This is a matrix element of a "bare" SCET operator, which still needs to be renormalized. The fact that the coefficient of the ${ }^{1 / \epsilon}$ pole depends on the collinear and ultra-soft (and hence low-energy) scales appears to be troublesome at first sight, since the counterterms removing the divergences must be of UV nature. On second look, however, we see that

$$
\ln \frac{\mu^{2}}{P_{1}^{2}}+\ln \frac{\mu^{2}}{P_{2}^{2}}-\ln \frac{\mu^{2} Q^{2}}{P_{1}^{2} P_{2}^{2}}=\ln \frac{\mu^{2}}{Q^{2}}
$$

only depends on the hard scale Q^{2} ! It is thus consistent to interpret these poles as UV divergences.

We define the renormalized SCET current operator as:

$$
V_{\text {SCET }}^{\mu \text {, bare }}=Z_{V}(\mu) V_{\text {SCET }}^{\mu}(\mu)
$$

The matrix elements of the renormealized current operator are finite, i.e., free of $1 / \epsilon$ poles. In the $\overline{M S}$ scheme, one obtains:

$$
Z_{V}(\mu)=1+\frac{C_{F \alpha_{s}}}{4 \pi}\left[\frac{2}{\epsilon^{2}}+\frac{2}{\epsilon} \ln \frac{\mu^{2}}{Q^{2}}+\frac{3}{\epsilon}\right]+O\left(\alpha_{s}^{2}\right)
$$

The matrix element of the renormalized current is then given by:

$$
\begin{aligned}
& \left\langle q\left(p_{2}\right)\right| V_{S C E T}^{\mu}(\mu)\left|q\left(p_{1}\right)\right\rangle \\
& =\bar{u}_{\bar{n}}\left(p_{2}\right) \gamma_{1}^{\mu} u_{n}\left(p_{1}\right) \\
& \quad \times\left\{1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[\ln ^{2} \frac{\mu^{2}}{p_{1}^{2}}+\ln ^{2} \frac{\mu^{2}}{p_{2}^{2}}-\ln ^{2} \frac{\mu^{2} Q^{2}}{p_{1}^{2} p_{2}^{2}}\right.\right. \\
& \left.\left.\quad+\frac{3}{2} \ln \frac{\mu^{2}}{p_{1}^{2}}+\frac{3}{2} \ln \frac{\mu^{2}}{p_{2}^{2}}+8-c-\frac{5 \pi^{2}}{6}\right]\right\}
\end{aligned}
$$

Derivation of the Wilson coefficient:
The veatcking relation for the renormalized vector current takes the form:

$$
\bar{\psi} \gamma^{\mu} \psi \rightarrow C_{V}\left(Q_{,}^{2} \mu\right) V_{S C E T}^{\mu}(\mu)
$$

We can derive the one-Loop expression for the hard matching coefficient $C_{V}\left(Q^{2}, \mu\right)$ by comparing the above result for the renormalized SCET matrix element with the result for the Sudakov form factor in QCD, which reads:

$$
\begin{aligned}
& \left\langle q\left(p_{2}\right)\right| \bar{\psi} \gamma^{\mu} \psi\left|q\left(p_{1}\right)\right\rangle=\bar{u}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) \\
& \times\left\{1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[-2 \ln \frac{Q^{2}}{p_{1}^{2}} \ln \frac{Q^{2}}{p_{2}^{2}}+\frac{3}{2}\left(\ln \frac{Q^{2}}{p_{1}^{2}}+\ln \frac{Q^{2}}{p_{2}^{2}}\right)-\frac{2 \pi^{2}}{3}-c\right]\right\} \\
& \quad+\sigma\left(p_{i}^{2} / Q^{2}\right)
\end{aligned}
$$

Matching the two expressions, we find:

$$
C_{V}\left(Q_{,}^{2} \mu\right)=1+\frac{C_{F} \alpha_{s}}{4 \pi}\left[-\ln ^{2} \frac{Q^{2}}{\mu^{2}}+3 \ln \frac{Q^{2}}{\mu^{2}}-8+\frac{\pi^{2}}{6}\right]
$$

\rightarrow only depends on hard scale Q^{2}
VII. RG Evolution Equations

The scale dependence of the renornalized SCET current operator is determined by the differential equation:

$$
\begin{aligned}
\mu \frac{d}{d \mu} V_{\text {SCET }}^{\mu}(\mu)=- & \Gamma_{V}\left(Q^{2}, \mu\right) V_{\text {SCET }}^{\mu}(\mu) \\
& \uparrow \\
& \text { really: } n \cdot \rho_{\bar{c}} \bar{n} \cdot \rho_{c}
\end{aligned}
$$

One can show that, to all orders of perturbation theory, the "anomalous dimension" Γ_{v} is given by:

$$
\Gamma_{v}\left(Q^{2}, \mu\right)=-2 \alpha_{s} \frac{\partial}{\partial \alpha_{s}} Z_{v}^{[1]}(\mu)
$$

(see e.g. my Les Houches Lectures in 1901.06573)
Using our result from above, we find at one-loop order:

$$
\Gamma_{V}\left(Q^{2}, \mu\right)=-\frac{C_{F} \alpha_{s}}{\pi}\left(\ln \frac{\mu^{2}}{Q^{2}}+\frac{3}{2}\right)+\theta\left(\alpha_{s}^{2}\right)
$$

The appearance of a Logarithue of μ^{2} in an anomalous dimension is a new feature of SCET. It is characteristic of Sudakov problems, in which the perturbation series contains two powers of Logarithnes for each power of α_{s}. One can show that to all orders:

$$
\Gamma_{v}\left(Q^{2}, \mu\right)=-\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{\mu^{2}}{Q^{2}}+\gamma_{v}\left(\alpha_{s}\right)
$$

single log!
From the fact that the vector current in full QCD is not renormelized (Noether's theorem), it then follows that:

$$
\mu \frac{d}{d \mu}\left[C_{V}\left(Q_{, \mu}^{2}\right) V_{S C E T}^{\mu}(\mu)\right]=0
$$

\Downarrow

$$
\mu \frac{d}{d \mu} C_{v}\left(Q_{, ~ 2}^{2}\right)=\left[\Gamma_{\text {cusp }}\left(\alpha_{s}\right) \ln \frac{Q^{2}}{\mu^{2}}+\gamma_{v}\left(\alpha_{s}\right)\right] C_{v}\left(Q_{, \mu}^{2}\right)
$$

("renormalization-group equation")
$\Gamma_{\text {cusp }}$ is called the light-Like cusp anomalous dimension. It is known to 4-loop order in QCD. The quantity γ_{v} is known at 3-loop order. At leading order we have:

$$
\Gamma_{\text {cusp }}\left(\alpha_{s}\right)=\frac{C_{F} \alpha_{s}}{\pi}, \quad \gamma_{V}\left(\alpha_{s}\right)=-\frac{3}{2} \frac{C_{F} \alpha_{s}}{\pi}
$$

The general solution to the RGE is:

$$
\begin{aligned}
C_{v}\left(Q^{2}, \mu\right)= & C_{v}\left(Q^{2}, \mu_{h}\right)^{\leftarrow} \text { "initial condition" } \\
& \times \exp \left[\int_{\mu_{h}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}}\left(\Gamma_{\text {cusp }}\left(\alpha_{s}\left(\mu^{\prime}\right)\right) \ln \frac{Q^{2}}{\mu^{\prime 2}}+\gamma_{v}\left(\alpha_{s}\left(\mu_{i}\right)\right)\right)\right]
\end{aligned}
$$

At the "hard matching scale" $\mu_{h}^{2} \approx Q^{2}$, the initial condition $C_{v}\left(Q^{2}, \mu_{h}\right)$ for the Wilson coefficient is free of large Logarithues and cane be calculated reliably using perturbation theory. For instance, with $\mu_{h}=Q$ we have:

$$
C_{V}\left(Q_{,}^{2}, \mu_{h}\right)=1+\frac{C_{F} \alpha_{s}}{4 \pi}\left(-8+\frac{\pi^{2}}{6}\right)+\sigma\left(\alpha_{s}^{2}\right)
$$

The above solution can then be used to evolve the Wilson coefficients to scales $\mu \ll Q$ in such a way that the large logarithms

$$
\alpha_{s}^{n} \ln ^{k} \frac{Q^{2}}{\mu^{2}} ; \quad k \leq 2 n
$$

are resumed to all orders in α_{s}.
(\rightarrow see problem set 2 for wore details)
VIII. Decoupling of Ultra-Soft Gluons

Ultra-soft gluons couple to collinear fields through the eikonal interaction:

$$
\bar{\xi}_{n}(x) \frac{\pi}{2}\left(i n \cdot \partial+g_{s} n \cdot A_{c}(x)+g_{s} n \cdot A_{u s}\left(x_{-}\right)\right) \xi_{n}(x)
$$

In analogy with HQET, this coupling can be removed by a field redefinition, i.e.
new fields

$$
\begin{aligned}
& \xi_{n}(x) \rightarrow S_{n}\left(x_{-}\right) \xi_{n}^{(0)}(x) \\
& A_{c}^{\mu}(x) \rightarrow S_{n}\left(x_{-}\right) A_{c}^{\mu(0)}(x) S_{n}^{+}\left(x_{-}\right) \\
& W_{c}(x) \rightarrow S_{n}\left(x_{-}\right) W_{c}(x) S_{n}^{+}\left(x_{-}\right)
\end{aligned}
$$

where

$$
S_{n}(x)=P \exp \left(i g_{s} \int_{-\infty}^{0} d t \operatorname{lnote:~}^{n^{H}} \text {, not } A_{u s}(x+n t)\right) \quad \text { (unitary) }
$$

is a soft Wilson line along the light-Like direction $n^{\prime \prime}$. Note that this has the form of an ultra-soft gauge transformation with $U_{s}(x)=S_{n}(x)$. Using the property

$$
\left(i n \cdot \partial+g_{s} n \cdot A_{u s}\left(x_{-}\right)\right) S_{n}\left(x_{-}\right)=S_{n}\left(x_{-}\right) \text {in. } \partial
$$

which follows from $\left[i n \cdot D_{u s} S_{n}(x)\right]=0$, one finds
that:

$$
\begin{aligned}
& \bar{\xi}_{n}(x) \frac{\hbar}{2}\left(i n \cdot \partial+g_{s} n \cdot A_{c}(x)+g_{s} n \cdot A_{u s}(x-)\right) \xi_{n}(x) \\
\rightarrow & \bar{\xi}_{n}^{(0)}(x) \frac{\pi}{2} S_{n}^{t}\left(x_{-}\right) S_{n}\left(x_{-}\right)\left(i n \cdot \partial+g_{s} n \cdot A_{c}^{(0)}(x)\right) \xi_{n}^{(0)}(x) \\
= & \bar{\xi}_{n}^{(0)}(x) \frac{\hbar}{2} i n \cdot D_{c}^{(0)}(x) \xi_{n}^{(0)}(x)
\end{aligned}
$$

This field redefinition thus removes the ultra-soft gluon field from the Leading-order SCET Lagrangian! The same trick also works for the pure ghent terns in the Lagrangian.

The "ultra-soft decoupling transformation" is the key to deriving factorization theorems in SCET! Like in HQET, it does not iveply that ultra-soft interactions disappear entirely. Rather, it means that, as far as their couplings to ultra-soft gluon are concerned, collinear particles behave like Light-like Wilson lines. The ultra-soft gluons will reappear when we consider external operators (such as currents) built out of two or more types of collinear fields.

For the example of the 2 -jet vector current, the decoupling transformation implies:

$$
\begin{aligned}
\bar{\psi} \delta^{r} \psi & \rightarrow C_{V}\left(Q^{2}\right)\left(\bar{\xi}_{\bar{n}} W_{\bar{c}}\right)(0) \gamma_{\perp}^{\mu}\left(W_{c}^{+} \xi_{n}\right)(0) \\
& \rightarrow C_{V}\left(Q^{2}\right)\left(\bar{\xi}_{\bar{n}}^{(0)} W_{\bar{c}}^{(0)}\right)(0) \gamma_{\perp}^{\mu} S_{\bar{n}}^{+}(0) S_{n}(0)\left(W_{c}^{(0)} \xi_{n}^{(0)}\right)(0)
\end{aligned}
$$

"messenger" three decoupled sectors!

The Sudakov form factor then factorizes into four distinct objects each characterized by a single scale:

hard function jet functions soft function

This is an example of a factorization formula.

In the following two lectures we will discuss specific examples of factorization theorems for some concrete physical processes.

To finish off this lecture, let me note that the appearance of the two soft Wilson lines is responsible for the cusp anomalous dimension in the anomalous dimension of the SCET current operator:

\rightarrow closed Wilson Loop with a cusp at $x=0$ with angle θ

$$
\cosh \theta=\frac{n \cdot \bar{n}}{\sqrt{n^{2} \bar{n}^{2}}}=\infty
$$

The quantity $\Gamma_{\text {cusp }}\left(\alpha_{s}\right)$ is related to the tive-like cusp anomalous dimension, which we have discussed in the context of HQET (see P.9, lecture 2), by:

$$
\lim _{\theta \rightarrow \infty} \frac{1}{\theta} \underbrace{\Gamma_{\text {cusp }}\left(\alpha_{s}, \theta\right)}_{\theta=v \cdot v^{\prime} \text { for }}=\Gamma_{\text {cusp }}\left(\alpha_{s}\right)
$$

HQET light-like cusp anovealous dimension of SCET
really: $\Gamma_{\text {cusp }}\left(\alpha_{s}, \theta\right) \xrightarrow{\theta \gg 1} \theta \cdot \Gamma_{\text {cusp }}\left(\alpha_{s}\right)+\operatorname{const}\left(\alpha_{s}\right)$

