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Motivations and past results
Novel families and the classification

Coxeter groups and their nil-Coxeter algebras
Generalized Coxeter groups / nil-Coxeter algebras

Coxeter groups
The group Sn+1 of permutations, and (Z/2Z) ≀ Sn of signed permutations,
are examples of finite Coxeter groups –
finite groups of orthogonal transformations generated by reflections.

For Sn+1, let s1 = (1 2), s2 = (2 3), . . . , sn = (n n+ 1).

The permutation group Sn+1 is generated by s1, . . . , sn with the braid
relations

sisj = sjsi (i.e. (s1s2)2 = 1), |i− j| > 1, sisi+1si = si+1sisi+1,

and the Coxeter relations s2i = 1.

The dihedral group I2(m) (rotation and reflection symmetries of the
regular m-gon) is generated by s1, s2 with the braid and Coxeter relations

(s1s2)
m = 1 (i.e. s1s2s1 · · · = s2s1s2 · · · ), s21 = s22 = 1.

So e.g. I2(3) = {1, s1, s2, s1s2, s2s1, w◦ = s1s2s1 = s2s1s2} = S3.

The finite real reflection groups were classified in 1934 by Coxeter:
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Coxeter’s paper
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Presentation of finite Coxeter group( algebra)s

Every (finite) Coxeter group W is given by:

A finite set of generators {si | i ∈ I}.

A symmetric Coxeter integer matrix M = (mij)i,j∈I , with
2 = mii ≤ mij ≤ ∞.

The braid relations (sisj)
mij = 1 ∀i ̸= j.

The Coxeter relations s2i = 1 ∀i.

Associated to W is its group algebra kW for any field k (or even unital
commutative ring). Clearly, dim kW = |W |.

There exist other algebras with the same dimension, which are “deformations”
of kW :
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From braid monoid-algebra. . .
Given a Coxeter system I and matrix M ∈ ZI×I

≥2 ,

The free associative algebra on I is k⟨Ti | i ∈ I⟩, with basis all words in
the generators Ti. (Equivalently, the tensor algebra over k of ⊕i(kTi).)

The corresponding monoid algebra is its quotient by a two-sided ideal:

kBM := k⟨Ti | i ∈ I⟩ / (TiTjTi · · · = TjTiTj · · · | i ̸= j);
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. . . to generic Hecke algebras

The associated generic Hecke algebra (with parameters a, b ∈ k) is:

Ea,b := kBM/(T 2
i − aTi − b | i ∈ I).

Special case: the Iwahori–Hecke algebras Hq(W ) that are prominent in
representation theory; here a = q − 1, b = q.
(As q → 1, say over k = R, the relations go to kW : “deformation”.)

Fact: Each such algebra Ea,b has a “word basis” {Tw : w ∈ W}.
So, its dimension is |W |.
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Nil-Coxeter algebras

There are three special cases of (a, b) which are interesting from the viewpoint
of combinatorics, PBW deformation theory, . . . :

1 a = 0, b = 1 – group algebra kW .

2 a = 1, b = 0 – 0-Hecke algebra (Norton, Hivert–Schilling–Thiery, . . . ).

3 a = b = 0 – nil-Coxeter algebra NCW . So, T 2
i = 0 – graded algebra.

Nil-Coxeter algebras “occur naturally” as differential / divided-difference
operators on polynomial rings (and hence in Schubert calculus). E.g. in type A,
for 1 ≤ i ≤ n the operator Ti is:

(Tif)(x1, . . . , xn+1) =
f(x1, . . . , xi, xi+1, . . . , xn+1)− f(x1, . . . , xi+1, xi, . . . , xn+1)

xi+1 − xi
.

(The RHS is
alternating

alternating
= symmetric in {xi, xi+1}, so T 2

i f = 0.)
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Word basis of NCW

Example: The dihedral group Dn (e.g. S3) has elements

e, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, . . . ,

increasing in length all the way to the unique longest element

s1s2s1 · · · = w◦ = s2s1s2 · · · .

Correspondingly,

its nil-Coxeter algebra has a “word basis”

1 = T∅, T1, T2, T1T2, T2T1, T1T2T1, T2T1T2, . . . ,

all the way to the unique longest element Tw◦ .

Now come to the protagonist of this talk: “generalized” nil-Coxeter algebras.

Apoorva Khare, IISc Bangalore 8



Motivations and past results
Novel families and the classification

Coxeter groups and their nil-Coxeter algebras
Generalized Coxeter groups / nil-Coxeter algebras

Word basis of NCW

Example: The dihedral group Dn (e.g. S3) has elements

e, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, . . . ,

increasing in length all the way to the unique longest element

s1s2s1 · · · = w◦ = s2s1s2 · · · .

Correspondingly, its nil-Coxeter algebra has a “word basis”

1 = T∅, T1, T2, T1T2, T2T1, T1T2T1, T2T1T2, . . . ,

all the way to the unique longest element Tw◦ .

Now come to the protagonist of this talk: “generalized” nil-Coxeter algebras.

Apoorva Khare, IISc Bangalore 8



Motivations and past results
Novel families and the classification

Coxeter groups and their nil-Coxeter algebras
Generalized Coxeter groups / nil-Coxeter algebras

Generalized Coxeter groups

In 1957, Coxeter studied the “generalized” Coxeter group WA(n, d), defined as
the quotient of the type-A (Artin) braid monoid by sdi = 1 ∀i.
(Such higher orders are typical in complex reflection groups.)

Coxeter asked: For which n, d ≥ 2 is WA(n, d) a finite group?

Theorem (Coxeter, 1957)

WA(n, d) is a finite group if and only if
1

n
+

1

d
>

1

2
, and then

|WA(n, d)| =
(
1
n
+ 1

d
− 1

2

)1−n
n!/nn−1.

Later extended by Koster to cover all generalized Coxeter groups.
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Generalized nil-Coxeter algebras

Note: In Coxeter’s construction, all si are conjugate because of the braid
relations. Hence their orders are equal.

Not necessary in the nil-Coxeter case. Thus:

Given integers di ≥ 2, define the generalized nil-Coxeter algebra
(over W or M) to be

NCM ({di | i ∈ I}) := kBM/(T di
i = 0 | i ∈ I).

(Still a Z≥0-graded algebra.)

Question (a la Coxeter): For which Coxeter groups W = (I,M) and
tuples d = (di)i is this algebra NCM (d) finite-dimensional? Does it
have a word basis?

Clearly, the “usual” nil-Coxeter algebras NCM ((2, . . . , 2)) work.
Any others?
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Additional motivations / properties of generalized
nil-Coxeter algebras

1 Coxeter combinatorics: Parallel to Coxeter’s question.

2 Tensor categories: Generalized nil-Coxeter algebras NCM (d) possess a
coproduct ∆(Ti) = Ti ⊗ Ti.

This is an algebra map, but cannot have a counit or antipode.
Thus, these are not bialgebras; hence their modules do not form a
monoidal / tensor category.
Yet, the Tannakian formalism applies – to yield semigroup
categories – no unit object.1

3 PBW deformations: Despite no counit or antipode, generalized
nil-Coxeter algebras NCM (d) smash-product polynomial rings admit
“PBW deformations”.
(Going beyond the “traditional” PBW program in the literature –
Etingof–Ginzburg, Shepler–Witherspoon (and Walton), . . . )

1This is a semigroup category under ⊗, which is additive and with ⊗ bi-additive.
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A novel type-A family
Back to the question: Classify the finite-dimensional generalized nil-Coxeter
algebras NCM (d) for d ∈ ZI

≥2 –
outside of the “usual” nil-Coxeter algebras with all di = 2.

An obvious positive answer is: NCA(1, d) := k[T1]/(T
d
1 ).

This can be extended to n = 2: NCA(2, d) := kBA2/(T
2
1 , T

d
2 ).

(In the figure, d′ = d− 1.)
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The general type-A algebra

Theorem (K., Trans. AMS 2018 + FPSAC 2018)

For every n ≥ 1 and d ≥ 2, the type-A generalized nil-Coxeter algebra

NCA(n, d) := kBAn/(T
2
1 , . . . , T

2
n−1, T

d
n)

is finite-dimensional (or free of finite k-rank).

The proof involves explicitly defining an action of NCA(n, d) on its “regular
representation”. Moreover, we compute its

k-rank: n!(1 + n(d− 1)).

word basis:
{Tw; TwT

k
nTn−1 · · ·Tm |w ∈ Sn = WAn−1 , k ∈ [d− 1], m ∈ [n]}.

unique longest word, left/right primitive words, . . .

The “usual” length function ℓ extends to NCA(n, d), and its
Hilbert–Poincaré series (in q) is
[n]q!(1 + [n]q[d− 1]q), where [n]q := qn−1

q−1
, [n]q! :=

∏n
j=1[j]q.
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All finite-dimensional generalized nil-Coxeter algebras

Are there any other finite-dimensional generalized nil-Coxeter algebras?

No!

Theorem (K., Trans. AMS 2018 + FPSAC 2018)

Given a Coxeter matrix M ∈ ZI×I
≥2 and an integer tuple d ∈ ZI

≥2, the following
are equivalent:

1 The algebra NCM (d) is finite-dimensional (or of finite k rank).

2 Either W = W (M) is a finite Coxeter group and all di = 2,

or W is of type An and d = (2, . . . , 2, d) (or (d, 2, . . . , 2)) – i.e.,
NCM (d) = NCA(n, d).

The proof uses a
diagrammatic calculus:
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Complex reflection groups and the BMR Freeness Conjecture

The higher nilpotency T di
i = 0 is reminiscent of complex reflection groups WC.

These groups also have “Coxeter-like” presentations using nodes and
edges / generators and relations. The finite groups WC were classified by
Shephard–Todd [Canadian J. Math. 1954].

So, they also have generic Hecke algebras Hq(WC). . .

. . . akin to which, one forms generalized nil-Coxeter algebras NCWC .

Which of these algebras Hq(WC) and NCWC are finite-dimensional? Of
dimension WC?

Broué–Malle–Rouquier Freeness Conjecture (Crelle 1998)

Generic Hecke algebras Hq over (WC, k) are free with k-rank |WC|.

(Proved by Etingof in 2017, in characteristic zero.)

Apoorva Khare, IISc Bangalore 15
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Generalized nil-Coxeter algebras over WC

What about (generalized) nil-Coxeter algebras?

Already the nil-Coxeter picture was “discouraging”: Ivan Marin had written
[JPAA 2014] that “the lack of nil-Coxeter algebras of dimension |WC| is a
striking difference between real and complex reflection groups.”

This was actually Motivation 4 for us. And we showed (2018):

There are no finite-dimensional (let alone |WC|-dim.) generalized
nil-Coxeter algebras over WC.

Upshot: The novel family NCA(n, d) is strikingly unique, among all real and
complex reflection groups!

Does it “occur in nature” (akin to the divided difference operators for d = 2)?

Apoorva Khare, IISc Bangalore 16
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Nil-Temperley–Lieb algebras

What next?

Kill long enough braid words!

The Temperley–Lieb algebra
in types A,D,E is
defined as the quotient of the
Iwahori–Hecke algebra by the
ideal generated by

TsTtTs = lower degree terms

for adjacent nodes s, t
in the Coxeter graph.
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Nil-Temperley–Lieb algebras
There is a nil-version: given a Coxeter group W with data (I,M), the
nil-Temperley–Lieb algebra NTLW = NTLM is the quotient of kBM by

the “braid relations” TsTtTs = 0 for adjacent nodes s ∼ t;

and the Coxeter relations T 2
i = 0 for all i ∈ I.

These were (re?)introduced by A. Postnikov as XYX-algebras.
Clearly, “usual” nil-Coxeter algebras surject onto them.
Which of them are finite-dimensional?

Theorem (essentially due to Stembridge, C.K. Fan, 1990s)

NTLW has finite k-rank if and only if W is a finite Coxeter group,
or W has one of the following Coxeter graphs:
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(Generalized) nil-Temperley–Lieb algebras
Question: In the generalized nil-Temperley–Lieb version, with relations
TsTtTs = 0 and T di

i = 0,
which algebras NTLM (d) are finite-dimensional?

Theorem (Bhattacharyya–K., 2021 preprint)

If and only if

1 The algebras on the previous slide ;

2 “Generalized XYX-algebras”
NTLA(n, d) := NCA(n, d) / (TsTtTs, |s− t| = 1).

In the first case, the dimension is |Wfc| < ∞, the fully commutative words.a

In the second case,

dimNTLA(n, d) = (d− 1)Cn+1 − (d− 2)Cn + (d− 2)

n−1∑
j=1

jCn−j , (1.6)

where Cn is the nth Catalan number.

aThe words in W for which switching between any two reduced expressions uses
no non-commutative braid relations.
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Going beyond type A
Similarly, one can quotient by all braid words of length ≥ 4 (but not the braid
words TsTtTs):

In the simply-laced types A,D,E, this simply yields the “usual”
nil-Coxeter algebras (since no “extra” quotienting is needed).

Ditto in the case of the algebras NCA(n, d) – they remain untouched.

In type Bn, the words in the Ti that remain nonzero precisely correspond
to the 1 2-avoiding signed permutations – there are

∑n
k=0

(
n
k

)2
k! many.

Similar results if one quotients by the braid words of length ≥ 5.

There is exactly one missing case: Hn for n ≥ 5 (equivalently in the
length ≥ 4 case, because there is only one such pair of words:
T1T2T1T2T1 = T2T1T2T1T2 – see the Figure on Slide 18).

If instead one kills all braid words of length ≥ 6, then since there were no such
in any non-dihedral finite Coxeter group, we just get back the usual nil-Coxeter
algebra (or the algebras NCA(n, d)) – hence of finite rank.
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Table of findings (from the preprint)

Table of all finite-dimensional generalized nil-Temperley–Lieb algebras.
In it, J<k means we quotient by all braid words of length ≥ k.
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Open questions

1 Do the algebras NCA(n, d) “occur in nature”? How about the generalized
XYX-algebras NTLA(n, d) with d ≥ 3?

2 Find a combinatorial way to enumerate the word basis of NTLA(n, d);
recall this has size

dimNTLA(n, d) = (d− 1)Cn+1 − (d− 2)Cn + (d− 2)

n−1∑
j=1

jCn−j .

3 For which n ≥ 5 does the Hn nil-Temperley–Lieb algebra become of finite
k-rank, when one quotients by braid words of length ≥ 4

(equivalently, length ≥ 5 – that is, T1T2T1T2T1 and T2T1T2T1T2) ?
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