

ICTS Bengaluru: Quantum Trajectories January 2025

Slides based on Lecture Notes with Mazyar Mirrahimi and on A tutorial introduction to quantum stochastic master equations based on the qubit/photon system, Annual Reviews in Control 54, 252-261 (2022)

pierre.rouchon@minesparis.psl.eu Quantic research team Laboratoire de Physique de l'Ecole Normale Supérieure, Mines Paris-PSL, Inria, ENS-PSL, Université PSL, CNRS.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits

Photons measured by resonant qubits

Measurement errors

Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit

Diffusive SME

"CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction)

Towards jump SME

Jump SME in continuous-time

"CPTP" numerical schemes for jump SME

Quantum feedback

Dynamics of open quantum systems based on three quantum features $\frac{1}{2}$

1. Schrödinger ($\hbar = 1$): wave funct. $|\psi\rangle \in \mathcal{H}$, density op. $\rho \sim |\psi\rangle\langle\psi|$

$$\frac{d}{dt}|\psi\rangle = -i\mathsf{H}|\psi\rangle, \quad \mathsf{H} = \mathsf{H}_{0} + u\mathsf{H}_{1} = \mathsf{H}^{\dagger}, \quad \frac{d}{dt}\rho = -i[\mathsf{H},\rho].$$

- 2. Origin of dissipation: collapse of the wave packet induced by the measurement of $O = O^{\dagger}$ with spectral decomp. $\sum_{y} \lambda_{y} P_{y}$:
 - ► measurement outcome y with proba. $\mathbb{P}_y = \langle \psi | \mathsf{P}_y | \psi \rangle = \operatorname{Tr}(\rho \mathsf{P}_y)$ depending on $|\psi\rangle$, ρ just before the measurement

measurement back-action if outcome y:

$$|\psi\rangle \mapsto |\psi\rangle_{+} = \frac{\mathsf{P}_{y}|\psi\rangle}{\sqrt{\langle \psi|\mathsf{P}_{y}|\psi\rangle}}, \quad \rho \mapsto \rho_{+} = \frac{\mathsf{P}_{y}\rho\mathsf{P}_{y}}{\mathsf{Tr}\left(\rho\mathsf{P}_{y}\right)}$$

3. Tensor product for the description of composite systems (S, C):

- Hilbert space $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_c$
- Hamiltonian $H = H_s \otimes I_c + H_{sc} + I_s \otimes H_c$
- observable on sub-system C only: $O = I_s \otimes O_c$.

¹S. Haroche and J.M. Raimond (2006). *Exploring the Quantum: Atoms, Cavities and Photons.* Oxford Graduate Texts.

| PSL 🕅

Diffusive stochastic master equation²

 $t\mapsto
ho_t$ continuous time function (not differentiable), solution of

$$d\rho_t = -i \Big[H_0 + u H_1, \rho_t \Big] dt + \left(\sum_{\nu=d,m} L_\nu \rho_t L_\nu^{\dagger} - \frac{1}{2} (L_\nu^{\dagger} L_\nu \rho_t + \rho_t L_\nu^{\dagger} L_\nu) \right) dt + \dots$$
$$\dots + \sqrt{\eta} \Big(L_m \rho_t + \rho_t L_m^{\dagger} - \operatorname{Tr} (L_m \rho_t + \rho_t L_m^{\dagger}) \rho_t \Big) dW_t,$$

where $\eta \in [0,1]$ and the same Wiener process W_t is shared by the state dynamics and the output map

$$dy_t = \sqrt{\eta} \operatorname{Tr}(L_m
ho_t +
ho_t L_m^{\dagger}) dt + dW_t.$$

²A. Barchielli and M. Gregoratti. *Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case.* Springer Verlag, 2009.

Jump stochastic master equation ³

5/65

 $t\mapsto \rho_t$ piece wise smooth time function, solution of

$$d\rho_{t} = \left(-i[\mathsf{H},\rho_{t}] + \mathsf{V}\rho_{t}\mathsf{V}^{\dagger} - \frac{1}{2}(\mathsf{V}^{\dagger}\mathsf{V}\rho_{t} + \rho_{t}\mathsf{V}^{\dagger}\mathsf{V})\right) dt \\ + \left(\frac{\bar{\theta}\rho_{t} + \bar{\eta}\mathsf{V}\rho_{t}\mathsf{V}^{\dagger}}{\bar{\theta} + \bar{\eta}\mathsf{Tr}(\mathsf{V}\rho_{t}\mathsf{V}^{\dagger})} - \rho_{t}\right) \left(dy_{t} - \left(\bar{\theta} + \bar{\eta}\mathsf{Tr}(\mathsf{V}\rho_{t}\mathsf{V}^{\dagger})\right) dt\right)$$

where $\bar{\theta} \ge 0$ (dark count rate) and $\bar{\eta} \in [0, 1]$ (detection efficiency) and where the counting detector outcome $dy_t \in \{0, 1\}$ with

³see, e.g., J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. *Phys. Rev. Lett.*, 68(5):580–583, February 1992.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits

Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

MINES PARIS

LKB photon box⁴

Dispersive qubit/photon interaction: H_{int} = −χ(|e⟩⟨e| − |g⟩⟨g|) ⊗ n (with χ a constant parameter) yields e^{-iTH_{int}}, the Schrödinger propagator during the time T > 0, given with θ = χT by

$$\mathsf{U}_{ heta} = |g
angle\!\langle g|\otimes e^{-i heta \mathsf{n}} + |e
angle\!\langle e|\otimes e^{i heta \mathsf{n}}$$

► resonant qubit/photon interaction: $H_{int} = i\frac{\omega}{2} \left(|g\rangle\langle e| \otimes a^{\dagger} - |e\rangle\langle g| \otimes a \right)$ (with ω a constant parameter) yields $e^{-iTH_{int}}$, the Schrödinger propagator during the time T > 0, given with $\theta = \omega T/2$ by

$$\begin{split} \mathsf{U}_{\theta} &= |g\rangle\!\langle g| \otimes \cos(\theta\sqrt{\mathsf{n}}) + |e\rangle\!\langle e| \otimes \cos(\theta\sqrt{\mathsf{n}}+\mathsf{I}) \\ &+ |g\rangle\!\langle e| \otimes \frac{\sin(\theta\sqrt{\mathsf{n}})}{\sqrt{\mathsf{n}}}\mathsf{a}^{\dagger} - |e\rangle\!\langle g| \otimes \mathsf{a}\frac{\sin(\theta\sqrt{\mathsf{n}})}{\sqrt{\mathsf{n}}}. \end{split}$$

⁴LKB for Laboratoire Kastler Brossel.

Photons measured by dispersive qubits (1)

$$\begin{split} \mathsf{U} &= \left(\left(\left(\frac{|g\rangle - |e\rangle}{\sqrt{2}} \right) \langle g| + \left(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle e| \right) \otimes \mathsf{I} \right) \\ & \left(|g\rangle \langle g| \otimes e^{-i\theta \mathsf{n}} + |e\rangle \langle e| \otimes e^{i\theta \mathsf{n}} \right) \\ & \left(\left(\left(\frac{|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle g| + \left(\frac{-|g\rangle + |e\rangle}{\sqrt{2}} \right) \langle e| \right) \otimes \mathsf{I} \right) \end{split}$$

applied on $|\Psi
angle=|g
angle\otimes|\psi
angle$ yields

$$\mathsf{U} \ (|g\rangle|\psi\rangle) = |g\rangle \ \cos(\theta \mathsf{n})|\psi\rangle + |e\rangle \ i\sin(\theta \mathsf{n})|\psi\rangle.$$

Markov process induced by the passage of qubit number k:

$$|\psi_{k+1}\rangle = \begin{cases} \frac{\cos(\theta n)|\psi_k\rangle}{\sqrt{\langle\psi_k|\cos^2(\theta n)|\psi_k\rangle}} & \text{if } y_k = g \text{ with probability } \langle\psi_k|\cos^2(\theta n)|\psi_k\rangle ;\\ \frac{i\sin(\theta n)|\psi_k\rangle}{\sqrt{\langle\psi_k|\sin^2(\theta n)|\psi_k\rangle}} & \text{if } y_k = e \text{ with probability } \langle\psi_k|\sin^2(\theta n)|\psi_k\rangle ;\end{cases}$$

where $y_k \in \{g, e\}$ classical signal produced by measurement of qubit k.

Photons measured by dispersive qubits (2)

The density operator formulation ($ho\equiv |\psi
angle\langle\psi|$):

$$\rho_{k+1} = \begin{cases} \frac{\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}}{\mathsf{Tr}(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger})} & \text{if } y_{k} = g \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}\right); \\ \frac{\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}}{\mathsf{Tr}(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger})} & \text{if } y_{k} = e \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}\right); \end{cases}$$

with measurement Kraus operators $M_g = \cos(\theta n)$ and $M_e = \sin(\theta n)$. Notice that $M_g^{\dagger}M_g + M_e^{\dagger}M_e = I$.

For θ/π irrational, almost sure convergence towards a Fock state $|\bar{n}\rangle\langle\bar{n}|$ for some \bar{n} based on the Lyapunov function (super-martingale)

$$V(\rho) = \sum_{0 \le n_1 < n_2} \sqrt{\langle n_1 | \rho | n_1 \rangle \langle n_2 | \rho | n_2 \rangle}$$

that converges in average towards 0 since

$$\mathbb{E}\left(V(\rho_{k+1}) \mid \rho_k\right) \leq \left(\max_{0 \leq n_1 < n_2} |\cos(\theta(n_1 \pm n_2)|) \quad V(\rho_k).$$

Probability that a realisation converges towards $|\bar{n}\rangle\langle\bar{n}|$ given by its initial population $\langle\bar{n}|\rho_0|\bar{n}\rangle$

Intoduction

Discrete-time SME

Photons measured by dispersive qubits

Photons measured by resonant qubits

Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Photons measured by resonant qubits (1)

Wave function $|\Psi\rangle$ of the composite qubit/photon system just before D:

$$\begin{split} \left(|g\rangle\langle g|\cos(\theta\sqrt{n}) + |e\rangle\langle e|\cos(\theta\sqrt{n}+1) \\ + |g\rangle\langle e|\frac{\sin(\theta\sqrt{n})}{\sqrt{n}}a^{\dagger} - |e\rangle\langle g|a\frac{\sin(\theta\sqrt{n})}{\sqrt{n}}\right)|g\rangle|\psi\rangle \\ = |g\rangle \ \cos(\theta\sqrt{n})|\psi\rangle - |e\rangle \ a\frac{\sin(\theta\sqrt{n})}{\sqrt{n}}|\psi\rangle \end{split}$$

Resulting Markov process associated to the measurement of the observable $\sigma_z = |e\rangle\langle e| - |g\rangle\langle g|$ with classical output signal $y \in \{g, e\}$:

$$|\psi_{k+1}\rangle = \begin{cases} \frac{\cos(\theta\sqrt{n})|\psi_k\rangle}{\sqrt{\langle\psi_k|\cos^2(\theta\sqrt{n})|\psi_k\rangle}} & \text{if } y_k = g \text{ with probability } \langle\psi_k|\cos^2(\theta\sqrt{n})|\psi_k\rangle ; \\ -\frac{a\frac{\sin(\theta\sqrt{n})}{\sqrt{n}}|\psi_k\rangle}{\sqrt{\langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle}} & \text{if } y_k = e \text{ with probability } \langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle ; \\ \frac{11/65}{\sqrt{\langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle}} & \text{if } y_k = e \text{ with probability } \langle\psi_k|\sin^2(\theta\sqrt{n})|\psi_k\rangle ; \end{cases}$$

Density operator formulation;

$$\rho_{k+1} = \begin{cases} \frac{\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}}{\mathsf{Tr}(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger})} & \text{if } y_{k} = g \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}\right); \\ \frac{\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}\right)} & \text{if } y_{k} = e \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}\right); \end{cases}$$

with measurement Kraus operators $M_g = \cos(\theta \sqrt{n})$ and $M_e = a \frac{\sin(\theta \sqrt{n})}{\sqrt{n}}$. Notice that, once again, $M_g^{\dagger}M_g + M_e^{\dagger}M_e = I$.

For $\theta \sqrt{n}/\pi$ irrational for all *n*, almost surely towards vacuum state $|0\rangle\langle 0|$. Results from the following the Lyapunov function (super-martingale)

$$V(
ho) = \operatorname{Tr}(n
ho)$$

since

$$\mathbb{E}\left(V(\rho_{k+1}) \mid \rho_k\right) = V(\rho_k) - \operatorname{Tr}\left(\sin^2(\theta\sqrt{n})\rho_k\right).$$

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits

Measurement errors

Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

With measurement imperfections, use Bayes rule by taking as quantum state, the expectation value of ρ_{k+1} knowing ρ_k and the information provides by the imperfect measurement outcome.

Assume detector D broken. From

$$\rho_{k+1} = \begin{cases} \frac{\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}\right)} & \text{if } y_{k} = g \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{g}\rho_{k}\mathsf{M}_{g}^{\dagger}\right); \\ \frac{\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}\right)} & \text{if } y_{k} = e \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_{e}\rho_{k}\mathsf{M}_{e}^{\dagger}\right); \end{cases}$$

we get the quantum channel:

$$\rho_{k+1} = \mathcal{K}(\rho_k) \triangleq \mathbb{E}\left(\rho_{k+1} \mid \rho_k\right) = \mathsf{M}_g \rho_k \mathsf{M}_g^{\dagger} + \mathsf{M}_e \rho_k \mathsf{M}_e^{\dagger}.$$

When the qubit detector D, producing the classical measurement signal $y_k \in \{g, e\}$, has errors characterized by the error rate $\eta_e \in (0, 1)$ (resp. $\eta_g \in (0, 1)$) the probability of detector outcome g (resp. e) knowing that the perfect outcome is e (resp. g), Bayes law gives directly

$$\rho_{k+1} = \begin{cases} \mathbb{E}\left(\rho_{k+1} \mid y_k = g, \rho_k\right) = \frac{(1-\eta_g)\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + \eta_e\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}}{\mathsf{Tr}((1-\eta_g)\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + \eta_e\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger})} \\ \text{with probability } \mathbb{P}(y_k = g|\rho_k) = \mathsf{Tr}\left((1-\eta_g)\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + \eta_e\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}\right), \\ \mathbb{E}\left(\rho_{k+1} \mid y_k = e, \rho_k\right) = \frac{\eta_g\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + (1-\eta_e)\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}}{\mathsf{Tr}(\eta_g\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + (1-\eta_e)\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger})} \\ \text{with probability } \mathbb{P}(y_k = e|\rho_k) = \mathsf{Tr}\left(\eta_g\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger} + (1-\eta_e)\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}\right) \end{cases}$$

Notice that a broken detector corresponds to $\eta_e=\eta_g=1/2$ and one recovers the above quantum channel.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors

Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Stochastic Master Equation (SME) in discrete-time

General structure of discrete-time SME based on a quantum channel with the following Kraus decomposition (which is not unique)

$$\mathcal{K}(
ho) = \sum_{\mu} \mathsf{M}_{\mu}
ho \mathsf{M}_{\mu}^{\dagger} \quad ext{where } \sum_{\mu} \mathsf{M}_{\mu}^{\dagger} \mathsf{M}_{\mu} = \mathsf{I}$$

and a left stochastic matrix $(\eta_{y,\mu})$ where y corresponds to the different imperfect measurement outcomes. With $\mathcal{K}_{y}(\rho) = \sum_{\mu} \eta_{y,\mu} M_{\mu} \rho M_{\mu}^{\dagger}$, ones gets the following SME:

$$\rho_{k+1} = rac{\mathcal{K}_{y_k}(\rho_k)}{\mathsf{Tr}\left(\mathcal{K}_{y_k}(\rho_k)\right)} \quad \text{where } y_k = y \text{ with probability } \mathsf{Tr}\left(\mathcal{K}_y(\rho_k)\right)$$

Notice that $\mathcal{K} = \sum_{y} \mathcal{K}_{y}$ since η is left stochastic.

Here the Hilbert space $\mathcal H$ is arbitrary and can be of infinite dimension, the Kraus operator M_μ are bounded operator on $\mathcal H$ and ρ is a density operator on $\mathcal H$ (Hermitian, trace-class with trace one, non-negative). When the index y or μ are continuous, discrete sums are replaced by integrals and probabilities by probability densities.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time)

Continuous-time diffusive limit

Diffusive SME

"CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Qubits measured by coherent photons (discrete-time) (1)

Probe photon in the coherent state $|i\frac{\alpha}{\sqrt{2}}\rangle$ with $\alpha > 0$. Just before D the composite qubit/photon wave function $|\Psi\rangle$ reads:

$$\left(|g\rangle\langle g|e^{-i\theta n}+|e\rangle\langle e|e^{i\theta n}
ight)|\psi\rangle|i\frac{lpha}{\sqrt{2}}
ight
angle=\langle g|\psi
angle|g
angle\;|ie^{-i heta}\frac{lpha}{\sqrt{2}}
angle+\langle e|\psi
angle\;|e
angle\;|ie^{i heta}\frac{lpha}{\sqrt{2}}
angle.$$

Measurement outcome $y \in \mathbb{R}$ corresponding to observable

$$\mathsf{Q} = rac{\mathsf{a} + \mathsf{a}^\dagger}{\sqrt{2}} \equiv \int_{-\infty}^{+\infty} q |q
angle \! \langle q | dq ext{ where } \langle q | q'
angle = \delta(q-q').$$

Since $|ie^{\pm i\theta} \frac{\alpha}{\sqrt{2}}
angle = \frac{1}{\pi^{1/4}} \int_{-\infty}^{+\infty} e^{iq\alpha\cos\theta} e^{-\frac{(q\pm\alpha\sin\theta)^2}{2}} |q\rangle dq$, we have

$$\begin{split} \langle g | \psi \rangle | g \rangle & |ie^{-i\theta} \frac{\alpha}{\sqrt{2}} \rangle + \langle e | \psi \rangle | e \rangle & |ie^{i\theta} \frac{\alpha}{\sqrt{2}} \rangle \\ = \frac{1}{\pi^{1/4}} \int_{-\infty}^{+\infty} e^{iq\alpha \cos\theta} \left(e^{-\frac{(q-\alpha \sin\theta)^2}{2}} \langle g | \psi \rangle | g \rangle + e^{-\frac{(q+\alpha \sin\theta)^2}{2}} \langle e | \psi \rangle | e \rangle \right) | q \rangle dq. \end{split}$$

Thus

$$\begin{split} |\psi_{k+1}\rangle &= e^{iy_k\alpha\cos\theta} \frac{e^{-\frac{(y_k-\alpha\sin\theta)^2}{2}} \langle g | \psi_k \rangle | g \rangle + e^{-\frac{(y_k+\alpha\sin\theta)^2}{2}} \langle e | \psi_k \rangle | e \rangle}{\sqrt{e^{-(y_k-\alpha\sin\theta)^2} | \langle g | \psi_k \rangle |^2 + e^{-(y_k+\alpha\sin\theta)^2} | \langle e | \psi_k \rangle |^2}} \\ \text{where } y_k \in [y, y + dy] \text{ with prob. } \frac{e^{-(y-\alpha\sin\theta)^2} | \langle g | \psi_k \rangle |^2 + e^{-(y+\alpha\sin\theta)^2} | \langle e | \psi_k \rangle |^2}{\sqrt{\pi}} dy. \end{split}$$

Qubits measured by dispersive photons (discrete-time) (2)

Density operator formulation

$$\rho_{k+1} = \frac{\mathsf{M}_{y_k}\rho_k \mathsf{M}_{y_k}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{y_k}\rho_k \mathsf{M}_{y_k}^{\dagger}\right)} \quad \text{where } y_k \in [y, y + dy] \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_y\rho_k \mathsf{M}_y^{\dagger}\right) dy$$

and measurement Kraus operators

$$\mathsf{M}_{\mathsf{y}} = \frac{1}{\pi^{1/4}} e^{-\frac{(\mathsf{y} - \alpha \sin \theta)^2}{2}} |g\rangle \langle g| + \frac{1}{\pi^{1/4}} e^{-\frac{(\mathsf{y} + \alpha \sin \theta)^2}{2}} |e\rangle \langle e|.$$

Notice that

$$\mathsf{Tr}\left(\mathsf{M}_{y}\rho\mathsf{M}_{y}^{\dagger}\right) = \frac{1}{\sqrt{\pi}}e^{-(y-\alpha\sin\theta)^{2}}\langle g|\rho|g\rangle + \frac{1}{\sqrt{\pi}}e^{-(y+\alpha\sin\theta)^{2}}\langle e|\rho|e\rangle$$

and $\int_{-\infty}^{+\infty} M_y^{\dagger} M_y \, dy = |g\rangle \langle g| + |e\rangle \langle e| = I$. For $\alpha \neq 0$, almost sure convergence towards $|g\rangle$ or $|e\rangle$ deduced from Lyapunov function

$$V(
ho) = \sqrt{\langle g |
ho | g \rangle \langle e |
ho | e
angle}$$
 with $\mathbb{E} \left(V(
ho_{k+1}) \mid
ho_k
ight) = e^{-lpha^2 \sin^2 heta} V(
ho_k)$

Qubits measured by dispersive photons (discrete-time) (3)

Detection imperfections: probability density of y knowing perfect detection q is a Gaussian given by $\frac{1}{\sqrt{\pi\sigma}}e^{-\frac{(y-q)^2}{\sigma}}$ for some error parameter $\sigma > 0$. Then the above Markov process becomes

$$\rho_{k+1} = \frac{\mathcal{K}_{y_k}(\rho_k)}{\operatorname{Tr}\left(\mathcal{K}_{y_k}(\rho_k)\right)}$$

where

$$\mathcal{K}_{\mathcal{Y}}(
ho) = \int_{-\infty}^{\infty} rac{1}{\sqrt{\pi\sigma}} e^{-rac{(y-q)^2}{\sigma}} \mathsf{M}_q
ho \mathsf{M}_q^\dagger \; dq$$

Standard computations using

$$\mathsf{M}_q = \frac{1}{\pi^{1/4}} e^{-\frac{(q-\alpha\sin\theta)^2}{2}} |g\rangle \langle g| + \frac{1}{\pi^{1/4}} e^{-\frac{(q+\alpha\sin\theta)^2}{2}} |e\rangle \langle e|$$

show that

$$\begin{split} \mathcal{K}_{\mathcal{Y}}(\rho) &= \frac{1}{\sqrt{\pi(1+\sigma)}} \left(e^{-\frac{(y-\alpha\sin\theta)^2}{1+\sigma}} \langle g|\rho|g\rangle |g\rangle \langle g| + e^{-\frac{(y+\alpha\sin\theta)^2}{1+\sigma}} \langle e|\rho|e\rangle |e\rangle \langle e| \\ &+ e^{-\frac{y^2}{1+\sigma} - (\alpha\sin\theta)^2} \left(\langle e|\rho|g\rangle |e\rangle \langle g| + \langle g|\rho|e\rangle |g\rangle \langle e| \right) \right). \end{split}$$

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-tim

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit

Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Continuous-time diffusive limit (1)

Density operator formulation (perfect detection)

$$\rho_{k+1} = \frac{\mathsf{M}_{y_k}\rho_k \mathsf{M}_{y_k}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{y_k}\rho_k \mathsf{M}_{y_k}^{\dagger}\right)} \quad \text{where } y_k \in [y, y + dy] \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_y\rho_k \mathsf{M}_y^{\dagger}\right) dy$$

and measurement Kraus operators

$$\mathsf{M}_{y} = \frac{1}{\pi^{1/4}} e^{-\frac{(y-\alpha\sin\theta)^{2}}{2}} |g\rangle\langle g| + \frac{1}{\pi^{1/4}} e^{-\frac{(y+\alpha\sin\theta)^{2}}{2}} |e\rangle\langle e|.$$

Since

$$\mathbb{E}\left(y_{k} \mid \rho_{k} = \rho\right) \triangleq \overline{y} = -\alpha \sin \theta \; \operatorname{Tr}\left(\sigma_{z}\rho\right), \; \mathbb{E}\left(y_{k}^{2} \mid \rho_{k} = \rho\right) \triangleq \overline{y^{2}} = 1/2 + (\alpha \sin \theta)^{2}.$$

When 0 < $\alpha \sin \theta = \epsilon \ll 1$, we have up-to third order terms versus ϵy ,

$$\frac{\mathsf{M}_{y}\rho\mathsf{M}_{y}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{y}\rho\mathsf{M}_{y}^{\dagger}\right)} = \frac{(\cosh(\epsilon y) - \sinh(\epsilon y)\sigma_{z})\rho(\cosh(\epsilon y) - \sinh(\epsilon y)\sigma_{z})}{\cosh(2\epsilon y) - \sinh(2\epsilon y)\,\mathsf{Tr}\left(\sigma_{z}\rho\right)}$$
$$\approx \frac{\rho - \epsilon y(\sigma_{z}\rho + \rho\sigma_{z}) + (\epsilon y)^{2}(\rho + \sigma_{z}\rho\sigma_{z})}{1 - 2\epsilon y\,\mathsf{Tr}\left(\sigma_{z}\rho\right) + 2(\epsilon y)^{2}}$$
$$\approx \rho + (\epsilon y)^{2}\left(\sigma_{z}\rho\sigma_{z} - \rho\right) + \left(\sigma_{z}\rho + \rho\sigma_{z} - 2\,\mathsf{Tr}\left(\sigma_{z}\rho\right)\rho\right)\left(-\epsilon y - 2(\epsilon y)^{2}\,\mathsf{Tr}\left(\sigma_{z}\rho\right)\right).$$

Continuous-time diffusive limit (2)

$$\begin{array}{l} \mbox{Replacing } \epsilon^2 y^2 \mbox{ by its expectation value one gets, up to third order in } \epsilon y \mbox{ and } \epsilon: \\ \mbox{} \frac{M_y \rho M_y^\dagger}{{\rm Tr} \left(M_y \rho M_y^\dagger\right)} \approx \rho + \frac{\epsilon^2}{2} \left(\sigma_z \rho \sigma_z - \rho\right) + \left(\sigma_z \rho + \rho \sigma_z - 2 \ {\rm Tr} \left(\sigma_z \rho\right) \rho\right) \left(-\epsilon y - \epsilon^2 \ {\rm Tr} \left(\sigma_z \rho\right)\right). \end{array}$$

Set $\epsilon^2 = 2dt$ and $\epsilon y = -2$ Tr $(\sigma_{
m z}
ho) dt - dW$. Since by construction

$$\mathbb{E}\left(\epsilon y_{k} \mid \rho_{k} = \rho\right) = -\epsilon^{2} \operatorname{Tr}\left(\sigma_{z}\rho\right) \text{ and } \mathbb{E}\left(\left(\epsilon y_{k}\right)^{2} \mid \rho_{k} = \rho\right) = \epsilon^{2} + \epsilon^{4}$$

one has $\mathbb{E}\left(dW \mid \rho\right) = 0$ and $\mathbb{E}\left(dW^2 \mid \rho\right) = dt$ up to order 4 versus ϵ . Thus for dt very small, we recover the following diffusive SME⁵

$$\rho_{t+dt} = \rho_t + dt \Big(\sigma_z \rho_t \sigma_z - \rho\Big) + \Big(\sigma_z \rho_t + \rho_t \sigma_z - 2 \operatorname{Tr} (\sigma_z \rho_t) \rho\Big) \Big(dy_t - 2 \operatorname{Tr} (\sigma_z \rho_t) dt\Big)$$

with $dy_t = 2 \operatorname{Tr}(\sigma_z \rho_t) dt + dW_t$ replacing $-\epsilon y$ and $dy_t^2 = dW_t^2 = dt$ (Ito rules).

⁵Convergence in distribution when $dt \mapsto 0^+$: tightness property

 $\forall T > \mathbf{0}, \exists M > \mathbf{0}, \forall dt > \mathbf{0}, \forall k, k_1, k_2 \in \{\mathbf{0}, \dots, [T/dt]\}, \mathbb{E}\left(\left\|\rho_{k_1} - \rho_k\right\|^2 \left\|\left\|\rho_{k_2} - \rho_k\right\|^2 \right\| \rho_{\mathbf{0}}\right) \leq M(k_1 - k_2) dt,$

and (Markov generator) convergence of $\frac{\mathbb{E}\left(f(\rho_{k+1} \mid \rho_k = \rho\right) - f(\rho)}{dt} \text{ towards } \mathbb{E}\left(df_t \mid \rho_t = \rho\right) / dt \text{ for any } C^2 \text{ real function } f.$

Continuous-time diffusive limit (3)

With measurement errors parameterized by $\sigma >$ 0, the partial Kraus map

$$\mathcal{K}_{y}(
ho) = rac{1}{\sqrt{\pi(1+\sigma)}} \left(e^{-rac{(y-\epsilon)^{2}}{1+\sigma}} \langle g|
ho|g
angle |g
angle g| + e^{-rac{(y+\epsilon)^{2}}{1+\sigma}} \langle e|
ho|e
angle |e
angle \langle e|
onumber + e^{-rac{y^{2}}{1+\sigma}-\epsilon^{2}} (\langle e|
ho|g
angle |e
angle g| + \langle g|
ho|e
angle |g
angle \langle e|)
ight)$$

yields $\mathbb{E}\left(y_k \mid \rho_k\right) \triangleq \overline{y} = -\epsilon \operatorname{Tr}(\sigma_z \rho)$ and $\mathbb{E}\left(y_k^2 \mid \rho_k\right) \triangleq \overline{y^2} = (1+\sigma)/2 + \epsilon^2$. Similar approximations with $\epsilon^2 = 2dt$ and dt very small, yield an SME with detection efficiency $\eta = \frac{1}{1+\sigma}$:

$$\rho_{t+dt} = \rho_t + dt \left(\sigma_z \rho_t \sigma_z - \rho\right) + \sqrt{\eta} \left(\sigma_z \rho_t + \rho_t \sigma_z - 2 \operatorname{Tr} \left(\sigma_z \rho_t\right) \rho\right) dW_t$$

with $dy_t = \sqrt{\eta} \operatorname{Tr} (\sigma_z \rho_t + \rho_t \sigma_z) dt + dW_t \sim -\epsilon y / \sqrt{1 + \sigma}$. Convergence towards either $|g\rangle$ or $|e\rangle$ (QND measurement of the qubit) based on Lyapunov fonction $V(\rho) = \sqrt{1 - \operatorname{Tr} (\sigma_z \rho)^2}$ and Ito rules:

$$dV = -\frac{zdz}{\sqrt{1-z^2}} - \frac{dz^2}{2(1-z^2)^{3/2}} = -\frac{zdz}{\sqrt{1-z^2}} - 2\eta^2 V dt$$

where $z = \operatorname{Tr}(\sigma_{z}\rho)$, $dz = 2\eta(1-z^{2})dW$ and $dz^{2} = 4\eta^{2}(1-z^{2})^{2}dt$. Since $\mathbb{E}\left(dz \mid z\right) = 0$, $\bar{V}_{t} = \mathbb{E}\left(V(z_{t}) \mid z_{0}\right)$ solution of $\frac{d}{dt}\bar{V}_{t} = -2\eta^{2}\bar{V}_{t}$.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit

Diffusive SME

"CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time

"CPTP" numerical schemes for jump SME

Quantum feedback

Diffusive SME⁶

General form of diffusive SME with Ito formulation:

$$d\rho_{t} = \left(-i[\mathsf{H},\rho_{t}] + \sum_{\nu}\mathsf{L}_{\nu}\rho_{t}\mathsf{L}_{\nu}^{\dagger} - \frac{1}{2}(\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\rho_{t} + \rho_{t}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu})\right)dt$$
$$+ \sum_{\nu}\sqrt{\eta_{\nu}}\left(\mathsf{L}_{\nu}\rho_{t} + \rho_{t}\mathsf{L}_{\nu}^{\dagger} - \mathsf{Tr}\left((\mathsf{L}_{\nu} + \mathsf{L}_{\nu}^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{\nu,t},$$
$$dy_{\nu,t} = \sqrt{\eta_{\nu}}\mathsf{Tr}\left(\mathsf{L}_{\nu}\rho_{t} + \rho_{t}\mathsf{L}_{\nu}^{\dagger}\right)dt + dW_{\nu,t}$$

with efficiencies $\eta_{\nu} \in [0, 1]$ and $dW_{\nu,t}$ being independent Wiener processes. Equivalent formulation with Ito rules:

$$\rho_{t+dt} = \frac{\mathsf{M}_{dy_t}\rho_t\mathsf{M}_{dy_t}^{\dagger} + \sum_{\nu}(1-\eta_{\nu})\mathsf{L}_{\nu}\rho_t\mathsf{L}_{\nu}^{\dagger}dt}{\mathsf{Tr}\left(\mathsf{M}_{dy_t}\rho_t\mathsf{M}_{dy_t}^{\dagger} + \sum_{\nu}(1-\eta_{\nu})\mathsf{L}_{\nu}\rho_t\mathsf{L}_{\nu}^{\dagger}dt\right)}$$

with $M_{dy_t} = I + (-iH - \frac{1}{2}\sum_{\nu} L_{\nu}^{\dagger}L_{\nu}) dt + \sum_{\nu} \sqrt{\eta_{\nu}} dy_{\nu,t}L_{\nu}$. Moreover $dy_{\nu,t} = s_{\nu,t}\sqrt{dt}$ follows the following probability density knowing ρ_t :

$$\mathbb{P}\Big(\underbrace{(s_{\nu,t}\in[s_{\nu},s_{\nu}+ds_{\nu}])_{\nu}\mid\rho_{t}\Big)=\operatorname{Tr}\left(\mathsf{M}_{s\sqrt{dt}}\;\rho_{t}\mathsf{M}_{s\sqrt{dt}}^{\dagger}+\sum_{\nu}(1-\eta_{\nu})\mathsf{L}_{\nu}\rho_{t}\mathsf{L}_{\nu}^{\dagger}dt\right)\prod_{\nu}\frac{e^{-\frac{s_{\nu}^{2}}{2}}ds_{\nu}}{\sqrt{2\pi}}.$$

⁶A. Barchielli and M. Gregoratti. *Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case.* Springer Verlag, 2009.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME

"CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME

Jump SME in continuous-time

"CPTP" numerical schemes for jump SME

Quantum feedback

Kraus maps and numerical schemes for diffusive SME⁷

Linearity/positivity/trace preserving numerical integration scheme for

$$\begin{split} d\rho_t &= \left(-i[\mathsf{H},\rho_t] + \sum_{\nu} \mathsf{L}_{\nu}\rho_t \mathsf{L}_{\nu}^{\dagger} - \frac{1}{2}(\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\rho_t + \rho_t\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu})\right) dt \\ &+ \sum_{\nu} \sqrt{\eta_{\nu}} \left(\mathsf{L}_{\nu}\rho_t + \rho_t\mathsf{L}_{\nu}^{\dagger} - \ \mathsf{Tr}\left((\mathsf{L}_{\nu} + \mathsf{L}_{\nu}^{\dagger})\rho_t\right)\rho_t\right) dW_{\nu,t}, \\ dy_{\nu,t} &= \sqrt{\eta_{\nu}} \ \mathsf{Tr}\left(\mathsf{L}_{\nu}\rho_t + \rho_t\mathsf{L}_{\nu}^{\dagger}\right) dt + dW_{\nu,t} \\ \text{With } \mathsf{M}_0 &= \mathsf{I} + \left(-i\mathsf{H} - \frac{1}{2}\sum_{\nu}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\right) dt, \quad \mathsf{S} = \mathsf{M}_0^{\dagger}\mathsf{M}_0 + \left(\sum_{\nu}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\right) dt \ \mathsf{set} \\ \widetilde{\mathsf{M}}_0 &= \mathsf{M}_0\mathsf{S}^{-1/2}, \quad \widetilde{\mathsf{L}}_{\nu} = \mathsf{L}_{\nu}\mathsf{S}^{-1/2}. \end{split}$$

Sampling of $dy_{
u,t}=s_{
u,t}\sqrt{dt}$ according to the following probability law:

$$\mathbb{P}\Big(\left(\mathbf{s}_{\nu,t}\in\left[\mathbf{s}_{\nu},\mathbf{s}_{\nu}+\mathbf{d}\mathbf{s}_{\nu}\right]\right)_{\nu}\mid\rho_{t}\Big)= \mathsf{Tr}\left(\widetilde{\mathsf{M}}_{s\sqrt{dt}}\rho_{t}\widetilde{\mathsf{M}}_{s\sqrt{dt}}^{\dagger}+\sum_{\nu}(1-\eta_{\nu})\widetilde{\mathsf{L}}_{\nu}\rho_{t}\widetilde{\mathsf{L}}_{\nu}^{\dagger}dt\right)\prod_{\nu}\frac{e^{-\frac{s_{\nu}^{2}}{2}}ds_{\nu}}{\sqrt{2\pi}}.$$

where $\widetilde{M}_{dy_t} = \widetilde{M}_0 + \sum_{\nu} \sqrt{\eta_{\nu}} dy_{\nu,t} \widetilde{L}_{\nu}$. Exact Kraus-map formulation:

$$\rho_{t+dt} = \frac{\widetilde{\mathsf{M}}_{dy_t}\rho_t \widetilde{\mathsf{M}}_{dy_t}^{\dagger} + \sum_{\nu} (1-\eta_{\nu}) \widetilde{\mathsf{L}}_{\nu} \rho_t \widetilde{\mathsf{L}}_{\nu}^{\dagger} dt}{\mathsf{Tr}\left(\widetilde{\mathsf{M}}_{dy_t} \rho_t \widetilde{\mathsf{M}}_{dy_t}^{\dagger} + \sum_{\nu} (1-\eta_{\nu}) \widetilde{\mathsf{L}}_{\nu} \rho_t \widetilde{\mathsf{L}}_{\nu}^{\dagger} dt\right)}$$

 ⁷A. Jordan, A. Chantasri, PR, and B. Huard. Anatomy of fluorescence: quantum trajectory statistics from continuously measuring spontaneous emission. *Quantum Studies: Mathematics and Foundations*, 3(3):237-263, 2016.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction)

Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Qubits measured by vacuum (resonant) (1)

Probe photon is in the vacuum state $|0\rangle.$ Composite qubit/photon wave function $|\Psi\rangle$ before D:

$$\begin{pmatrix} |g\rangle\langle g|\cos(\theta\sqrt{n}) + |e\rangle\langle e|\cos(\theta\sqrt{n+1}) \\ + |g\rangle\langle e|\frac{\sin(\theta\sqrt{n})}{\sqrt{n}}a^{\dagger} - |e\rangle\langle g|a\frac{\sin(\theta\sqrt{n})}{\sqrt{n}} \end{pmatrix} |\psi\rangle|0\rangle \\ = \left(\langle g|\psi\rangle|g\rangle + \cos\theta\langle e|\psi\rangle|e\rangle\right)|0\rangle + \sin\theta\langle e|\psi\rangle|g\rangle|1\rangle.$$

With measurement observable $n = \sum_{n \ge 0} n |n\rangle\langle n|$, outcome $y \in \{0, 1\}$ reads (density operator formulation)

$$\rho_{k+1} = \begin{cases} \frac{\mathsf{M}_0 \rho_k \mathsf{M}_0^{\dagger}}{\mathsf{Tr}(\mathsf{M}_0 \rho_k \mathsf{M}_0^{\dagger})} & \text{if } y_k = 0 \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_0 \rho_k \mathsf{M}_0^{\dagger}\right); \\ \frac{\mathsf{M}_1 \rho_k \mathsf{M}_1^{\dagger}}{\mathsf{Tr}(\mathsf{M}_1 \rho_k \mathsf{M}_1^{\dagger})} & \text{if } y_k = 1 \text{ with probability } \mathsf{Tr}\left(\mathsf{M}_1 \rho_k \mathsf{M}_1^{\dagger}\right); \end{cases}$$

measurement Kraus operators $M_0 = |g\rangle\langle g| + \cos \theta |e\rangle\langle e|$ and $M_1 = \sin \theta |g\rangle\langle e|$. Almost convergence analysis when $\cos^2(\theta) < 1$ towards $|g\rangle$ via the Lyapunov function (super martingale)

$$V(
ho) = \operatorname{Tr}(|e \rangle \langle e|
ho) \text{ since } \mathbb{E}\left(V(
ho_{k+1}) \mid
ho_k\right) = \cos^2 \theta \ V(
ho_k).$$

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction)

Towards jump SME

Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Towards jump SME (1)

Since
$$\operatorname{Tr}\left(\mathsf{M}_{0}\rho\mathsf{M}_{0}^{\dagger}\right) = 1 - \sin^{2}\theta \operatorname{Tr}\left(\sigma\rho\sigma_{+}\right)$$
 and
 $\operatorname{Tr}\left(\mathsf{M}_{1}\rho\mathsf{M}_{1}^{\dagger}\right) = \sin^{2}\theta \operatorname{Tr}\left(\sigma\rho\sigma_{+}\right)$, one gets with $\sin^{2}\theta = dt$ and $y \sim dN$, an
 SME driven by Poisson process $dN_{t} \in \{0,1\}$ of expectation value
 $\operatorname{Tr}\left(\sigma\rho_{t}\sigma_{+}\right)dt$ knowing ρ_{t} :

$$d\rho_{t} = \left(\sigma \rho_{t}\sigma_{+} - \frac{1}{2}(\sigma_{+}\sigma \rho_{t} + \rho_{t}\sigma_{+}\sigma)\right) dt \\ + \left(\frac{\sigma \rho_{t}\sigma_{+}}{\mathsf{Tr}(\sigma,\rho_{t}\sigma_{+})} - \rho_{t}\right) \left(dN_{t} - \left(\mathsf{Tr}(\sigma,\rho_{t}\sigma_{+})\right) dt\right).$$

At each time-step, one has the following choice:

• with probabilty $1 - \text{Tr}(\sigma_{-}\rho_{t}\sigma_{+}) dt$, $dN_{t} = N_{t+dt} - N_{t} = 0$ and

$$\rho_{t+dt} = \frac{\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger}\right)}$$

with $M_0 = I - \frac{dt}{2}\sigma_+\sigma$. • with probability $\operatorname{Tr}(\sigma\rho_t\sigma_+) dt$, $dN_t = N_{t+dt} - N_t = 1$ and $\rho_{t+dt} = \frac{M_1\rho_t M_1^{\dagger}}{\operatorname{Tr}(M_1\rho_t M_1^{\dagger})}$

with $M_1 = \sqrt{dt} \sigma$.

PSI 🕷

Towards jump SME (2)

INES PARIS

With left stochastic matrix $\begin{pmatrix} 1 - \bar{\theta} dt & 1 - \bar{\eta} \\ \bar{\theta} dt & \bar{\eta} \end{pmatrix}$ including dark counts of rate $\bar{\theta} \ge 0$ and detection efficiency $\bar{\eta} \in [0, 1]$:

$$\blacktriangleright \quad dN_t = N_{t+dt} - N_t = 0 \text{ and}$$

$$\begin{split} \rho_{t+dt} &= \frac{(1-\bar{\theta}dt)\mathsf{M}_0\rho_t\mathsf{M}_0^{\dagger} + (1-\bar{\eta})\mathsf{M}_1\rho_t\mathsf{M}_1^{\dagger}}{\mathsf{Tr}\left((1-\bar{\theta}dt)\mathsf{M}_0\rho_t\mathsf{M}_0^{\dagger} + (1-\bar{\eta})\mathsf{M}_1\rho_t\mathsf{M}_1^{\dagger}\right)} \\ &= \frac{\mathsf{M}_0\rho_t\mathsf{M}_0^{\dagger} + (1-\bar{\eta})\mathsf{M}_1\rho_t\mathsf{M}_1^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_0\rho_t\mathsf{M}_0^{\dagger} + (1-\bar{\eta})\mathsf{M}_1\rho_t\mathsf{M}_1^{\dagger}\right)} + O(dt^2). \end{split}$$

with probability

$$\begin{split} &1 - \left(\bar{\theta} + \bar{\eta} \operatorname{Tr} \left(\sigma \, \rho_t \, \sigma_+ \right) \right) dt = \operatorname{Tr} \left((1 - \bar{\theta} dt) \mathsf{M}_0 \rho_t \mathsf{M}_0^{\dagger} + (1 - \bar{\eta}) \mathsf{M}_1 \rho_t \mathsf{M}_1^{\dagger} \right) + O(dt^2) \\ & \text{and where } \mathsf{M}_0 = \mathsf{I} - \frac{dt}{2} \sigma_+ \sigma \text{ and } \mathsf{M}_1 = \sqrt{dt} \sigma . \\ & dN_t = N_{t+dt} - N_t = 1 \text{ and} \end{split}$$

$$\rho_{t+dt} = \frac{\bar{\theta} \, dt \, \mathsf{M}_0 \rho_t \mathsf{M}_0^{\dagger} + \bar{\eta} \mathsf{M}_1 \rho_t \mathsf{M}_1^{\dagger}}{\mathsf{Tr} \left(\bar{\theta} \, dt \, \mathsf{M}_0 \rho_t \mathsf{M}_0^{\dagger} + \bar{\eta} \mathsf{M}_1 \rho_t \mathsf{M}_1^{\dagger} \right)} = \frac{\bar{\theta} \rho_t + \bar{\eta} \sigma_{\rho_t} \sigma_+}{\bar{\theta} + \bar{\eta} \, \mathsf{Tr} \left(\sigma_t \rho_t \sigma_+ \right)} + O(dt)$$

with probability

$$\left(\bar{\theta} + \bar{\eta} \operatorname{Tr} \left(\sigma \rho_t \sigma_+ \right) \right) dt = \operatorname{Tr} \left(\bar{\theta} dt \operatorname{M}_0 \rho_t \operatorname{M}_0^{\dagger} + \bar{\eta} \operatorname{M}_1 \rho_t \operatorname{M}_1^{\dagger} \right) + O(dt^2)$$

$$34/65$$

Towards jump SME (3)

MINES PARIS

Jump SME with dark count rate $ar{ heta}$ and detection efficiency $ar{\eta}$

$$d\rho_{t} = \left(\sigma \rho_{t}\sigma_{+} - \frac{1}{2}(\sigma_{+}\sigma \rho_{t} + \rho_{t}\sigma_{+}\sigma_{})\right) dt \\ + \left(\frac{\bar{\theta}\rho_{t} + \bar{\eta}\sigma \rho_{t}\sigma_{+}}{\operatorname{Tr}\left(\bar{\theta}\rho_{t} + \bar{\eta}\sigma \rho_{t}\sigma_{+}\right)} - \rho_{t}\right) \left(dN_{t} - \left(\bar{\theta} + \bar{\eta}\operatorname{Tr}\left(\sigma_{-}\rho_{t}\sigma_{+}\right)\right) dt\right).$$

corresponds to the following choices

$$\blacktriangleright dN_t = N_{t+dt} - N_t = 0$$

$$\rho_{t+dt} = \frac{\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger} + (1-\bar{\eta})\mathsf{M}_{1}\rho_{t}\mathsf{M}_{1}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger} + (1-\bar{\eta})\mathsf{M}_{1}\rho_{t}\mathsf{M}_{1}^{\dagger}\right)}$$

 $\blacktriangleright \ dN_t = N_{t+dt} - N_t = 1 \text{ and}$

$$\rho_{t+dt} = \frac{\bar{\theta}\rho_t + \bar{\eta}\sigma_{-}\rho_t\sigma_{+}}{\bar{\theta} + \bar{\eta} \operatorname{Tr}\left(\sigma_{-}\rho_t\sigma_{+}\right)}$$

with probability $(\bar{\theta} + \bar{\eta} \operatorname{Tr} (\sigma \rho_t \sigma_+)) dt$, where $M_0 = I - \frac{dt}{2} (\sigma_+ \sigma_- + I)$ and $M_1 = \sqrt{dt} \sigma_-$.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME

Jump SME in continuous-time

"CPTP" numerical schemes for jump SME

Quantum feedback

Jump SME in continuous-time⁸ (1)

General structure of a Jump SME in continuous time with counting process N_t with increment expectation value knowing ρ_t given by $\langle dN_t \rangle = \left(\bar{\theta} + \bar{\eta} \operatorname{Tr} \left(V \rho_t V^{\dagger}\right)\right) dt$, with $\bar{\theta} \geq 0$ (dark count rate) and $\bar{\eta} \in [0, 1]$ (detection efficiency):

$$\begin{split} d\rho_t &= \left(-i[\mathsf{H},\rho_t] + \mathsf{V}\rho_t\mathsf{V}^{\dagger} - \frac{1}{2}(\mathsf{V}^{\dagger}\mathsf{V}\rho_t + \rho_t\mathsf{V}^{\dagger}\mathsf{V})\right)\,dt \\ &+ \left(\frac{\bar{\theta}\rho_t + \bar{\eta}\mathsf{V}\rho_t\mathsf{V}^{\dagger}}{\bar{\theta} + \bar{\eta}\mathsf{Tr}\left(\mathsf{V}\rho_t\mathsf{V}^{\dagger}\right)} - \rho_t\right)\left(d\mathsf{N}_t - \left(\bar{\theta} + \bar{\eta}\mathsf{Tr}\left(\mathsf{V}\rho_t\mathsf{V}^{\dagger}\right)\right)\,dt\right). \end{split}$$

Here H and V are operators on an underlying Hilbert space H, H being Hermitian. At each time-step between t and t + dt, one has the following recipe

• $dN_t = 0$ with probability $1 - \left(\bar{\theta} + \bar{\eta} \operatorname{Tr} \left(\mathsf{V} \rho_t \mathsf{V}^{\dagger} \right) \right) dt$

$$\rho_{t+dt} = \frac{\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger} + (1-\bar{\eta})\mathsf{V}\rho_{t}\mathsf{V}^{\dagger}dt}{\mathsf{Tr}\left(\mathsf{M}_{0}\rho_{t}\mathsf{M}_{0}^{\dagger} + (1-\bar{\eta})\mathsf{V}\rho_{t}\mathsf{V}^{\dagger}dt\right)}$$

where $M_0 = I - (iH + \frac{1}{2}V^{\dagger}V) dt$. $\bullet dN_t = 1$ with probability $(\bar{\theta} + \bar{\eta} \operatorname{Tr} (V\rho_t V^{\dagger})) dt$, $\rho_{t+dt} = \frac{\bar{\theta}\rho_t + \bar{\eta}V\rho_t V^{\dagger}}{\bar{\theta} + \bar{\eta} \operatorname{Tr} (V\rho_t V^{\dagger})}$.

⁸ J. Dalibard, Y. Castin, and K. Mølmer. Wave-function approach to dissipative processes in quantum optics. *Phys. Rev. Lett.*, 68(5):580-583, 1992.

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time

"CPTP" numerical schemes for jump SME

Quantum feedback

$$\begin{split} d\rho_t &= \left(-i[\mathsf{H},\rho_t] + \mathsf{V}\rho_t\mathsf{V}^{\dagger} - \frac{1}{2}(\mathsf{V}^{\dagger}\mathsf{V}\rho_t + \rho_t\mathsf{V}^{\dagger}\mathsf{V})\right)\,dt \\ &+ \left(\frac{\bar{\theta}\rho_t + \bar{\eta}\mathsf{V}\rho_t\mathsf{V}^{\dagger}}{\bar{\theta} + \bar{\eta}\mathsf{Tr}\left(\mathsf{V}\rho_t\mathsf{V}^{\dagger}\right)} - \rho_t\right)\left(d\mathsf{N}_t - \left(\bar{\theta} + \bar{\eta}\mathsf{Tr}\left(\mathsf{V}\rho_t\mathsf{V}^{\dagger}\right)\right)dt\right). \end{split}$$

Take a discretization step dt > 0 and set $M_0 = I - (iH + \frac{1}{2}V^{\dagger}V) dt$, $\widetilde{M}_0 = M_0S^{-1/2}$ and $\widetilde{V} = VS^{-1/2}$ with $S = M_0^{\dagger}M_0 + V^{\dagger}Vdt$. Use the following numerical CP scheme:

•
$$dN_t = 0$$
 with probability $\operatorname{Tr}\left(e^{-\bar{\theta}dt}\widetilde{M}_0\rho_t\widetilde{M}_0^{\dagger} + (1-\bar{\eta})dt\widetilde{V}\rho_t\widetilde{V}^{\dagger}\right)$

$$\rho_{t+dt} = \frac{e^{-\bar{\theta}dt}\widetilde{\mathsf{M}}_0\rho_t\widetilde{\mathsf{M}}_0^\dagger + (1-\bar{\eta})dt\widetilde{\mathsf{V}}\rho_t\widetilde{\mathsf{V}}^\dagger}}{\mathsf{Tr}\left(e^{-\bar{\theta}dt}\widetilde{\mathsf{M}}_0\rho_t\widetilde{\mathsf{M}}_0^\dagger + (1-\bar{\eta})dt\widetilde{\mathsf{V}}\rho_t\widetilde{\mathsf{V}}^\dagger\right)}.$$

•
$$dN_t = 1$$
 with probability $\operatorname{Tr}\left(\left(1 - e^{-\bar{\theta}dt}\right)\widetilde{\mathsf{M}}_0\rho_t\widetilde{\mathsf{M}}_0^{\dagger} + \bar{\eta}dt\widetilde{\mathsf{V}}\rho_t\widetilde{\mathsf{V}}^{\dagger}\right)$

$$\rho_{t+dt} = \frac{\left(1 - e^{-\theta dt}\right) \tilde{\mathsf{M}}_0 \rho_t \tilde{\mathsf{M}}_0^{\dagger} + \bar{\eta} dt \tilde{\mathsf{V}} \rho_t \tilde{\mathsf{V}}^{\dagger}}{\mathsf{Tr} \left(\left(1 - e^{-\bar{\theta} dt}\right) \tilde{\mathsf{M}}_0 \rho_t \tilde{\mathsf{M}}_0^{\dagger} + \bar{\eta} dt \tilde{\mathsf{V}} \rho_t \tilde{\mathsf{V}}^{\dagger}\right)}.$$

Probabilities are preserved exactly: for any $ho_t,\,ar{ heta}\geq$ 0, $ar{\eta}\in$ [0,1]

$$\operatorname{Tr}\left(e^{-\bar{\theta}dt}\widetilde{\mathsf{M}}_{0}\rho_{t}\widetilde{\mathsf{M}}_{0}^{\dagger}+(1-\bar{\eta})dt\widetilde{\mathsf{V}}\rho_{t}\widetilde{\mathsf{V}}^{\dagger}\right)+\operatorname{Tr}\left((1-e^{-\bar{\theta}dt})\widetilde{\mathsf{M}}_{0}\rho_{t}\widetilde{\mathsf{M}}_{0}^{\dagger}+\bar{\eta}dt\widetilde{\mathsf{V}}\rho_{t}\widetilde{\mathsf{V}}^{\dagger}\right)\equiv1$$

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Measurement-based feedback

- P-controller (Markovian feedback⁹) for $u_t dt = k dy_t$, the ensemble average closed-loop dynamics of ρ remains governed by a linear Lindblad master equation.
- PID controller: no Lindblad master equation in closed-loop for dynamics output feedback
- Nonlinear hidden-state stochastic systems: Lyapunov state-feedback¹⁰; many open issues on convergence rates, delays, robustness, ...

Short sampling times limit feedback complexity

⁹ H. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press.
 ¹⁰See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback

control. Phys. Rev. A 65;

M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on Control and Optimization, 46(2), 445-467;

W. Liang, Weichao, N. Amini and P. Mason (2019): On Exponential Stabilization of N-Level Quantum Angular Momentum Systems. SIAM Journal on Control and Optimization 57(6):3939-3960.

Four modeling features¹¹:

- 1. Schrödinger equations defining unitary transformations.
- 2. **Randomness**, irreversibility and dissipation induced by the measurement of observables with degenerate spectra.
- 3. Entanglement and tensor product for composite systems.
- 4. Classical probability (Bayesian inference) to include classical noises, measurement errors and uncertainties.

\Rightarrow Hidden-state controlled Markov system

Control input u, state ρ (density op.), measured output y:

$$\rho_{t+1} = \frac{\mathcal{K}_{u_t,y_t}(\rho_t)}{\text{Tr}(\mathcal{K}_{u_t,y_t}(\rho_t))}, \text{ with proba. } \mathbb{P}\Big(y_t \ \big/ \rho_t, u_t\Big) = \text{Tr}\left(\mathcal{K}_{u_t,y_t}(\rho_t)\right)$$

where $\mathcal{K}_{u,y}(\rho) = \sum_{\mu=1}^{m} \eta_{y,\mu} M_{u,\mu} \rho M_{u,\mu}^{\dagger}$ with left stochastic matrix $(\eta_{y,\mu})$ and Kraus operators $M_{u,\mu}$ satisfying $\sum_{\mu} M_{u,\mu}^{\dagger} M_{u,\mu} = I$. Kraus map \mathcal{K}_{u} (ensemble average, quantum channel)

$$\mathbb{E}\left(\rho_{t+1}|\rho_t \mid =\right) \mathcal{K}_{\mathsf{u}}(\rho_t) = \sum_{\mathsf{y}} \mathcal{K}_{\mathsf{u},\mathsf{y}}(\rho_t) = \sum_{\mu} \mathsf{M}_{\mathsf{u},\mu}\rho_t \mathsf{M}_{\mathsf{u},\mu}^{\dagger}.$$

¹¹See, e.g., books: E.B Davies in 1976; S. Haroche with J.M. Raimond in 2006; C. Gardiner with P. Zoller in 2014/2015.

Coherent (autonomous) feedback (dissipation engineering)

Quantum analogue of Watt speed governor: a dissipative mechanical system controls another mechanical system $^{\rm 12}$

CLASSICAL WORLD

Optical pumping (Kastler 1950), coherent population trapping (Arimondo 1996)

Dissipation engineering, autonomous feedback: (Zoller, Cirac, Wolf, Verstraete, Devoret, Schoelkopf, Siddiqi, Martinis, Mølmer, Raimond, Brune,..., Lloyd, Viola, Ticozzi, Leghtas, Mirrahimi, Sarlette, PR, ...)

(S,L,H) theory and linear quantum systems: quantum feedback networks based on stochastic Schrödinger equation, Heisenberg picture (Gardiner, Yurke, Mabuchi, Genoni, Serafini, Milburn, Wiseman, Doherty, ..., Gough, James, Petersen, Nurdin, Yamamoto, Zhang, Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always contractions (non commutative diffusion and consensus).

² J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100.

Coherent feedback involves tensor products and many time-scales

The closed-loop Lindblad master equation on $\mathcal{H} = \mathcal{H}_s \otimes \mathcal{H}_c$:

$$\frac{d}{dt}\rho = -i\Big[\mathsf{H}_{s}\otimes\mathsf{I}_{c}+\mathsf{I}_{s}\otimes\mathsf{H}_{c}+\mathsf{H}_{sc}\ ,\ \rho\Big] + \sum_{\nu}\mathbb{D}_{\mathsf{L}_{s,\nu}\otimes\mathsf{I}_{c}}(\rho) + \sum_{\nu'}\mathbb{D}_{\mathsf{I}_{s}\otimes\mathsf{L}_{c,\nu'}}(\rho)$$

with $\mathbb{D}_{\mathsf{L}}(\rho) = \mathsf{L}\rho\mathsf{L}^{\dagger} - \frac{1}{2}\left(\mathsf{L}^{\dagger}\mathsf{L}\rho + \rho\mathsf{L}^{\dagger}\mathsf{L}\right)$ and operators made of tensor products.

• Typical goal in autonomous quantum error correction. Consider a convex subset $\overline{\mathcal{D}}_s$ of steady-states for the decoherence-free ideal system S: each density operator $\overline{\rho}_s$ on \mathcal{H}_s belonging to $\overline{\mathcal{D}}_s$ satisfies $i[\mathsf{H}_s, \overline{\rho}_s] = 0$.

• Designing a **realistic** quantum controller C (H_c, L_{c,\nu'}) and coupling Hamiltonian H_{sc} stabilizing \overline{D}_s is non trivial. **Realistic** means in particular relying on physical time-scales and constraints:

- Fastest time-scales attached to H_s and H_c (Bohr frequencies) and averaging approximations: ||H_s||, ||H_c|| >> ||H_{sc}||,
- ▶ High-quality oscillations: $||H_s|| \gg ||L_{s,\nu}^{\dagger}L_{s,\nu}||$ and $||H_c|| \gg ||L_{c,\nu'}^{\dagger}L_{c,\nu'}||$.
- ► Decoherence rates of S much slower than those of C: $\|L_{s,\nu}^{\dagger}L_{s,\nu}\| \ll \|L_{c,\nu'}^{\dagger}L_{c,\nu'}\|$: model reduction by quasi-static approximations (adiabatic elimination, singular/regular perturbations).

PSI 🕷

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Measurement-based feedback: classical controllers

Autonomous feedback: quantum controllers

where u_k and y_k are input/output at step k. With the static output feedback $u_k = f(y_k)$ the closed-loop dynamics read

$$\rho_{k+1} = \mathsf{U}_{f(y_k)} \frac{\mathcal{K}_{y_k}(\rho_k)}{\mathsf{Tr}\left(\mathcal{K}_{y_k}(\rho_k)\right)} \mathsf{U}_{f(y_k)}^{\dagger}, \quad \text{with prob. } \mathbb{P}_{y_k}(\rho_k) = \mathsf{Tr}\left(\mathcal{K}_{y_k}(\rho_k)\right).$$

The closed-loop ensemble average reads

$$\rho_{k+1} = \overline{\mathcal{K}}(\rho_k) = \sum_{y} \mathsf{U}_{f(y)} \mathcal{K}_y(\rho_k) \mathsf{U}_{f(y)}^{\dagger}, \quad \rho_0 = \rho_0$$

Closed-loop Kraus map $\overline{\mathcal{K}}$ differs in general from $\mathcal{K} = \sum_{y} \mathcal{K}_{y}$.

Controlled qubit with diffusive fluorescence measurement:

$$\begin{split} \rho_{t+dt} &= e^{-iu_t dt} \, \sigma_y \left(\rho_t + \kappa \left(\sigma_c \rho_t \sigma_+ - \frac{1}{2} \sigma_+ \sigma_c \rho_t - \frac{1}{2} \rho_t \sigma_+ \sigma_- \right) dt \dots \right. \\ &+ \sqrt{\eta \kappa} \left(\sigma_c \rho_t + \rho_t \sigma_+ - \left. \operatorname{Tr} \left(\sigma_x \rho_t \right) \rho_t \right) dW_t \right) e^{+iudt} \, \sigma_y \\ dy_t &= \sqrt{\eta \kappa} \, \operatorname{Tr} \left(\sigma_x \rho_t \right) dt + dW_t \end{split}$$

Open-loop ensemble-average with u = 0 converge to $|g\rangle\langle g|$

$$\frac{d}{dt}\rho = \kappa \left(\sigma_{-}\rho_{t}\sigma_{+} - \frac{1}{2}\sigma_{+}\sigma_{-}\rho_{t} - \frac{1}{2}\rho_{t}\sigma_{+}\sigma_{-}\right)$$

and also the stochastic dynamics.

Closed-loop Markovian feedback with $u_t dt = g dy_t$ requires to use the lto correction in $e^{\pm igdy_t - c_y}$:

$$e^{\pm i g d y_t - \sigma_y} = 1 + \left(\pm i g \sqrt{\eta \kappa} \operatorname{Tr} \left(\sigma_{\!x}
ho_t \right) - \frac{g^2}{2}
ight) dt \pm i g dW_t \sigma_y.$$

¹³H.M. Wiseman, G.J. Milburn: Quantum Measurement and Control. Cambridge University Press (2009)

Markovian feedback in continuous-time (2)

This yields to the following closed-loop SME

$$d\rho_{t} = \rho_{t+dt} - \rho_{t} = \left(\sum_{\nu=1}^{2} \mathsf{L}_{\nu}\rho_{t}\mathsf{L}_{\nu}^{\dagger} - \frac{1}{2}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\rho_{t} - \frac{1}{2}\rho_{t}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\right) dt \dots + \sqrt{\eta} \left(\left(\mathsf{L}_{1}\rho_{t} + \rho_{t}\mathsf{L}_{1}^{\dagger} - \mathsf{Tr}\left(\mathsf{L}_{1}\rho_{t} + \rho_{t}\mathsf{L}_{1}^{\dagger}\right)\rho_{t}\right)\right) dW_{t} \dots + \sqrt{1-\eta} \left(\left(\mathsf{L}_{2}\rho_{t} + \rho_{t}\mathsf{L}_{2}^{\dagger} - \mathsf{Tr}\left(\mathsf{L}_{2}\rho_{t} + \rho_{t}\mathsf{L}_{2}^{\dagger}\right)\rho_{t}\right)\right) dW_{t}$$

with $L_1 = \sqrt{\kappa}\sigma_{-} - ig\sqrt{\eta}\sigma_{y}$ and $L_2 = -ig\sqrt{1-\eta}\sigma_{y}$.

When $\eta=1$ and $g=-\sqrt{\kappa}$, one has $\mathsf{L}_1=\sqrt{\kappa}\sigma_{\!\!+}$, $\mathsf{L}_2=0$ and

$$d\rho_{t} = \kappa \left(\sigma_{+}\rho_{t}\sigma_{-} - \frac{1}{2}\sigma_{-}\sigma_{+}\rho_{t} - \frac{1}{2}\rho_{t}\sigma_{-}\sigma_{+}\right) dt + \sqrt{\kappa} \left(\left(\sigma_{+}\rho_{t} + \rho_{t}\sigma_{-} - \operatorname{Tr}\left(\sigma_{x}\rho_{t}\right)\rho_{t}\right)\right) dW_{t}.$$

Thus the closed-loop system converges towards the excited state $|e\rangle$. Multiple-input multiple-output (MIMO) experiment in ¹⁴

 14 P.Campagne-Ibarcq, \ldots , B. Huard:Using Spontaneous Emission of a Qubit as a Resource for Feedback Control. PRL 2016.

Optimal QDN measurement of photons¹⁵

Take two scalar control inputs (u, v) with $M_{g,(u,v)} = \cos(u + vN)$ and $M_{e,(u,v)} = \sin(u + vN)$ in

$$\rho_{k+1} = \frac{\mathsf{M}_{y_k,(u_k,\mathbf{v}_k)}\rho_k\mathsf{M}_{y_k,(u_k,\mathbf{v}_k)}}{\mathsf{Tr}\left(\mathsf{M}_{y_k,(u_k,\mathbf{v}_k)}\rho_k\mathsf{M}_{y_k,(u_k,\mathbf{v}_k)}\right)}$$

where $y_k = y \in \{g, e\}$ with probability $\operatorname{Tr}(M_{y,(u_k,v_k)}\rho_kM_{y,(u_k,v_k)})$. Assume support of ρ_0 in span $\{|0\rangle, |1\rangle, \ldots, |2^m - 1\rangle$ for some integer m > 0. Then the following closed-loop dynamics

$$\rho_{k+1} = \frac{\mathsf{M}_{y_k,(u_k,v_k)}\rho_k\mathsf{M}^{\dagger}_{y_k,(u_k,v_k)}}{\mathsf{Tr}\left(\mathsf{M}_{y_k,(u_k,v_k)}\rho_k\mathsf{M}^{\dagger}_{y_k,(u_k,v_k)}\right)}$$

where (u_k, v_k) depends on (y_{k-1}, \dots, y_0) as follows (f(g) = 0 and f(e) = 1) $u_k = -\frac{\pi}{2^{k+1}} \left(\sum_{\ell=0}^{k-1} f(y_\ell) 2^\ell \right), \quad v_k = \frac{\pi}{2^{k+1}}$

converges in *m* step towards the Fock state $n = \sum_{\ell=0}^{m-1} f(y_{\ell}) 2^{\ell}$.

¹⁵ Haroche/Raimond/Brune: Measuring photon numbers in a cavity by atomic interferometry: optimizing the convergence procedure. J. Phys. || France, 2(4):659–670 (1992).)

The first experimental realization of a quantum state feedback (2011) The first experimental realization of a quantum state feedback (2011)

The photon box of the Laboratoire Kastler-Brossel (LKB): group of S.Haroche, J.M.Raimond and M. Brune.

16

Stabilization of a quantum state with exactly n = 0, 1, 2, 3, ... photon(s).
 Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
 Theory: I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
 R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
 H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

¹⁶Courtesy of Igor Dotsenko. Sampling period 80 μs .

A controlled Markov process: photon box

Input *u*: classical amplitude of a coherent micro-wave pulse. **State** ρ : the density operator of the photon(s) trapped in the cavity. **Output** *y*: quantum projective measurement of the probe atom. The ideal model reads

$$\rho_{k+1} = \begin{cases} \frac{\mathsf{D}_{u_k}\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger}\mathsf{D}_{u_k}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger}\right)} & y_k = g \text{ with probability } \mathbb{P}_{g,k} = \mathsf{Tr}\left(\mathsf{M}_g\rho_k\mathsf{M}_g^{\dagger}\right) \\ \frac{\mathsf{D}_{u_k}\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}\mathsf{D}_{u_k}^{\dagger}}{\mathsf{Tr}\left(\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}\right)} & y_k = e \text{ with probability } \mathbb{P}_{e,k} = \mathsf{Tr}\left(\mathsf{M}_e\rho_k\mathsf{M}_e^{\dagger}\right) \end{cases}$$

- ▶ Displacement unitary operator $(u \in \mathbb{R})$: $D_u = e^{ua^{\dagger} ua}$ with $a = upper \operatorname{diag}(\sqrt{1}, \sqrt{2}, \ldots)$ the photon annihilation operator.
- Measurement Kraus operators in the linear dispersive case $M_g = \cos\left(\frac{\phi_0 N + \phi_R}{2}\right)$ and $M_e = \sin\left(\frac{\phi_0 N + \phi_R}{2}\right)$: $M_g^{\dagger} M_g + M_e^{\dagger} M_e = I$ with $N = a^{\dagger}a = diag(0, 1, 2, ...)$ the photon number operator.

Structure of the stabilizing quantum-state feedback scheme

With a sampling time of 80 μs , the controller is classical

- Goal: stabilization of the steady-state $|\bar{n}\rangle\langle\bar{n}|$ (controller set-point).
- At each time step k:
 - 1. read y_k the measurement outcome for probe atom k.
 - 2. update the quantum state estimation ρ_{k-1} to ρ_k from y_k
 - 3. compute u_k as a function of ρ_k (state feedback).
 - 4. apply the micro-wave pulse of amplitude u_k .

Observer/controller exploiting the quantum separation principle¹⁷:

- 1. real-time state estimation based on asymptotic observer: here quantum filtering techniques;
- 2. state feedback stabilization towards a stationary regime: here control Lyapunov techniques constructed with open-loop martingales $Tr(g(N)\rho)$ and inversion of a Laplacian matrix.

¹⁷L. Bouten and R. van Handel: On the separation principle of quantum control. In *Quantum Stochastics and Information: Statistics, Filtering and Control*, V. P Belavkin and M. I. Guta (Eds.) World Scientific, 2008.

Experimental closed-loop data

Stabilization around 3-photon state

C. Sayrin et. al., Nature 477, 73-77, Sept. 2011.

Decoherence due to finite photon life time around 70 ms)

Detection efficiency 40% Detection error rate 10% Delay 4 sampling periods

The quantum filter takes into account cavity decoherence, measure imperfections and delays (Bayesian inference).

Truncation to 9 photons

Intoduction

Discrete-time SME

Photons measured by dispersive qubits Photons measured by resonant qubits Measurement errors Stochastic Master Equation (SME) in discrete-time

Continuous-time Wiener SME

Qubits measured by dispersive photons (discrete-time) Continuous-time diffusive limit Diffusive SME "CPTP" numerical schemes for diffusive SME

Continuous-time Poisson SME

Qubits measured by photons (resonant interaction) Towards jump SME Jump SME in continuous-time "CPTP" numerical schemes for jump SME

Quantum feedback

Jaynes-Cumming Hamiltionian

$$\mathsf{H}(t)/\hbar = \omega_{c}\mathsf{a}^{\dagger}\mathsf{a}\otimes\mathsf{I}_{M} + \omega_{\mathsf{q}}(t)\mathsf{I}_{S}\otimes\sigma_{\mathsf{z}}/2 + i\Omega(t)\big(\mathsf{a}^{\dagger}\otimes\sigma_{\mathsf{z}} - \mathsf{a}\otimes\sigma_{\mathsf{+}}\big)/2$$

with the open-loop control $t \mapsto \omega_q(t)$ combining dispersive $\omega_q \neq \omega_c$ and resonant $\omega_q = \omega_c$ interactions. Key issues: convergence of $\rho_{k+1} = \mathcal{K}(\rho_k) = M_g \rho_k M_g^{\dagger} + M_e \rho_k M_e^{\dagger}$

¹⁸A. Sarlette et al: Stabilization of Nonclassical States of the Radiation Field in a Cavity by Reservoir Engineering. Physical Review Letters, Volume 107, Issue 1, 2011.

Convergence of K iterates towards $(|\alpha_{\infty}\rangle + i|-\alpha_{\infty}\rangle)/\sqrt{2}$

Iterations $\rho_{k+1} = K(\rho_k) = M_g \rho_k M_g^{\dagger} + M_e \rho_k M_e^{\dagger}$ in the Kerr frame $\rho = e^{-i\hbar^{Kerr}} \rho^{Kerr} e^{i\hbar^{Kerr}}$ yields $\rho_{k+1}^{Kerr} = K^{Kerr}(\rho_k^{Kerr}) = M_g^{Kerr} \rho_k^{Kerr}(M_g^{Kerr})^{\dagger} + M_e^{Kerr} \rho_k^{Kerr}(M_e^{Kerr})^{\dagger}$. with $M_g^{Kerr} = \cos(\frac{u}{2}) \cos(\theta_N/2) + \sin(\frac{u}{2}) \frac{\sin(\theta_N/2)}{\sqrt{N}} a^{\dagger}$ and $M_e^{Kerr} = \sin(\frac{u}{2}) \cos(\theta_{N+1}/2) - \cos(\frac{u}{2}) a \frac{\sin(\theta_N/2)}{\sqrt{N}}$. Assume $|u| \le \pi/2$, $\theta_0 = 0$, $\theta_n \in]0, \pi[$ for n > 0 and $\lim_{n \mapsto +\infty} \theta_n = \pi/2$, then (Zaki Leghtas, PhD thesis (2012))

• exists a unique common eigen-state $|\psi^{\text{Kerr}}\rangle$ of M_g^{Kerr} and M_e^{Kerr} : $\rho_{\infty}^{\text{Kerr}} = |\psi^{\text{Kerr}}\rangle\langle\psi^{\text{Kerr}}|$ fixed point of K^{Kerr} .

▶ if, moreover $n \mapsto \theta_n$ is increasing, $\lim_{k \mapsto +\infty} \rho_k^{\text{Kerr}} = \rho_{\infty}^{\text{Kerr}}$.

For well chosen experimental parameters, $\rho_{\infty}^{\text{Kerr}} \approx |\alpha_{\infty}\rangle \langle \alpha_{\infty}|$ and $h^{\text{Kerr}} \approx \pi N^2/2$. Since $e^{-i\frac{\pi}{2}N^2} |\alpha_{\infty}\rangle = \frac{e^{-i\pi/4}}{\sqrt{2}} (|\alpha_{\infty}\rangle + i| - \alpha_{\infty}\rangle)$:

$$\lim_{k \to +\infty} \rho_k = \frac{1}{2} \Big(|\alpha_{\infty}\rangle + i | -\alpha_{\infty}\rangle \Big) \Big(\langle \alpha_{\infty} | + i \langle -\alpha_{\infty} | \Big) \\ \neq \frac{1}{2} |\alpha_{\infty}\rangle \langle \alpha_{\infty} | + \frac{1}{2} | -\alpha_{\infty}\rangle \langle -\alpha_{\infty} |.$$

Reservoir/dissipation engineering and quantum controller (1)¹⁹

 $\mathbf{H} = \mathbf{H}_{res} + \mathbf{H}_{int} + \mathbf{H}$

If $\rho_{t\to\infty} \rightarrow \rho_{res} \otimes |\bar{\psi}\rangle \langle \bar{\psi}|$ exponentially with rate $1/\tau > 0$ then

PSI 🕷

¹⁹See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique des Houches", July 2011.

$$\begin{split} \mathsf{H} &= \mathsf{H}_{\mathsf{res}} + \mathsf{H}_{\mathsf{int}} + \mathsf{H} \\ \dots \dots \quad \rho_{t \to \infty} \rho_{\mathsf{res}} \otimes |\bar{\psi}\rangle \langle \bar{\psi}| + \overline{\delta\rho}, \text{ if } \tau\gamma \ll 1 \text{ then } |\overline{\delta\rho}| \ll 1 \end{split}$$

Quantum dynamics with dissipation (decoherence)

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation:

$$\frac{d}{dt}\rho = -i[\mathsf{H}_0 + u\mathsf{H}_1, \rho] + \sum_{\nu} \left(\mathsf{L}_{\nu}\rho\mathsf{L}_{\nu}^{\dagger} - \frac{1}{2} \left(\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\rho + \rho\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu} \right) \right)$$

- Preservation of trace, hermiticity and positivity: \(\rho\) lies in the set of Hermitian and trace-class operators that are non-negative and of trace one.
- Invariance under unitary transformations.

A time-varying change of frame $\rho \mapsto U_t^{\dagger} \rho U_t$ with U_t unitary. The new density operator obeys to a similar master equation where $H_0 + uH_1 \mapsto U_t^{\dagger} (H_0 + uH_0)U_t + iU_t^{\dagger} (\frac{d}{dt}U_t)$ and $L_{\nu} \mapsto U_t^{\dagger}L_{\nu}U_t$.

- "L¹-contraction" properties. Such master equations generate contraction semi-groups for many distances (nuclear distance²⁰, Hilbert metric on the cone of non negative operators²¹).
- ► If the Hermitian operator A satisfies the operator inequality

$$i[\mathsf{H}_{0} + u\mathsf{H}_{1}, \mathsf{A}] + \sum_{\nu} \left(\mathsf{L}_{\nu}^{\dagger}\mathsf{A}\mathsf{L}_{\nu} - \frac{1}{2} \left(\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu}\mathsf{A} + \mathsf{A}\mathsf{L}_{\nu}^{\dagger}\mathsf{L}_{\nu} \right) \right) \leq 0$$

then $V(
ho) = \operatorname{Tr}(A
ho)$ is a Lyapunov function when $A \ge 0$.

²⁰ D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications ²¹ R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC.

Bosonic code with cat-qubits

- Quantum error corrrection requires redundancy.
- Bosonic code: instead of encoding a logical qubit in N physical qubits living in C^{2^N}, encode a logical qubit in an harmonic oscillator living in Fock space span{|0⟩, |1⟩,..., |n⟩,...} ~ L²(ℝ, C) of infinite dimension.
- Cat-qubit ²²: $|\psi_L\rangle \in \text{span}\{|\alpha\rangle, |-\alpha\rangle\}$ where $|\alpha\rangle$ is the coherent state of real amplitude α : $a|\alpha\rangle = \alpha|\alpha\rangle$ with $a = (q + ip)/\sqrt{2}$ and [q, p] = i:

$$|\psi
angle \sim \psi(q) \in L^2(\mathbb{R},\mathbb{C}), \ \mathsf{q}|\psi
angle \sim q\psi(q), \ \mathsf{p}|\psi
angle \sim -irac{d\psi}{dq}(q), \ |lpha
angle \sim rac{\exp\left(-rac{(q-lpha\sqrt{2})^2}{2}
ight)}{\sqrt{2\pi}}.$$

Stabilisation of cat-qubit via a single Lindblad dissipator $L = a^2 - \alpha^2$. For any initial density operator $\rho(0)$, the solution $\rho(t)$ of

$$\frac{d}{dt}\rho = \mathsf{L}\rho\mathsf{L}^{\dagger} - \frac{1}{2}(\mathsf{L}^{\dagger}\mathsf{L}\rho + \rho\mathsf{L}^{\dagger}\mathsf{L})$$

converges exponentially towards a steady-state density operator since

$$\frac{d}{dt} \operatorname{Tr} \left(\mathsf{L}^{\dagger} \mathsf{L} \rho \right) \leq -2 \operatorname{Tr} \left(\mathsf{L}^{\dagger} \mathsf{L} \rho \right), \quad \mathsf{ker}(\mathsf{L}) = \mathsf{span}\{ |\alpha\rangle, |\text{-}\alpha\rangle \}.$$

<u>Any density operator with</u> support in span{ $|\alpha\rangle$, $|-\alpha\rangle$ } is a steady-state. ²²M. Mirrahimi, Z. Leghtas, ..., M. Devoret: Dynamically protected cat-qubits: a new paradigm for universal quantum computation. 2014, New Journal of Physics.

9

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting $\varphi_{\Sigma} = (\varphi_{\text{ext},1} + \varphi_{\text{ext},2})/2$ and $\varphi_{\Delta} = (\varphi_{\text{ext},1} - \varphi_{\text{ext},2})/2$. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator is coupled to a transmon qubit

²³R. Lescanne, M. Villiers, Th. Peronnin, ..., M. Mirrahimi and Z. Leghtas: Exponential suppression of bit-flips in a qubit encoded in an oscillator. 2020, Nature Physics

Oscillator a with quantum controller based on a damped oscillator b:

$$\frac{d}{dt}\rho = g_2 \Big[(a^2 - \alpha^2) b^{\dagger} - ((a^{\dagger})^2 - \alpha^2) b , \rho \Big] + \kappa_b \Big(b\rho b^{\dagger} - (b^{\dagger} b\rho + \rho b^{\dagger} b)/2 \Big)$$

with $\alpha \in \mathbb{R}$ such that $\alpha^2 = u/g_2$, the drive amplitude $u \in \mathbb{R}$ applied to mode b and $1/\kappa_b > 0$ the life-time of photon in mode b. Any density operators $\bar{\rho} = \bar{\rho}_a \otimes |0\rangle \langle 0|_b$ is a steady-state as soon as the support of $\bar{\rho}_a$ belongs to the two dimensional vector space spanned by the quasi-classical wave functions $|\alpha\rangle$ and $|-\alpha\rangle$ (range $(\bar{\rho}_a) \subset \text{span}\{|\alpha\rangle, |-\alpha\rangle\}$)

Usually $\kappa_b \gg |g_2|$, mode b relaxes rapidly to vaccuum $|0\rangle\langle 0|_b$, can be eliminated adiabatically (singular perturbations, second order corrections) to provides the slow evolution of mode a

$$\frac{d}{dt}\rho_{a} = \frac{4|g_{2}|^{2}}{\kappa_{b}} \Big(\mathsf{L}\rho\mathsf{L}^{\dagger} - \frac{1}{2} (\mathsf{L}^{\dagger}\mathsf{L}\rho + \rho\mathsf{L}^{\dagger}\mathsf{L}) \Big) \text{ with } \mathsf{L} = \mathsf{a}^{2} - \alpha^{2}.$$

Convergence via the exponential Lyapunov function $V(\rho) = \text{Tr} \left(L^{\dagger} L \rho \right)^{24}$

²⁴ For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A. Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.

Cat-qubit: exponential suppression of bit-flip for large α .

$$|0_L\rangle \approx |\alpha\rangle, \ |1_L\rangle \approx |-\alpha\rangle, \ |+_L\rangle \propto \frac{|\alpha\rangle + |-\alpha\rangle}{\sqrt{2}}, \ |-_L\rangle \propto \frac{|\alpha\rangle - |-\alpha\rangle}{\sqrt{2}}.$$

Photon loss as dominant error channel (dissipator a with $0 < \kappa_1 \ll 1$):

$$\frac{d}{dt}\rho_{a} = \mathcal{D}_{a^{2}-\alpha^{2}}(\rho) + \kappa_{1}\mathcal{D}_{a}(\rho)$$

with $\mathcal{D}_{\mathsf{L}}(\rho) = \mathsf{L}\rho\mathsf{L}^{\dagger} - \frac{1}{2}(\mathsf{L}^{\dagger}\mathsf{L}\rho + \rho\mathsf{L}^{\dagger}\mathsf{L}).$

Since $\langle \alpha | -\alpha \rangle = e^{-2\alpha^2} \approx 0$:

• if $\rho(0) = |0_L\rangle \langle 0_L|$ or $|1_L\rangle \langle 1_L|$, $\rho(t)$ converges to a statistical mixture of quasi-classical states close to $\frac{1}{2}|\alpha\rangle\langle\alpha|+\frac{1}{2}|-\alpha\rangle\langle-\alpha|$ in a time

$$T_{bit-flip} \sim rac{e^{2lpha^2}}{\kappa_1}$$

since $a|0_L\rangle \approx \alpha |0_L\rangle$ and $a|1_L\rangle \approx -\alpha |1_L\rangle$.

• if $\rho(0) = |+_L\rangle\langle+_L|$ or $|-_L\rangle\langle-_L|$, $\rho(t)$ converges also to the same statistical mixture in a time

$$T_{phase-flip} \sim rac{1}{\kappa_1 lpha^2}$$

since $a|+_{I}\rangle = \alpha|-L\rangle$ and $a|-_{I}\rangle = \alpha|+L\rangle$.

Take α large to ignore bit-flip and to correct only the phase-flip with 1D repetition code: important overhead reduction investigated by the startup Alice&Bob and also by AWS.

Quantum feedback engineering for robust quantum information processing

To protect quantum information stored in system S:

- fast stabilization and protection mainly achieved by quantum controllers (autonomous feedback stabilizing decoherence-free sub-spaces);
- slow decoherence and perturbations, parameter estimation mainly tackled by classical controllers and estimation algorithms (measurement-based feedback and estimation "finishing the job")

Need of adapted mathematical and numerical methods for high-precision dynamical modeling and control based on (stochastic) master equations.

Quantic research group ENS/Inria/Mines/CNRS, June 2023

