Dynamics of fluctuation correlation in periodically driven classical system

Atanu Rajak Presidency University, Kolkata

8th Indian Statistical Physics Community Meeting ICTS, Bangalore

Aritra Kundu, Atanu Rajak, and Tanay Nag, PRB 104, 075161 (2021)

Periodically Driven systems

- Periodic drive in isolated many-body systems: Novel dynamic phases
- Problem: A generic many-body system (chaotic) heats up

(D'Alessio, Polkovnokov, Ann. Phys. 333, 19-33 (2013); D'Alessio, Rigol, PRX 4, 041048 (2014); Lazarides et al, PRE 90, 012110 (2014); Rusomanno et al, JSTAT P08030 (2015))

• Exponentially suppressed heating rate: *"Prethermalization"*

(Choudhury & Mueller PRA 2014 - Bukov *etal* PRL 2015 - Abanin *etal* PRL 2015 – Goldman *etal* PRA 2015 - Chandra & Sondhi PRB 2016-Mori *etal* PRL 2016- Mallayya *etal* PRL 2019)

Exponential suppressed heating

For quantum spin systems with a local norm bound

Using perturbative argument and Floquet Magnus expansion

Prethermal time-scale, $\tau^* \sim e^{\frac{A\Omega}{J}}$

A is unitless parameter, J is the energy bound

Abanin , et al. PRL 115, 256803(2015), Mori, et al. PRL 116, 120401 (2016)

Experimental realization: Rubio-Abadal etal PRX 2020-Peng etal Nat. Phys. 2021

Limitation of above studies:

- 1. Finite-size effects
- 2. Finite bandwidth

Can we overcome these issues?

Coupled kicked rotors

$$H = \sum_{j=1}^{N} \left[\frac{p_{j}^{2}}{2} - \kappa \cos(\phi_{j} - \phi_{j+1}) \sum_{n=-\infty}^{+\infty} \delta(t - n\tau) \right].$$
Always diffusive
Kaneko & Konishi (1989)
Chirikov & Vecheslavov (1997)

$$K = K\tau$$

$$K = \kappa\tau$$

$$Lifetime, t^{*} \sim e^{1/T^{*}}$$

"Statistical Floquet Prethermalization"

Rajak, Citro, Dalla Torre, JPA (2018) Rajak, Dana, Dalla Torre, PRB (R) (2019) Sadia, Dalla Torre, Rajak, PRB (2022)

Beyond average?

Spatiotemporal Fluctuation Correlation $C(i, j, t, t_w) = \frac{1}{4} \left[\langle p_i^2(t) p_j^2(t_w) \rangle - \langle p_i^2(t) \rangle \langle p_j^2(t_w) \rangle \right]$

For isolated static systems, $C \sim \frac{1}{t^{\gamma}} f(\frac{x}{t^{\gamma}})$

<u>Prethermal Regime:</u> $K = 0.14, t > t_w$

Spohn, J. Stat. Phys. (2014), Das et al., PRE (2014) Bastianello et al., SciPost Phys. (2018) Nardis, Bernard, and Doyon, PRL (2018) Spohn, J. Phys. A (2020)

Hydrodynamic picture

Hydrodynamic equation similar to the un-driven case

$$\partial_t u(x,t) \cong \frac{D}{2} \partial_x^2 u(x,t) + B \partial_x \xi(x,t)$$

Local energy fluctuation: $u(x,t) = \frac{1}{2}(p^2(x,t) - \langle p^2(x,t) \rangle)$ Noise: $\langle \xi(x,t)\xi(x',t') \rangle = \delta_{x,x'}\delta(t-t')$

$$C(x,t-t_w) = \frac{\langle u(t_w) \rangle^2}{\sqrt{2\pi D(t-t_w)}} e^{-\frac{x^2}{2D(t-t_w)}}$$

Fluctuation dissipation relation: $DC \sim B^2$

$$C \sim K^2$$
, $B \sim K$ \square $D \sim K^0$

Spatiotemporal Fluctuation Correlation

<u>Heating Regime:</u> K = 3 and $t_w = 142$

$$C(i,j,t,t_w) = K^4 \left(\frac{t_w^2}{2} \delta_{i,j} + \frac{t_w^2}{8} \delta_{i,j+1} + \frac{t_w^2}{8} \delta_{i,j-1} \right) + O(t_w)$$

Correlations are frozen both in space and time

Spatiotemporal Fluctuation Correlation

<u>Crossover Regime:</u> (a) K = 0.14, $t_w = 142$; (b) K = 0.7, $t_w = 64$

Stretched Exponential, $C(x, t) \sim e^{-\alpha |x|^{\beta}}$

 $\beta \sim 0.63[0.65]$, almost independent of *K*

Correlations are frozen in time but not space

Dynamical Phases: Schematic diagram

$$W = \frac{\sum_{x} x^2 C(x,t)}{\sum_{x} C(x,t)}$$

Conclusions

- Quasi-static nature of prethermal phases is supported by fluctuation correlations
- Fluctuation correlations show distinct behavior in different dynamic regimes
- Hydrodynamic picture of prethermal phases

High-frequency limit

For $\Omega = \frac{2\pi}{\tau} \gg 1$, the average Hamiltonian

$$H^* = \frac{1}{\tau} \int_0^{\tau} H(t) dt = \sum_{j=1}^N \left[\frac{p_j^2}{2} - \frac{\kappa}{\tau} \cos(\phi_j - \phi_{j+1}) \right]$$

H and H^* are invariant under $\phi_j \rightarrow \phi_j + \chi$

The angular momentum of the center of mass

$$P = \frac{1}{N} \sum_{j=1}^{N} p_j$$

P is an exact constant of the motion

Generalized Gibbs ensemble

The prethermal state is described by

$$P^{*}(\{p_{j},\phi_{j}\}) = \frac{1}{Z} exp\left[-\frac{H^{*}(\{p_{j},\phi_{j}\})}{T^{*}} + \gamma P(\{p_{j}\})\right] \qquad \bar{p} = \frac{\gamma T^{*}}{N}$$

 H^* contains terms of p_j and ϕ_j separately

M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL **98**, 050405 (2007). A. Lazarides, A. Das, and R. Moessner, PRL **112**, 150401 (2014).

Average energy

$$E^* = \sum_{j=1}^N \frac{\langle p_j^2 \rangle_*}{2} - \frac{\kappa}{\tau} \sum_{j=1}^N \langle \cos(\phi_j - \phi_{j+1}) \rangle_*$$

Here $\langle O \rangle_* = \int \prod_{j=1}^N O(\{p_j, \phi_j\}) P^*(\{p_j, \phi_j\}) dp_j d\phi_j$

$$E^* = E_K + E_I = \frac{N}{2} (T^* + \bar{p}^2) - \frac{N\kappa}{\tau} \frac{I_1(\epsilon)}{I_0(\epsilon)}$$

Where $I_n(\epsilon)$ is the modified Bessel function of order n

$$\epsilon = \kappa / \tau T^*$$

Initial conditions: $p_j = \bar{p}$ and ϕ_j are homogenously distributed from 0 to 2π

$$E_0 = \frac{N\bar{p}^2}{2}$$

Temperature of prethermal state

The energy of the initial state $(E_0) =$ The average energy of the prethermal state (E^*)

$$2\epsilon I_1(\epsilon) = I_0(\epsilon)$$

Numerical solution of the equation:

$$\epsilon = 1.066$$

$$T^* = \frac{\kappa}{1.066\tau} = \frac{0.9831K}{\tau^2}$$

For
$$ar{p}=0$$
, $E_{kin}=rac{\mathrm{T}^{*}}{2}$

$$E_{kin}^* \tau^2 = \frac{\tau^2 T^*}{2} = 0.469K$$

Many-body resonance

$$H = \sum_{j=1}^{N} \left[\frac{p_j^2}{2} - \kappa \cos(\phi_j - \phi_{j+1}) \sum_{n=-\infty}^{+\infty} \delta(t - n\tau) \right].$$

Consider the system close to the integrable one, i.e., $\kappa \rightarrow 0$

The condition for a primary resonance with unperturbed frequencies

$$\left|\sum_{j=1}^{N} m_{j}\omega_{j} - M\Omega\right| \lesssim \sqrt{\kappa/\tau}$$

 ${m'_j}_{j'=1}^N$ are integer vectors, with $m_j = 1$ and $m_{j+1} = -1$ for some j

For our system, $\dot{\phi}_j = \omega_j = p_j$

$$\left|p_{j}-p_{j+1}-M\Omega\right|\lesssim\sqrt{\kappa/\tau}$$

B. Chirikov and V. Vecheslavov, J. Stat. Phys. **71**, 243 (1993), J. Exp. Theor. Phys. **85**, 616 (1997).

Probability of escape

$$\begin{split} P^{(M)} &= \int_{-\sqrt{\kappa/\tau}}^{\sqrt{\kappa/\tau}} dx P^* (p_j - p_{j+1} - M\Omega = x) \\ &\approx 2 \sqrt{\frac{\kappa}{\tau}} P^* (p_j - p_{j+1} = M\Omega) \qquad P^* (\{p_j\}) = Z^{-1} \prod_{j=1}^N exp \left[-\frac{(p_j - \bar{p})^2}{2T^*} \right] \\ &= \left(\frac{\kappa}{\pi T^* \tau}\right)^{\frac{1}{2}} \exp\left(-\frac{M^2 \Omega^2}{4T^*}\right) \\ \text{Using } T^* &= 0.9381 \frac{\kappa}{\tau^2} \text{ and } \Omega = \frac{2\pi}{\tau} \\ P^{(M)} &= \left(\frac{1}{0.9381\pi}\right)^{1/2} \exp\left(-\frac{M^2 \pi^2}{0.9381K}\right) \end{split}$$

Time to escape from prethermal state $\sim 1/P^{(M)}$

Possible Experimental realization of the model

$$U$$

 $J(t)$

$$\overline{H} = \sum_{j=1}^{N} U n_j^2 + J(t) (\psi_j^{\dagger} \psi_j + \text{H.} c.)$$

In the limit,
$$n = \langle n_j \rangle \gg 1$$

 $\psi_j = \sqrt{n}e^{i\phi_j}$
 $\overline{H} = \sum_{j=1}^N Un_j^2 + 2J(t)n\cos(\phi_j - \phi_{j+1})$

Exponentially suppressed heating rate!

Rubio Abadal et al (Bloch group), PRX (2020)

A kicking potential, $J(t) = J_0 \Delta(t)$

Rajak, Dana, Dalla Torre, PRB Rapid (2019)

Prethermalization (longer times)

