interaction, and by the fluid dynamics (sound speed fixed)



(b) sound waves (black: $K = 0.1, H_*R_* = 0.1, \xi_w = 0.9, T_* = 1 \text{ TeV}$)

LIGO Virgo Kagra

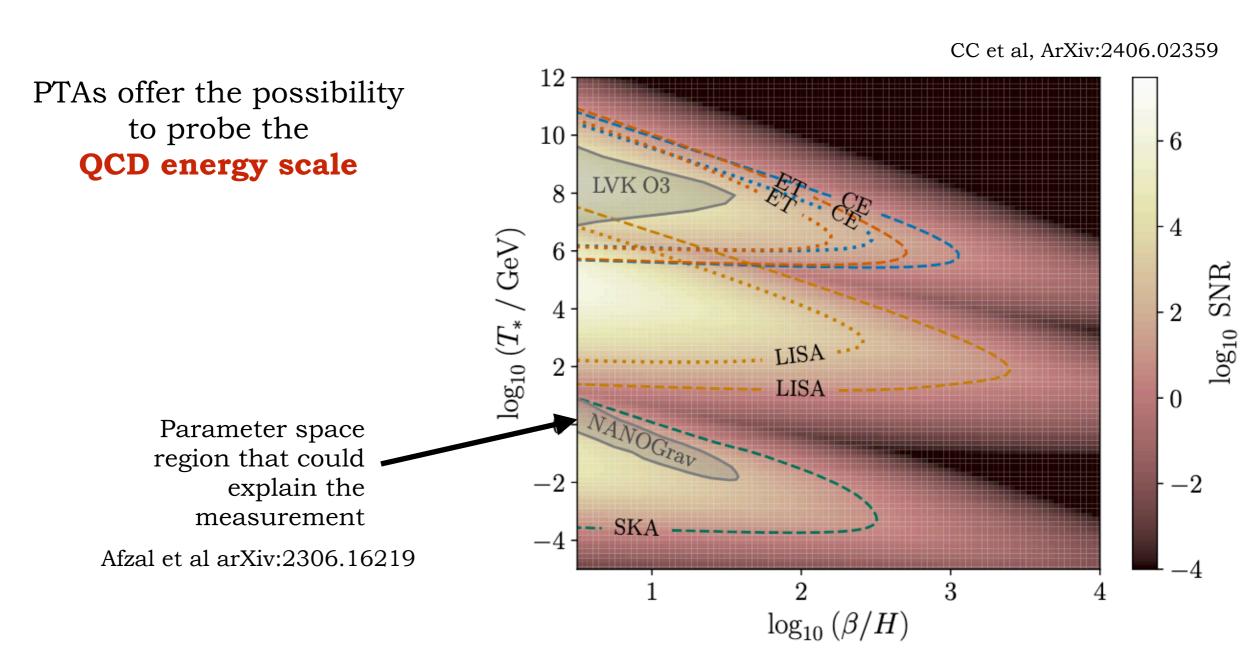
$$1 \,\mathrm{Hz} < f < 1000 \,\mathrm{Hz}$$
 \longrightarrow $10^6 \,\mathrm{GeV} \lesssim T_* \lesssim 10^{10} \,\mathrm{GeV}$

CC et al, ArXiv:2406.02359 LVK constraints from nondetection 6 Badger et al, arXiv:2209.14707 LVK O3 $\log_{10}\left(T_{*} \, / \operatorname{GeV}\right)$ Peccei-Quinn phase transition $T_{\rm PO} \sim F_a$ LISA $10^{7-8} \, \mathrm{GeV} \lesssim F_a \lesssim 10^{10-11} \, \mathrm{GeV}$ 3 $\log_{10}\left(\beta/H\right)$

Parameter to which the signal amplitude is *inversely* proportional

Pulsar Timing Arrays

$$10^{-9} \, \text{Hz} < f < 10^{-7} \, \text{Hz} \longrightarrow 1 \, \text{MeV} \lesssim T_* \lesssim 1 \, \text{GeV}$$

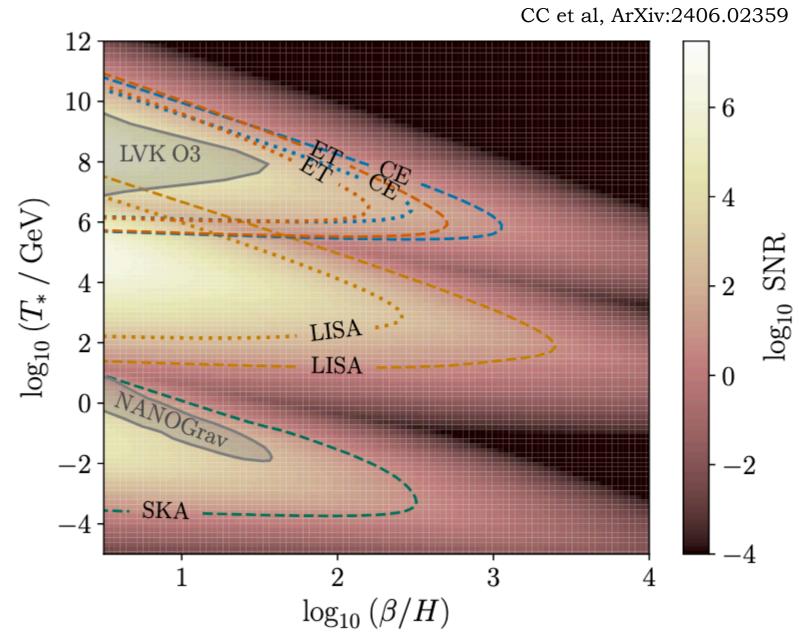


Parameter to which the signal amplitude is *inversely* proportional

Laser interferometer space antenna

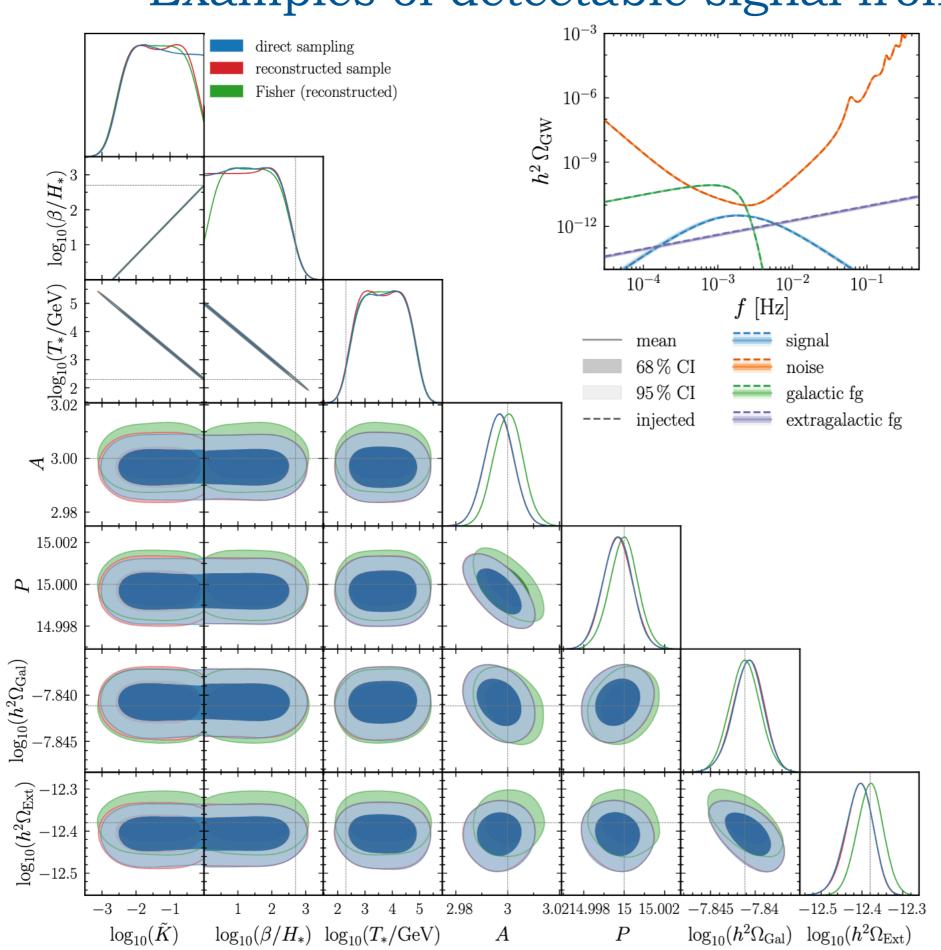
$$10^{-5} \,\mathrm{Hz} < f < 0.1 \,\mathrm{Hz}$$
 \longrightarrow $10 \,\mathrm{GeV} \lesssim T_* \lesssim 10^5 \,\mathrm{GeV}$

LISA offers the possibility to probe the **EW energy scale and beyond**



Parameter to which the signal amplitude is *inversely* proportional

Examples of detectable signal from the EWPT



Template-based

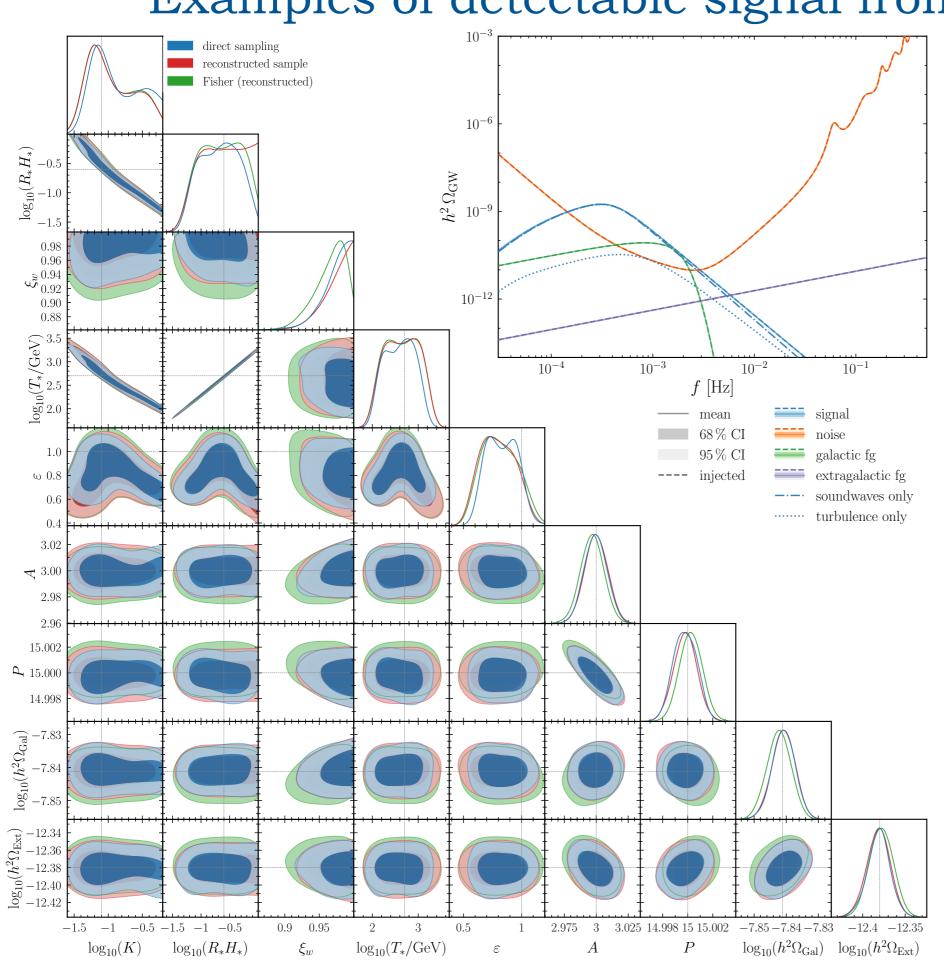
reconstruction of the thermodynamic parameters of the first order PT for

bubble collisions

accounting for
foregrounds and
assuming a twoparameters noise model

LISA CosWG, arXiv:2403.03723

Examples of detectable signal from the EWPT



Template-based

reconstruction of the thermodynamic parameters of the first order PT for

sound waves + turbulence

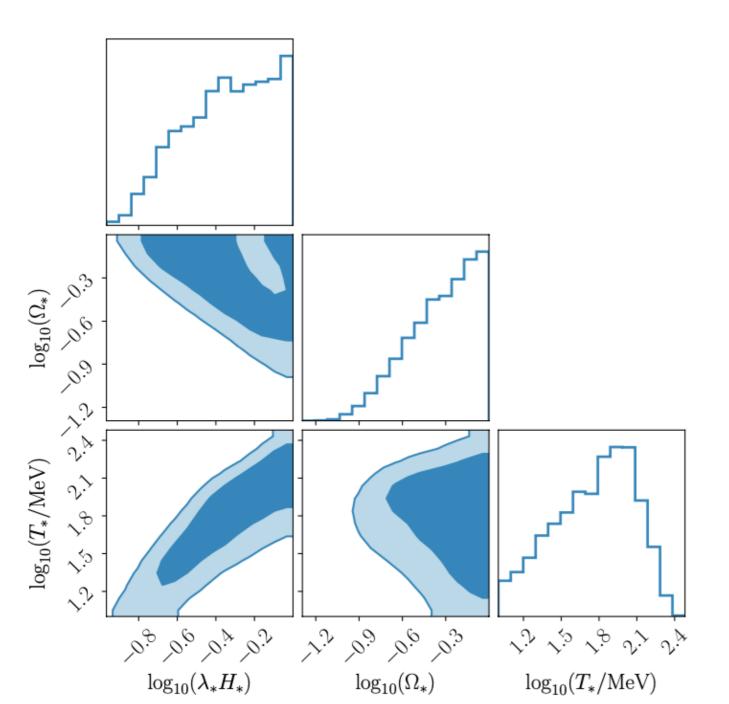
accounting for
foregrounds and
assuming a twoparameters noise model

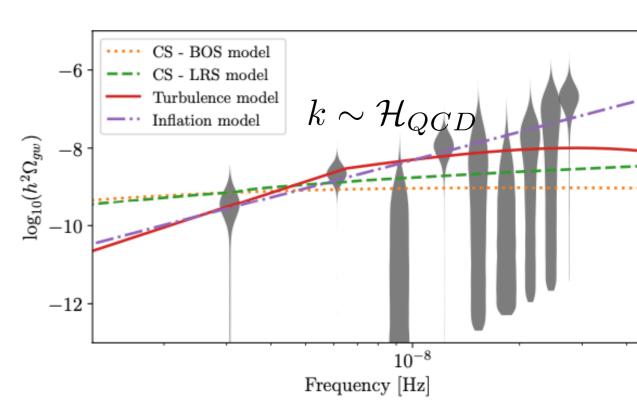
LISA CosWG, arXiv:2403.03723

An example of possible detection at PTA?

The PTA signal is compatible with GWs generated by MHD turbulence at the QCD scale

• T_* must be close to the QCD scale, the amount of energy available in anisotropic stress K must be high (at least 10% of the total energy density of the universe, and size of the anisotropic stresses $R_* = v_w/\beta$ must be close to the horizon





The the signal is fit with the low frequency tail, and the spectrum has a break at a scale comparable to the horizon at the QCD PT

To summarise:

- SGWB might reveal a powerful tool to probe the early universe and high energy physics
- The spectral shape must be predicted with good accuracy in order to disentangle the different sources (and also for foregrounds)
- General considerations about the characteristics of the spectral shape are possible in some cases, to pin down at least the class of SGWB sources
- Inflation: new physics but observationally compelling, extended GW signal in frequency, only accessible by CMB unless one goes beyond the standard slow roll scenario (there are well motivated scenarios!)
- Topological defects: amazing potential to probe high energy theory, but need to account for GW signal model dependent
- Electroweak PT: at the limit of tested physics, GW signal can be accessed/ constrained by LISA only for models beyond the standard model of particle physics
- QCD PT: tested physics but difficult to predict, GW signal can be accessed/constrained by PTA only for models beyond the standard model of particle physics
- SGWBs from the primordial universe might seem speculative but their potential to probe fundamental physics is great and amazing discoveries can be around the corner, especially after the PTA results!