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Open quantum systems
Open quantum systems: a system that interacts with an
external quantum system (the environment or a bath)

System ρt
Environment

At A†t
Yt

[Breuer & Petruccione, 2002]
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Quantum measurement: indirect measurements

Ancillas (Probes)

System

Measure (Detector)

01001...

Filtering ρ̂n
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Photon counting and Homodyne detection

γΩ γΩ

Figure : Two types of detection : Photon counting and Homodyne
detection.
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Control features

I Open-loop control: mostly with Hamiltonian control,
implemented by H = H0 +

∑n
j=1 uj(t)Hj

Major goal: Controllability and optimal control

I Closed-loop control: measurement-based feedback,
coherent feedback

Major goal: Compensating decoherence induced by the
environment
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Measurement-based feedback
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Example: LKB photon box

Here ρ→ V±ρV †±
tr
(

V±ρV †±
) with probability tr

(
V±ρV †±

)
.
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Feedback stabilizing photon number state

C. Sayrin et al., Nature, 2011

Control input u: application of a unitary Uu = e−iuH :

ρ→ Uu

(
V±ρV±

tr
(

V±ρV †±
)
)

U†u
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Other examples of measurement-based feedback

Nature | Vol 584 | 20 August 2020 | 371

of the logical qubit Bloch vector. Master-equation simulations repro-
duce these results quantitatively.

Hexagonal code
We executed a variant of the square code of Fig. 1 known as the hex-
agonal code, in which the decay times of all three Pauli operators are 
equal by symmetry. In general, a two-dimensional grid-state code is 
defined as the common eigenspace of any two commuting stabilizers 
Sa = D(a) and Sb = D(b), as long as Im(a*b) = 4π. Geometrically, this 
condition implies that the magnitude of the cross-product of the two 
vectors representing these stabilizers corresponds to an area of 4π 
(see Figs. 2b, 4b, Supplementary Fig. 12). In the hexagonal GKP code2, 
we have b a= exp(i )π

3 , which respects the above area condition for 
a = (8π/ 3 ) . The Pauli operators correspond to displacements of 
equal length, X = D(a/2), Y = D(b/2) and Z = D(c/2) with c a= exp(i )2π

3 . 
For symmetry reasons, we also define a third stabilizer, Sc = Z2 = D(c), 
that commutes with the two others.

We perform QEC on this code by adapting the protocol described 
in section ‘Convergence to the GKP code manifold’. Here, measure-
ment of the three hexagonal stabilizers, followed by small corrective 
feedback displacements, sharpens the peaks along three different 
directions. These steps are interleaved with the measurement of three 
short displacement operators, which trim the envelope. When applying 
this protocol on the storage mode initialized in the ground state, the 
mean values of the stabilizers oscillate every six rounds as each of these 
displacement operators is measured in turn, and rapidly converge to a 
stationary regime in which their values oscillate between 0.4 and 0.55 
(see Fig. 4a). We measure the real part of the characteristic function of 
the fully mixed logical state reached after 200 rounds, which reveals 
the hexagonal structure of the code (Fig. 4b). Again, master-equation 
simulations reproduce these results quantitatively and indicate that 

the generated grid states are characterized by the same squeezing for 
the peaks as in the square encoding (between 7.5 dB and 9.5 dB in the 
steady state). Note that the temporary negative value of Re(Sa) regis-
tered at short times originates from the programming of the feedback 
algorithm on the fast FPGA (field-programmable gate array) board: the 
oscillator state gets shifted at the beginning of the sequence, which is 
included in the simulations.

We prepare the logical qubit in an eigenstate of each Pauli operator 
with a single-round measurement of Re(X), Re(Y) or Re(Z). In Fig. 4b 
we show the measured characteristic function of the |−YL$ state. We 
note that the characteristic functions of |−XL$ and |−ZL$ are equal to 
that of |−YL$ but rotated by ±60° (see Supplementary Fig. 8). Finally, 
we characterize the coherence of the error-corrected logical qubit 
by measuring the decay of the Pauli operator mean values in time. As 
expected, the decoherence of the logical qubit is now isotropic and 
considerably extended compared to the uncorrected case, with coher-
ence times of TX = TY = TZ = 205 µs.

Logical errors and outlook
The coherence of the logical qubit is limited by two factors. First, the 
duration of the error-correction rounds, despite being a factor of 100 
shorter than the storage-mode single-photon lifetime, is not negligible. 
The transmon readout and its processing using the FPGA accounts 
for about half of this duration, and the conditional displacement gate 
accounts for the other half. Although the gate speed is limited in this 
implementation, alternative implementations could result in faster 
gates30. The second factor limiting the coherence of the logical qubit 
is transmon errors. Among these, σz errors (phase-flips) commute with 
the storage–transmon interaction Hamiltonian and thus do not propa-
gate to the logical qubit (see Supplementary Information). On the other 
hand, the σx and σy transmon errors (bit-flips), as well as excitations to 
the higher excited states of the transmon (see Supplementary Fig. 6), 
propagate to the logical qubit as they lead to random displacements of 
the storage mode. Simulations indicate that bit-flips of the transmon 
and the finite correction rate each account for about half of the error 
rate of the logical qubit (see Supplementary Table 2).

The coherence of the logical qubit could be further improved by 
replacing the transmon with a noise-biased ancillary qubit31–33 and 
by using a superconducting cavity with a larger quality factor20. This 
multipronged effort at improving the GKP code using superconducting 
circuits will be particularly rewarding because fault-tolerant single- and 
multi-qubit Clifford gates can be implemented in a straightforward 
way2,34, and such logical qubits can be embedded in further layers of 
protection27–29,35.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-020-2603-3.
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Fig. 4 | Convergence to the code manifold, state preparation and coherence 
in the hexagonal code. a, The grid-state peaks and envelope are sequentially 
sharpened and trimmed along three directions. When turning on our protocol 
from the ground state of the oscillator, the real part of the expectation values of 
the stabilizers oscillates every six rounds and increases to rapidly reach a 
steady state. b, After 200 rounds, the oscillator state is a fully mixed logical 
state that reveals the code structure (top). An eigenstate of a Pauli operator, 
such as |−YL$ (bottom), can be prepared by a single-round measurement of 
Re(Y), followed by a feedback displacement. c, Owing to the code symmetry, 
the decay of the logical Bloch vector is isotropic. An exponential fit (black line) 
indicates a lifetime of 205 µs, enhanced by QEC.

Campagne-Ibarcq et al., Nature, 2020 Vijay et al., Nature, 2012
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Coherent feedback (without measurement)
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Examples of coherent feedback
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Coherent-feedback quantum control with a dynamic compensator

Hideo Mabuchi∗

Physical Measurement and Control, Edward L. Ginzton Laboratory, Stanford University
(Dated: March 12, 2008)

I present an experimental realization of a coherent-feedback control system that was recently
proposed for testing basic principles of linear quantum stochastic control theory [M. R. James,
H. I. Nurdin and I. R. Petersen, to appear in IEEE Transactions on Automatic Control (2008),
arXiv:quant-ph/0703150v2]. For a dynamical plant consisting of an optical ring-resonator, I demon-
strate ∼ 7 dB broadband disturbance rejection of injected laser signals via all-optical feedback with
a tailored dynamic compensator. Comparison of the results with a transfer function model pinpoints
critical parameters that determine the coherent-feedback control system’s performance.

PACS numbers: 02.30.Yy,42.50.-p,07.07.Tw

The need for versatile methodology to control quantum
dynamics arises in many areas of science and technol-
ogy [1]. For example, quantum dynamical phenomena
are central to quantum information processing, mag-
netic resonance imaging and protein structure determi-
nation, atomic clocks, SQUID sensors, and many impor-
tant chemical reactions. Substantial progress has been
made over the past two decades in the development
of intuitive approaches within specific application areas
[2, 3, 4, 5, 6, 7, 8, 9] but the formulation of an inte-
grated, first-principles discipline of quantum control—as
a proper extension of classical control theory—remains a
broad priority.

In our contemporary view it is natural to distinguish
among three basic modes of quantum control: open-loop,
in which a quantum system is driven via some time-
dependent control Hamiltonian in a pre-determined way;
measurement-feedback, in which discrete or continuous
measurements of some output channel of an open quan-
tum system are used to adjust the control actions in real
time; and coherent-feedback, in which a quantized field
scattered by the quantum system of interest is processed
coherently (without measurement) and then redirected
into the system in order to effect control. The first two
modes are entirely analogous with classical open-loop and
real-time feedback control, and their relation to exist-
ing engineering theory is now well understood [1]. The
possibility of coherent feedback, however, gives rise to a
genuinely new category of control-theoretic problems as
it encompasses non-commutative signals and quantum-
dynamical transformations thereof [14]. While some in-
triguing proposals can be found in the physics literature
[15, 16], relatively little is yet known about the system-
atic control theory of coherent feedback [18].

This article describes an experimental implementation
of coherent-feedback quantum control with optical res-
onators as the dynamical systems and laser beams as
the coherent disturbance and feedback signals. It is pre-
sented in the context of recent developments in control
theory [19, 20, 21], which have shown that optimal and
robust design of quantum coherent-feedback loops can
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FIG. 1: Schematic diagram of the experimental apparatus
showing the coupled plant and controller resonators, vari-
able optical attenuators (PBS/HWP), piezoelectric transduc-
ers (PZT) and photodetector (PD).

be accomplished (in certain settings) using sophisticated
methods of systems engineering (the setup parallels the
quantum-optical system analyzed in [19]). From the per-
spective of quantum information science, the results pre-
sented here represent a first step towards the goal of de-
veloping embedded, autonomous controllers that can im-
plement feedback protocols for error correction without
ever bringing signals up to a classical, macroscopic level.

Fig. 1 presents a schematic overview of the appara-
tus and the coherent feedback loop. Two optical ring-
resonators represent the “plant” and “controller” dynam-
ical systems; the control-theoretic design goal is to tailor
the properties of the controller so as to minimize the
optical power detected at output z when a “noise” sig-
nal (optical coherent state with arbitrary time-dependent
complex amplitude) is injected at the input w. The com-
ponent y of the noise beam that reflects from the plant

Coherent feedback with
Photonic QEC network schematic a dynamic compensator

Kerckhoff et al., PRL, 2010 Mabuchi, PRA, 2008
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Some references on quantum trajectories

- Davies, Quantum stochastic processes, 1969

- Belavkin, Quantum filtering of Markov signals with white quantum noise,
1980

- Barchielli, Continual measurements for quantum open systems, 1983

- Dalibard, Castin, and Molmer, Wave-function approach to dissipative
processes in quantum optics, 1992

- Dum, Zoller, and Ritsch, Monte Carlo simulation of the atomic master
equation for spontaneous emission, 1992

- Carmichael, An open systems approach to quantum optics, 1993

- Carmichael, Quantum trajectory theory for cascaded open systems,
1993
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Heuristic derivation of the Lindblad equation 1

System
(HS, ρ,H)

Bath(Environnement)
(HB, ρBath,HB)

(HTotal, ρTotal,HTotal)

ρTotal,t = Ut (ρ0 ⊗ ρBath)U†t ρBath =
∑

ν

λν |ν〉 〈ν|

1Lindblad-Gorini-Kossakawski-Sudarshan, 1976.
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Different approaches to derive quantum
trajectories
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Repeated interaction
3 From Discrete-time to continuous time

Bath (Ancillas) System.

101110001

Measure.

Figure : Schematics picture of the repeated indirect measurements setup. A sequence of probes
prepared in a given state is sent to interact with the system. The probes are then measured. The

system state is updated with respect to the probe measurement outcomes.

Consider a discrete time system with interaction time ⌧ at time n⌧ it comes in interaction with
a fresh ancillary :

VS = trBath

⇣
V (⇢⌦ �)V †

⌘
, CPTP & V is unitary acting on HS ⌦ HB

At each time t = n⌧ if we an observable of n�th ancilla {My}y2I ,
P

y M†
yMy = 1.

We define the superoperator My as follow :

My[⇢] := trBath

⇣
MyV (⇢⌦ �)V †M†

y

⌘

With probability to get the output y, py = trSystem(My⇢), the system state condtionnal after
measurmenet is

⇢̂|y =
My[⇢]

py

In same manner the conditional state after n time steps and m measurement is :

⇢̂n|m(y1, . . . , ym) =
1

p(y1, . . . , ym)
V n�m

S � Mym � . . . My1 [⇢0]

where, p(y1, . . . , ym) = trSystem(Mym � · · · � My1⇢0).
Now consider HAncilla = C2 such that HB = C2N , with coupling VS

VS := exp{�i⌧H ⌦ I +
p
⌧L ⌦ |1i h0| �p

⌧L† ⌦ |0i h1|}

With very small i.e ⌧ << 1,

VS =

✓
1 + ⌧K

p
⌧L

�p
⌧L† 1 � ⌧K

◆

With K = �1
2L†L � iH, then

V (⇢⌦ �)V † =

✓
⌧L⇢L† p

⌧L⇢p
⌧⇢L† ⇢+ ⌧(K⇢+ ⇢K†)

◆

VS⇢ = trBath

⇣
V (⇢⌦ �)V †

⌘

⇡ ⇢+ ⌧
⇣
L⇢L† + K⇢+ ⇢K†

⌘

⇡ ⇢+ ⌧L(⇢)

6

Consider a discrete-time system with interaction time τ at time
nτ it comes in interaction with a fresh ancillary :

VS = Tra
(
V (ρ⊗ σ)V †

)
, V is unitary acting on HS ⊗HB

dρ̂t = L(ρ̂t )dt +

(
Lρ̂t + ρ̂tL† − Tr

(
(L + L†)ρ̂t

)
ρ̂t

)
dWt
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Quantum filtering5 Quantum Filtering

Input field
At, A

†
t

System Output field
U†

t AtUt, U †
t A†

tUt
Filter

⇡t(X) = E
⇥
jt(X) | Yst

⇤

jt(X) = U†
t XUt Yt = U †

t (At + A†
t)Ut

Figure : Cartoon of the quantum filtering setup in quantum optics. An optical field, described by
the field operators At, A

†
t , interacts with our quantum system. In the system-field interaction the

field operators, as well as system operators X, are transformed by the unitary Ut. The field is then
detected, giving rise to the observation Yt. The quantum filter estimates system observables based

on the field observations.
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9

The evolution is described by the following unitary operator: 2

dUt =

{
LdA†t − L†dAt −

1
2

L†Ldt − iHdt

}
Ut , U0 = I

Take Xt = jt (X ) and the observation process (Yt )t≥0

djt (X ) = jt (L†(X )) dt + jt ([L†,X ])dAt + jt ([X ,L])dA†t
dYt = jt (L + L†)dt + dAt + dA†t

2Hudson and Parthasarathy, 1984.
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Quantum filtering

[Yt ,Yr ] = 0, t0 ≤ r ≤ t , (self-non-demolition property)

[Xt ,Ys] = 0, t0 ≤ s ≤ t , (non-demolition property)

Quantum filter3: X̂ (t) ≡ πt (X ) = E (jt (X )|Yt )

dπt (X ) = πt (L†(X )) dt +
(
πt (XL + L†X )− πt (L + L†)πt (X )

)
dWt ,

where W is a Wiener process, dWt = dYt − πt (L + L†) dt .

In the Schrödinger picture, πt (X ) = tr (ρtX ),

dρt = L(ρt ) dt +
(

Lρt + ρtL† − Tr
(

(L + L†)ρt

)
ρt

)
dWt

3Belavkin, 1980.
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Barchielli’s approach

Probability space4:
(

Ω,F , (Ft )t≥0 ,Q, (Wt )t≥0

)

Linear Stochastic Schrödinger Equation:

d|ψt〉 =

(
−iH − 1

2
L†L
)
|ψt〉dt + L|ψt〉dWt

Equation of the Propagator:

dSt =

(
−iH − 1

2
L†L
)

Stdt + LStdWt

4Barchielli, 1983.
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Barchielli’s approach

Probability space:
(

Ω,F , (Ft )t≥0 ,Q, (Wt )t≥0

)

Linear Stochastic Master Equation: denote σt = Stρ0S†t

dσt = L (σt ) dt +
(

Lσt + σtL†
)

dWt

where
L (σt ) = −i [H, σt ] + LσtL† −

1
2

{
L†L, σt

}
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Barchielli’s approach

New probability space:
(

Ω,F , (Ft )t≥0 ,Q, (Wt )t≥0

)
−→

(
Ω,F , (Ft )t≥0 , Q̃, (Bt )t≥0

)

Stochastic Master Equation: Denote ρt = σt/Tr (σt )

dρt = L (ρt ) dt +
(

Lρt + ρtL† − Tr
(

(L + L†)ρt

)
ρt

)
dBt

where
L (σt ) = −i [H, σt ] + LσtL† −

1
2

{
L†L, σt

}
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Non-Markovian quantum trajectories

- Up to here, environmental correlation times are assumed
negligibly short compared to the system’s characteristic time
scale (Markovian approximation)

- Strunz, Diósi, and Gisin, Open system dynamics with
non-Markovian quantum trajectories, PRL, 1999

- Gardiner & Zoller, Quantum Noise: A Handbook of Markovian
and Non-Markovian Quantum Stochastic Methods, 2004

- Breuer & Petruccione, The Theory of Open Quantum Systems,
2002
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Thank you!
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