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Dynamics of open quantum systems based on three quantum features ! K psim

1. Schrédinger (h = 1): wave funct. |¢) € H, density op. p ~ [¢) (¢

d . .
E|¢):—/H|¢), H = Ho + uH; = HT, —i[H, p].

d —

dat’ =

2. Origin of dissipation: collapse of the wave packet induced by the
measurement of O = OT with spectral decomp. >, APy

» measurement outcome y with proba.
P, = (¥|P,|y)= Tr(pP,) depending on |¢), p just before the

measurement
» measurement back-action if outcome y:
Pylv) PypPy
W) = ()4 = ===, P pr= =25
(¥[Py 1) Tr(pPy)

3. Tensor product for the description of composite systems (S, C):
» Hilbert space H = Hs @ H.
» Hamiltonian H = H; ® I + Hyc + 1s ® He
» observable on sub-system C only: O =15 ® O..

!S. Haroche and J.M. Raimond (2006). Exploring the Quantum: Atoms,
Cavities and Photons. Oxford Graduate Texts.
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Diffusive stochastic master equation? . psLm

- W W EE R o

-
- = Hilbert space p ]ﬂdecoherence ~ N

- (dissipation) CLASSICAL WORLD
# |quantum state p (24 1 )
u _'_} dp = i[Hy+uly,p) di+ (LapLy  S(E{Lap+ pIiLa)) dt —‘—) dy =i Tt(Lymp + pL},) dt + dW
\ +(I_,,,,;I_f,, %(L,T“I_q,,p+,;L,"“I_,,,)) m+ﬁ(1.,,,,,+,,r‘7“ 1.-[1_,,,,,+,,Lj,,j,,) aw
s ~ QUANTUM WORLD 4
N e m mE =

t — p; continuous time function (not differentiable), solution of

dpe = _i[Ho+uH1,pt] di+ [ S Lopel] — S(LiLupe + peliLy) | de+...

v=d,m

ot (L peLly = Te(Lmpe + pelhy)pe ) dWs,

where 7 € [0, 1] and the same Wiener process W, is shared by the state
dynamics and the output map

dye = /0 Te(Lpnpe + peLl) dt + dW,.

2A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements

in Continuous Time: the Diffusive Case. Springer Verlag, 2009.
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. . 24
Jump stochastic master equation 3 &, 1oLz

t — p; piece wise smooth time function, solution of
dpe = (—i[H, pe] + VeV — 3(VIVp, + pVIV)) dt

Op: + Vpe V1 B ) (7= T
() (- (15770 ) )

where 6 > 0 (dark count rate) and 7 € [0, 1] (detection efficiency) and
where the counting detector outcome dy; € {0,1} with

> dy, = 0 with probability 1 — (9‘+ 7 Tr (VoY) ) dt and then

Pt+dt = Pt + ( —i[H, pe] + thVJr - % VTVPt + p:VTV)
+a(Tr (thvT) pr — thVT)) dt
» dy, =1 with probability (§+ 1 Tr (VpeVY) ) dt, and then

Ope + 7V pe VT
0+7 Tr(Vp V)
3see, e.g., J. Dalibard, Y. Castin, and K. Mglmer. Wave-function approach

to dissipative processes in quantum optics. Phys. Rev. Lett., 68(5):580-583,
February 1992. 5/65
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LKB photon box* &, 1oLz

> Dispersive qubit/photon interaction: Hine = —x(|e)(e| — |g)g]) ® n (with
X a constant parameter) yields e~ THint  the Schrédinger propagator
during the time T > 0, given with 6 = xT by
Up = Ig)gl @ e

» resonant qubit/photon interaction: Hin = i%(\g}(e\ ®al —|e)g|® a)
—iTH

+ le)e| ® ™.

(with w a constant parameter) yields e it the Schrédinger propagator
during the time T > 0, given with § = wT /2 by

Us = |g)g| ® cos(8v/n) + |e)e| ® cos(dv/n + 1)

+laxel & ot — ey a T,

4LKB for Laboratoire Kastler Brossel. ,
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Photons measured by dispersive qubits (1) | PSL

MINES PARIS

Ry

U= (((252) el + (1242 (el) @)

(IeXgl® e + le)e| & &™)

(23 tel + (=) ¢el) 1)
applied on |V) = |g) ® [¢) yields

U (Ig)l)) = lg) cos(On)[s) + [e) isin(6n)).

Markov process induced by the passage of qubit number k:

__isin(On)lyw) — e wi il in2 .
R if yx = e with probability (1| sin®(6n)|vx) ;

where y, € {g, e} classical signal produced by measurement of qubit k.

es) { % if yx = g with probability (1x| cos®(0n)|¢x) ;
k+1) =
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Photons measured by dispersive qubits (2) AT |psLa

MINES PARIS

The density operator formulation (p = |){(¥] ):

s
MgpikMgT if yx = g with probability Tr (I\/IgpkMZ,) :

prit = Tr(Mg M} )
- MepkMZ . _ . . 1Y .
7Tr(Meple> if yx = e with probability Tr (MepkMe) ;

with measurement Kraus operators M, = cos(6n) and M. = sin(fn). Notice
that M{Mg + M{M. = I.

For 0/ irrational, almost sure convergence towards a Fock state |i) (| for
some 71 based on the Lyapunov function (super-martingale)

Vip)= > Vmlpln)(n2|p|n2)

0<n1 <nz

that converges in average towards 0 since

E (V(pkﬂ) ‘ pk) < ( max | cos(f(m + n2)|> V(r)-

0<n1<nz

Probability that a realisation converges towards |7) (7| given by its initial
population (1] po|71)
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Photons measured by resonant qubits (1) AT |psLa

5

Wave function |W) of the composite qubit/photon system just before D:

<Ig><g| cos(0v/n) + |e){(e| cos(0vn + 1)

vn vn

— &) cos(OvA)Y) — |e) a S'“(“’fﬂ )

Resulting Markov process associated to the measurement of the observable
o, = |le)e| — |g)g| with classical output signal y € {g, e}:

M f — th b bl 2 9 .
(i | cos?(0+/n)[1y) Yk & with probability <'¢k| cos ( \/ﬁ)"l/]k) )
[Yrg1) = 2SO

VWil sin2(0v/m) k)

+ lg)el SOV o |e><g|as‘"("ﬁ)> 1£)19)

if yx = e with probability (¢x|sin®(6/n)]k) ;
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Photons measured by resonant qubits (2) AT |psLa

MINES PARIS

Density operator formulation;

Mg pi M7 . . -
e m if y« = g with probability Tr (MgpxM]) ;
o MepMJ : _ : i £ .
Tr(MepkM;() if yx = e with probability Tr (MepkMs) ;

with measurement Kraus operators M, = cos(6+/n) and M. = aw. Notice
that, once again, M;Mg +MiM. =1.

For 0y/n/m irrational for all n, almost surely towards vacuum state |0)(0].
Results from the following the Lyapunov function (super-martingale)

V(p) = Tr(np)
since

E (V(pm) ‘ pk) = V(px) — Tr (sin*(0v/n)px) -
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2%
Measurement errors (1) . psLm

With measurement imperfections, use Bayes rule by taking as quantum state,
the expectation value of pxy1 knowing px and the information provides by the
imperfect measurement outcome.
Assume detector D broken. From

:
Mgpikmgt if yx = g with probability Tr (I\/IgpkMg) :

Pri1 = T'(Mgpk';/'g)
MePkMe . _ . . 1 .
7Tr(Meple) if yx = e with probability Tr (MepkMe) ;

we get the quantum channel:

pri1 = K(px) £ E (pm ‘ pk) = MgpeME + Mep ML
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2%
Measurement errors (2) . psLm

When the qubit detector D, producing the classical measurement signal

yk € {g, e}, has errors characterized by the error rate n. € (0,1) (resp.

ng € (0,1)) the probability of detector outcome g (resp. e) knowing that the
perfect outcome is e (resp. g), Bayes law gives directly

_ _ (1_77g)MngM;+7IeMePkMZ
£ (pkﬂ ‘ Y= g7pk) N Tr((lfng)MgpkM}MeMepkMl)
with probability P(yx = glpx) = Tr ((1 — 77g)Mgp;<Mfg + neMepkMZ) ,

Pk+1 = . .
ngMgpiM;+(1—ne)Mep M
E(Pkﬂ ‘}/k:epk>: £
’ T"(ngMgpkM;+(1777e)Meple)

with probability P(yx = e|px) = Tr (ngMgpiM] + (1 — ne)MepiMY)

Notice that a broken detector corresponds to 7. = 1, = 1/2 and one recovers
the above quantum channel.
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Stochastic Master Equation (SME) in discrete-time FALt

General structure of discrete-time SME based on a quantum channel with the
following Kraus decomposition (which is not unique)

K(p) = _MupM], where Y MM, =1
I

o

and a left stochastic matrix (7,,,.) where y corresponds to the different
imperfect measurement outcomes. With K, (p) = >, Ny,uMupMJ, ones gets
the following SME:

Ky, (o)

= ——"— wh = y with probability T
P41 Tr (K, (o0) where yx = y with probability Tr (K, (p«))

Notice that K = K, since 7 is left stochastic.
y oy

Here the Hilbert space H is arbitrary and can be of infinite dimension, the
Kraus operator M, are bounded operator on # and p is a density operator on
‘H (Hermitian, trace-class with trace one, non-negative). When the index y or
4 are continuous, discrete sums are replaced by integrals and probabilities by
probability densities.
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Qubits measured by coherent photons (discrete-time) (1) A, psLz

Probe photon in the coherent state \1%) with o > 0. Just before D the
composite qubit/photon wave function |W) reads:

(IgXgle™ + leXele™ ) [0)li 55) = (gl 4) lg) lie™™25) + (el ) le) lie” 25).

Measurement outcome y € R corresponding to observable

T +oo
Q=212 - / qlg)qldg where (qq") = d(q —q').

V2 o0
. Lo . (gt asin 0)2
Since |/ei’9%) = 7,11/4 f:: B |g)dq, we have

(gl v) 1) lie™ %) + (el 6) le) i %)
oo iqoe cos O 7@ o sin 0) 7(q+u sin 0)
e[ e ( 5 (g1 0) ) + <|¢>|>)|q>dq

Thus

y, cysmﬂ y+o¢sm02
k— k

(i) = eMocsd €7 <g|¢k> lg) +e” +<elw>| )
Ve thmasinP] (g]ghy) [2 4 e~Drresin %] (e[ i) [2

ZUme 0P (gl et O e 2

™

where yi € [y, y + dy] with prob.
19/65



Qubits measured by dispersive photons (discrete-time) (2) . psLm

Density operator formulation
MYk Pk M}tk

— A where yx € [y, y + dy] with probability Tr (MypkMI) dy
7o (0,00

Pk+1 =

and measurement Kraus operators

1 _ (y—asin 0)2 (y+asin 6)2

My=—Sme 7= lgXel+ <me” = leXel.

Notice that
1 —(y—asin )2 1 — asin 6)2
Tr (M pM}) = 2T glolg) e el
and [T MIM, dy = |g)g| + le)e| = I.
For o # 0, almost sure convergence towards |g) or |e) deduced from Lyapunov
function

V(p) = VViglolg) (elple) with E (Vi) | ) = €% V(pu).

20 /65



Qubits measured by dispersive photons (discrete-time) (3) FALt

Detection imperfections: probability density of y knowing perfect detection g is
. . _=a?
a Gaussian given by 7= ° for some error parameter o > 0. Then the

_1
uged

above Markov process becomes

_ ICYk (Pk)
PR = T (K (00))

where

<, _u=a? 1
Ky(p) = F=€  ° MgpMg dg

— 0o

Standard computations using

1 _ (g—asin 0)? (g+asin 6)2

Mo=Hme 2 lgXel+ =me 2 le)el

(y—asin 0)2 (y+asin 9)2

Ky(p) = —= (ef o (glplg)lgXel + e e (elple)[e)el

46 ET O (elplg) el + lelplellelel) )

21/65
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A | psLm

Continuous-time diffusive limit (1)

Density operator formulation (perfect detection)
MYkpkML
e (M)

and measurement Kraus operators

Pry1 = where yix € [y, y + dy] with probability Tr (MypkMI) dy

_ (y—asin 0)2 _ (y+asin 0)2

My=Sme 7= leXegl+ <me = leXel

Since
]E(yk ‘ Pk :p) 2y=—asind Tr(op), E (yf ‘ Pk :p) £ y2 = 1/24(asinb)?.

When 0 < asinf = ¢ < 1, we have up-to third order terms versus ey,

M, pM] _ (cosh(ey) — sinh(ey)o;)p(cosh(ey) — sinh(ey)a:)

Tr (MyPMQ cosh(2ey) — sinh(2ey) Tr(ozp)

~ P &y(ep+po) + (ey)*(p + capo)
1 —2ey Tr(ozp) + 2(ey)?

~ p+(ey)? (Uzpaz —p) + (Uzp+paz =2 Tr(ozp) p) (—ey—?(ey)2 Tr (czp) )

23 /65



Continuous-time diffusive limit (2) . psLm

Replacing €?y? by its expectation value one gets, up to third order in ey and e:
M}/pM;r/ &2 2
—— Rt (Uzpaz—p)+(azp+paz—2 Tr (02p) p) (—ey—e Tr (0zp) )
Tr (Myplvl;)
Set ¢ = 2dt and ey = —2 Tr(a,p) dt — dW. Since by construction
E (eyk ‘ Pk = p) =—€ Tr(op) and E ((eyk)2 l Pk = p) = +¢

one has E (dW ‘ p) =0and E (dW2 ’ p) = dt up to order 4 versus €. Thus

for dt very small, we recover the following diffusive SM E®
Prede = pr+dt (Gzpfaz — p) + (Uzpt + proz —2 Tr(ozp¢) p) (dyt —2 Tr(ozp:) dt)

with dy; = 2 Tr(c.p:) dt + dW, replacing —ey and dy? = dW? = dt (lto rules).

5Convergence in distribution when dt — 07: tightness property

2 2
YT > 0,3M > 0,Vdt > 0, %k, ki, ka € {0, .., [T/del} E (llokg — pull®ll lloky — pill® | o) < Mika—ka) dt,
Ii‘3("(pk+1 ‘ Pk:P>*f(P)
and (Markov generator) convergence of R S— towards E (dft ‘ pt = p) /dt for any

C? real function f.
24 /65



Continuous-time diffusive limit (3) . psLm

With measurement errors parameterized by o > 0, the partial Kraus map

)2

Ky(p) = —=2 (e—%<g|p|g>\g><g| +e T (e|ple)eNe]

7(1+0)
e ((elplg)leNel + <g|p|e>|g><e|))

yields E (yk ’ pk) 2y=—€Tr(op)and E (y,f ‘ pk) Ly2—(1+0)/2+¢€.

Similar approximations with €2 = 2dt and dt very small, yield an SME with

detection efficiency n = 5

Pridt = Pt + dt(Uzptoi - p) + \/ﬁ(azpt + pro; — 2 Tr(ozpt) p) dW;

with dy: = /7 Tr (ozpt + proz) dt + dW: ~ —ey /V/1 + 0.
Convergence towards either |g) or |e) (QND measurement of the qubit) based

on Lyapunov fonction V(p) = 1/1 — Tr(czp)? and Ito rules:

zdz dz* _ zdz
Vi—zz 201-2z2)32 J1_2
where z = Tr(&p), dz = 2n(1 — z2°)dW and dz* = 4n*(1 — z*)?dt. Since
E (dz ‘ z) =0,V,=E (V(zt) ’ zo) solution of 4V, = —27*V/.

dv = — — 20 Vdt
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Diffusive SMES A | psL

MINES PARIS

General form of diffusive SME with lto formulation:

. 1
dp: = (—I[H7pt] +> Lupelf — E(LlLypt + ptLLLy)> dt

+ Z \/7% (Lupt + ptLl — Tr ((Lu + Li)pr) Pt) dW,.¢,

dyie = /i Tr (Lupe+ pel L) dit + dW,e

with efficiencies 7, € [0,1] and dW, ; being independent Wiener processes.
Equivalent formulation with Ito rules:

May,peM, + 3, (1 = mu)LupeL ] dt
Tr (Mdytptl\/lgyt Y a- nV)L,,ptlet)

with Mgy, =1+ (—iH — 23 LIL,) dt + 3, /Wwdys.L.. Moreover
dy,.: = s,.:\/dt follows the following probability density knowing p::

Pt+dt =

2
]P((Su,t = [5V75V —+ dsl,])y ‘pt> = Tr <M5\/$ ptMim-‘r Z(l — nu)LthLj;dt> H e \;ﬁsy .
v v

®A. Barchielli and M. Gregoratti. Quantum Trajectories and Measurements
in Continuous Time: the Diffusive Case. Springer Verlag, 2009.
27/ 65
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. . . 24
Kraus maps and numerical schemes for diffusive SME’ K psim

Linearity/positivity/trace preserving numerical integration scheme for
. 1
dp: = (—/[H,pt] +> Lupel] — E(LZLth + ptL,tLV)> dt
14
+ v (Lupe + peld = Tr (Lo +LE)pt) pe) dWie,
v
dyv,e = /m Tr (Lupt + PtL:r,) dt + dW, ¢

With Mo = I+ (= iH = 330, LiL,)de, S =M{Mo+ (X, LIL, ) dt set

Mo = MoS™/2, [, =L,5~ /2
Sampling of dy,,:+ = s,+V dt according to the following probability law:

N ""tN
Al
N

IF’((SV,,_» € [sv,su +ds]), \pt) = Tr < s\ﬁpt + Z(l — nl,)L,,ptLTd > H e _2dsy

where I\7Idyt = Mo + > /Twdys,tL,. Exact Kraus-map formulation:

daye T >, (1= r]l,)L,,ptL dt
Tr (mdytpthyt +3,0 - ny)LthL,tdt)

detptM

Pt+dt =

7A. Jordan, A. Chantasri, PR, and B.Huard. Anatomy of fluorescence: quantum trajectory statistics
from continuously measuring spontaneous emission. Quantum Studies: Mathematics and Foundations,
3(3):237-263, 2016. 29 /65
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Qubits measured by vacuum (resonant) (1) A, psLz

Probe photon is in the vacuum state |0). Composite qubit/photon wave
function |W) before D:

<Ig><g| cos(0v/n) + |e){e| cos(0v/n + 1)

+ el Yl |e><g|a5‘"(fﬁf”)> ¥)10)

= ({&l¥) lg) + cost (e|v) €))]0) +sin 0 (e[ ) |g)[1).

With measurement observable n =3~ n|n)n
(density operator formulation)

, outcome y € {0,1} reads

MopkME . . -
s 7“('\:2;&;) if yx = 0 with probability Tr (Mopkl\/lg) ;
+1= My peM] . ) .
W if yx =1 with probability Tr (MlpkMI) :

measurement Kraus operators Mg = |g)(g| + cosf|e)(e| and M; = sin8|g)e|.
Almost convergence analysis when cos®() < 1 towards |g) via the Lyapunov
function (super martingale)

V(p) = Tr(le)elp) since E (V(psa) | i) = cos™0 V(p).
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Towards jump SME (1) FALt
Since Tr (Mong) =1—sin*0 Tr(apoy) and

Tr (MlpMI) =sin? 0 Tr(c.poy), one gets with sin?@ = dt and y ~ dN, an
SME driven by Poisson process dN; € {0,1} of expectation value
Tr (o-pto4 ) dt knowing py:

dpr = (a_pta+ — %(a+apt + pfa+a_)) dt

0-Pt0+
_ — dNy — | Tr (o .
+ ( Tr(oproy) pt) ( ! ( r(apta+)) dt)
At each time-step, one has the following choice:
» with probabilty 1 — Tr(a.p:oy) dt, dNy = Nepgr — N =0 and
Mop:M{

Ptrdt = —F
Tr (MoptMg)
with Mo = | — £oy 0.
» with probability Tr(cp:o4) dt, dNy = Neygr — Ny =1 and
MipeM]
Pttdt = 19t 74

Tr (MlptMI)

with M; = +v/dt o.
33/65



Towards jump SME (2) AT |psLz

With left stochastic matrix ( 1 gdetdt 1 % K > including dark counts of rate

6 > 0 and detection efficiency 7 € [0, 1]:
> dN¢ = Nerge — Ne = 0 and

(1 — 8dt)Mop:M] + (1 — 7)My1 peM]
Tr ((1 — dt)MopeM§ + (1 — ﬁ)MlptMD

Pt+dt =

MopeMI + (1 — 7)MqpeMT
_ 0ptM, :'( 7)M1peM] + 0(dt?).
Tr (MoptMo 1 ﬁ)MlptMD

with probability
1—((§+ﬁ Tr (cr_pta+))dt - T ((1 — 0dt)Mop:M + (1 — ﬁ)MIptMI)+O(dt2)
and where Mg =1 — %a.m_ and M; = Vdt o.

> dNt = Nt+dt — Nt =1 and

0dt MopeM{ + iM1peME  Bp; 4 o peoy

Pt4+dt = - = =
Tr <9dtl\/|0ptl\/lg+ﬁl\/|1pt|\/|1) 0+ 7 Tr(cproy)

+ O(dt)

with probability

@+ Tr(a_pta+))dt =T (e'dt MopeMJ + ﬁMlptMI) + O(dt?)

34 /65



Towards jump SME (3) FALt
Jump SME with dark count rate @ and detection efficiency 7

dp: = (apeoy — S(opape + peoya)) dt

épt + njo.proy _
b — oo | \dNe = (0477 Tr (e dt) .
i ( Tr (ept-l-ﬁaptm.) pt) ( t ( +7 r(opta+)) t)

corresponds to the following choices
> dNt == Nt+dt - Nt =0
_ MopeM{ + (1 — ))MapeM]
Pt+dt = : - :
Tr (Moptl\/lo (- n)MlptI\/Il)

with probability 1 — (§+ il Tr(o.peoy ) ) dt,
> de = Nt+dt — Nt =1 and
perar = Op: + o peoy
t+dt — =  _— —
047 Tr(apeoy)
with probability (5 + 17 Tr(opeoy) ) dt,

where Mo =1 — % (040 + 1) and My = Vdt 0.
35/65



Outline AT psim
Intoduction
Discrete-time SME

Continuous-time Wiener SME

Continuous-time Poisson SME

Jump SME in continuous-time

Quantum feedback

36 /65



Jump SME in continuous-time® (1) . psLm

General structure of a Jump SME in continuous time with counting process N; with
increment expectation value knowing p¢ given by (dN;) = <€_+ 7 Tr(VpeVT) ) dt,

with 0 > 0 (dark count rate) and 7 € [0,1] (detection efficiency):

dpe = (—i[H, pel + VeV — L(Vivp, 4 ptVTV)> dt
Ope + VoV (.- :
(TN ) (et (7 (Vo)) ).

Here H and V are operators on an underlying Hilbert space H, H being Hermitian. At
each time-step between t and t + dt, one has the following recipe

> dN; = 0 with probability 1 — (é+ 7 Tr (Ve ) dt
MopeM{ + (1 — 7)VpeVidt
Tr (Moptlvlg T ﬁ)thVTdt)

Pt+dt —

where Mg = I — (iH + 3VTV) dt.
> dN; = 1 with probability (9‘+ 7 Tr (VpeVT) ) dt,

Ope + Vpe V1

Pt+dt = T Tr (Voruh) T (thVT) .

J. Dalibard, Y. Castin, and K. Mglmer. Wave-function approach to dissipative processes in

uantum optics. Phys. Rev. Lett., 68(5):580-583, 1992,
q p y: (5) a7 /68
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Numerical scheme for Jump SME . psLm

dpe = (—iH, pe] + VoV = J(VIVpe + peVIV) ) de
Bp: + MV p VT P +
+ ((ﬂﬁTr(thvf) - pt> (dNt - (0+ 7 Tr (thV )) dt) .

Take a discretization step dt > 0 and set Mg = | — (iH + %VJTV) dt, I\7I0 = MgS—1/2
and V = VS~1/2 with S = M{ Mg + VIVdt. Use the following numerical CP scheme:
> dN; = 0 with probability Tr (e—édfﬁloptmg +(1— ﬁ)dt\7pt\7f)

eie_dt'\’\/]lopt'\’?lz + (1 — T_])dt\N/pt\A/lT
Tr <e—§dfl\~/loptl\~/lg + (1 — ﬁ)dt\~/pt\~/f)

Pt+dt =

> dN; =1 with probability Tr ( (1 — e~0%)MopcM{ + 7citVp, V1)

(1 — eiédt) |\7|0pt|\7|(]; -+ ﬁdt\7pt\7T
Tr ((1 - e*g_df)lvloptl\]g + ﬁdt\7pt\7T) .

Pt+dt =

Probabilities are preserved exactly: for any p¢, 6 > 0, 77 € [0, 1]
Tr <e—§df|\7|0pt|\7|g +(1- ﬁ)dt\7pt\~/T> +Tr ((1 — e ) Mg pe M) + ﬁdt\7pt\7f) =1
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2%
Measurement-based feedback K psim

CLASSICALWORLD e —
classical - ~
reference classical 4 " = i\
classical |ineuttly Eﬂlf:trﬁripitc:tz{p
controller 1 SME
classical & QUANTUM WORLD 7
output{y N o o o -
» P-controller (Markovian feedback®) for u: dt = k dy:, the ensemble

»

average closed-loop dynamics of p remains governed by a linear Lindblad
master equation.

PID controller: no Lindblad master equation in closed-loop for dynamics
output feedback

Nonlinear hidden-state stochastic systems: Lyapunov state-feedback®;
many open issues on convergence rates, delays, robustness, ...

Short sampling times limit feedback complexity

oy

. Wiseman, G. Milburn (2009). Quantum Measurement and Control. Cambridge University Press.

1 . . .
0See e.g.: C. Ahn et. al (2002): Continuous quantum error correction via quantum feedback

control.

Phys. Rev. A 65;

M. Mirrahimi, R. Handel (2007): Stabilizing feedback controls for quantum systems. SIAM Journal on

Control

and Optimization, 46(2), 445-467;

W. Liang, Weichao, N. Amini and P. Mason (2019): On Exponential Stabilization of N-Level Quantum
Angular Momentum Systems. SIAM Journal on Control and Optimization 57(6):3939-3960.
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Structure of dynamical models AT |psLz

MINES PARIS

Four modeling features!:
1. Schrédinger equations defining unitary transformations.

2. Randomness, irreversibility and dissipation induced by the measurement
of observables with degenerate spectra.

3. Entanglement and tensor product for composite systems.

4. Classical probability (Bayesian inference) to include classical noises,
measurement errors and uncertainties.
= Hidden-state controlled Markov system

Control input u, state p (density op.), measured output y:

_ Kugye(pr) : _
Prr1 = m, with proba. ]P’(yt /pt,ut> = Tr(Kuy(pt))

where Koy (p) = 37 my,uMu,upM{ , with left stochastic matrix (1, ) and
Kraus operators My, satisfying >, M My, =1
Kraus map K, (ensemble average, quantum channel)

:) Ku(pt) = Z’Cu,y(l)t) = Z Mu’uptMI,u'
y "

E (pt+1 |pe

11See, e.g., books: E.B Davies in 1976; S. Haroche with J.M. Raimond in
2006; C. Gardiner with P. Zoller in 2014/2015.
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Coherent (autonomous) feedback (dissipation engineering)

A | psLm

MINES PARIS

Quantum analogue of Watt speed governor: a dissipative mechanical
system controls another mechanical system 12

CLASSICAL WORLD

- EE N BN s B
’ g 7decoherence
1 = Hilbert space
] A guantum = H==Hs®H.

E interaction v

I quantum L~ decoherence
1 controller -7

Hilbert space?,

N QUANTUM WORLD ¢
-

---—

Optical pumping (Kastler 1950), coherent
population trapping (Arimondo 1996)

Dissipation engineering, autonomous
feedback: (Zoller, Cirac, Wolf, Verstraete,
Devoret, Schoelkopf, Siddiqi, Martinis,
Mglmer, Raimond, Brune,. .., Lloyd, Viola,
Ticozzi, Leghtas, Mirrahimi, Sarlette, PR,

)

(S,.L,H) theory and linear quantum
systems: quantum feedback networks
based on stochastic Schrodinger equation,
Heisenberg picture (Gardiner, Yurke,
Mabuchi, Genoni, Serafini, Milburn,
Wiseman, Doherty, ..., Gough, James,
Petersen, Nurdin, Yamamoto, Zhang,
Dong, ...)

Stability analysis: Kraus maps and Lindblad propagators are always

contractions (non commutative diffusion and consensus).

2J.C. Maxwell (1868): On governors. Proc. of the Royal Society, No.100.
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Coherent feedback involves tensor products and many time-scales ., psim

The closed-loop Lindblad master equation on H = Hs ® He:

d .
ap = —I |:Hs ® Ic + ls & HC + HSC ) P] + ;DLS,V®IC(p) + ZDIS@LC,V’ (p)

with D (p) = LpLT — 1 (LTLp+ pL'L) and operators made of tensor products.

e Typical goal in autonomous quantum error correction. Consider a convex
subset D; of steady-states for the decoherence-free ideal system S: each
density operator p, on Hs belonging to Ds satisfies i[Hs, 5] = 0.

o Designing a realistic quantum controller C (Hc, L. /) and coupling
Hamiltonian Hs. stabilizing D is non trivial. Realistic means in particular
relying on physical time-scales and constraints:

» Fastest time-scales attached to Hs and H. (Bohr frequencies) and
averaging approximations: ||Hs]|, [[He|l > |[Hscl|,

> High-quality oscillations: |[Hs|| > ||LI,Ls. || and |[He| > |ILT Lo

c,v’/

» Decoherence rates of S much slower than those of C:
LI Lowll < |IL!  Le./||: model reduction by quasi-static

approximations (adiabatic elimination, singular/regular perturbations).
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Markovian feedback in discrete-time 4D | psLm

MINES PARIS

Kyk(Pk) ut
T (K (pi))

where uy and yj are input/output at step k.
With the static output feedback ux = f(yx) the closed-loop dynamics
read

pre1 = U with prob Py, (pi) = Tr (KCy, (px))

_ Ky(px) i - _
Pk+1 = Uf(yk)WUf(yk), with prob. P, (p«) = Tr(Ky,(pk)) -

The closed-loop ensemble average reads

pri1 = K(pk) = Z Uf(y)’Cy(Pk)UI—(y)a Po = po
y
Closed-loop Kraus map K differs in general from K = Zy Ky.
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Markovian feedback in continuous-time 13 (1) X 1psim

Controlled qubit with diffusive fluorescence measurement:

Deide = efiutdt oy (Pt + /{(g’_ptg_i_ —_ %0’+O:pt — %pta+a)dt e
+ ViE(ope + prog — Tr(oxpr) pt)th) etiudt o
d}/t — \/777/{, Tr (O'Xpt) dt + th

Open-loop ensemble-average with u = 0 converge to |g)(g]|

d 1 1
i /@(a_pto’+ — 504.0.pt — Epta_i_a_)

and also the stochastic dynamics.
Closed-loop Markovian feedback with u;dt = gdy; requires to use the Ito
correction in et %;

et v — 1 4 ( + ig\/nk Tr (oxpe) — é;)dt + igdW;ay.

134 M. Wiseman, G.J. Milburn: Quantum Measurement and Control.
Cambridge University Press (2009)
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Markovian feedback in continuous-time (2) AT | psim

MINES PARIS

This yields to the following closed-loop SME
dpe = pesdr — (Z Lyl — 2LTL,pr — ;ptLTyLy> dt...

+vn ((Llpt + ptL — Tr <L1pt + pelg ) pt)> dWs ...
((L2Pt + Pt'— - Tr (szt + pely > Pt)) dW,
with Ly = /ka. — igy/noy and Ly = —ig/T —ngy.
When =1 and g = —+/k, one has Ly = \/koy, Lo =0 and

dpr =K (0+pta_ — %aa.,.pt — %pto_o_,_) dt
+ VE (o4 pt + pro. — Tr(ope) pi)) dWs.

Thus the closed-loop system converges towards the excited state |e).
Multiple-input multiple-output (MIMO) experiment in 14

14P.Campagne—|barcq, ..., B. Huard:Using Spontaneous Emission of a Qubit as a
Resource for Feedback Control. PRL 2016.
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Optimal QDN measurement of photons'® &, 1oLz

Ry
s Nt

Take two scalar control inputs (u, v) with M
Me,(u,v) = sin(u + vN) in

g.(u,v) = cos(u + vN) and

ykf(uk5vk)pkMykv(uk7vk)
Tr(Mm

Pk+1 =
Vi (g vie ) Pk KM kv(“kv‘/k))

where y, = y € {g, e} with probability Tr( (u Vk)pkMy,(uk,,,k))

Assume support of pg in span{|0), |1),. \2’" — 1)} for some integer m > 0. Then
the following closed-loop dynamics

i
Myk,(uka"k)pkM,Vk,(UkaVk)

i
Tr (Myka(”kﬂ‘/k)pkM}/k7(”k7vk))

where (uk, vk) depends on (yx—1,...,¥0) as follows (f(g) =0 and f(e) =1)
ug = 2k+1 <2571 f()’é)2é> y o Vk = y%
converges in m step towards the Fock state n = 2":*01 fye)2¢.

1 . - . . ..
5Haroche/Ralmond/Brune: Measuring photon numbers in a cavity by atomic interferometry:

optimizing the convergence procedure. J. Phys. Il France , 2(4):659-670 (1992).)

Pk+1 =

49 /65



The first experimental realization of a quantum state feedback (2011) ﬁ | PSLE

The photon box of the Laboratoire Kastler-Brossel (LKB):

group of S.Haroche, J.M.Raimond and M. Brune.
16

y

Stabilization of a quantum state with exactly n =0,1,2,3,... photon(s).
Experiment: C. Sayrin et. al., Nature 477, 73-77, September 2011.
Theory: |I. Dotsenko et al., Physical Review A, 80: 013805-013813, 2009.
R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.

H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

18 Courtesy of Igor Dotsenko. Sampling period 80 ps.
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A controlled Markov process: photon box FALt

Input u: classical amplitude of a coherent micro-wave pulse.

State p: the density operator of the photon(s) trapped in the cavity.
Output y: quantum projective measurement of the probe atom.
The ideal model reads

Dy, MgpkMEDY],
Tr (MgpeM})
Dy, MepMID],
Tr (MepiM)

Yk = g with probability P, , = Tr (MgpkM;)

Pk+1 =
Yk = e with probability P, , = Tr (MepkMZ)

» Displacement unitary operator (u € R): D, = eva'—ua \yith
a = upper diag(v/1,v/2,...) the photon annihilation operator.

» Measurement Kraus operators in the linear dispersive case
Mg = cos (#4552 ) and M, = sin (2% ): M{M, +M{M, =
with N = afa = diag(0,1,2,...) the photon number operator.
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Structure of the stabilizing quantum-state feedback scheme ALt

With a sampling time of 80 us, the controller is classical
» Goal: stabilization of the steady-state |77) (71| (controller set-point).
» At each time step k:

read y, the measurement outcome for probe atom k.
update the quantum state estimation px_; to px from y
compute uy as a function of py (state feedback).

4. apply the micro-wave pulse of amplitude wuy.

W=

Observer/controller exploiting the quantum separation principle!:

1. real-time state estimation based on asymptotic observer: here
quantum filtering techniques;

2. state feedback stabilization towards a stationary regime: here
control Lyapunov techniques constructed with open-loop
martingales Tr(g(N)p) and inversion of a Laplacian matrix.

7| Bouten and R. van Handel: On the separation principle of quantum
control. In Quantum Stochastics and Information: Statistics, Filtering and

Control, V. P Belavkin and M. |. Guta (Eds.) World Scientific, 2008.
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Experimental closed-loop data Stabilization around 3-photon state

ny = 3 photons

C. Sayrin et. al., Nature 477,
73-77, Sept. 2011.

Decoherence due to finite
photon life time around
70 ms)

Detection efficiency 40%
Detection error rate 10%
Delay 4 sampling periods

The quantum filter takes into 0 100 120 a0 160
account cavity decoherence, \ \ Net ms)
measure imperfections and . e

delays (Bayesian inference).

Truncation to 9 photons
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Stabilizing "Schrédinger cats" (la) + il-a)) /2. 18 X 1psim

atom (controller) Cavity mode (system) Aim:
engineer atom-mode interaction,
to stabilize [-o)+|oy

—

Box of
atoms

DC field:
(controls atom frequency)

ENS experiment

Jaynes-Cumming Hamiltionian
H(t)/h=weala @ Iy + wq(t)ls ® 0,/2 + iQt) (" ® 0. —a @ 0y ) /2

with the open-loop control t — wq(t) combining dispersive wq # w. and
resonant wg = wc interactions.
Key issues: convergence of pii1 = K(pk) = MgpcMJ + MepME

18 A Sarlette et al: Stabilization of Nonclassical States of the Radiation Field
in a Cavity by Reservoir Engineering. Physical Review Letters, Volume 107,
Issue 1, 2011.
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Convergence of K iterates towards (oo + il-aso)) /V/2 . psLm

Iterations pi1 = K(pk) = MgpkM; + McpkM{ in the Kerr frame
— o ihKe Kerrgih® e g
p=e prere yields

ptiri KKerr( Kerr) Mgerrpierr(Mgerr)'l‘ 4 Mserrpzerr(Mserr)T.

with M = cos(4) cos(fn/2) + sin(5) Si"(\e/"‘ﬂ/z) al and
err in(0
MEe = sin(4) cos(On+1/2) — cos(§)aZ (\/"'N/Q).
Assume |u| < /2, 6 =0, 0, €]0,7[ for n > 0 and limp 00 0, = 7/2,
then (Zaki Leghtas, PhD thesis (2012))
> exists a unique common eigen-state [¢)X<™) of Mg and Mge:
Kerr — |,(/}Kerr> <wKerr| ﬁxed pOInt Of KKerr

> if, moreover n — 6, is increasing, limy, 4o pk™ = pker.

For well chosen experimental parameters, pKe™ & |0 ) (oo | and
—ir/a

. —_iTN2
h¥er ~ N2 /2. Since e 2N o) = ¢ 73 (Jotoo) + il-as)):

lim px =32 <|aoo> + i|—aoo>> ((aoo| + i(—aoo|>

ki—+00
#* %|0‘<x>><04<x>| + %|‘0‘00><‘0400|~
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) 19 M%; | PSL#

Reservoir/dissipation engineering and quantum controller (1

dissipation

Y,
H
o nt
Reservoir, ‘ ’
quantum controller sysm
Engineered
H snee H
res interaction

H = Hes + Hine + H

If P, Pres® |4)) (1| exponentially with rate 1/7 > 0 then ... ...
— 00

19See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique

des Houches", July 2011.
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Reservoir/dissipation engineering and quantum controller (2) K psim

dissipation

Reservoir M ystem
quantum controller S

H .Enginee.red H
res interaction

H = Hyes + Hine + H
...... P Pres & |4b) (ah| + Sp, if 7y < 1 then |6p| < 1
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Quantum dynamics with dissipation (decoherence) X 1psim
Gorini-Kossakowski-Sudarshan—Lindblad (GKSL) master equation:

d . 1
P —i[Ho + uH1, p] + Zy: (LupLi - E(Lll-up + leLV))

» Preservation of trace, hermiticity and positivity: p lies in the set of
Hermitian and trace-class operators that are non-negative and of trace
one.

» Invariance under unitary transformations.
A time-varying change of frame p — U] pU; with U, unitary.
The new density operator obeys to a similar master equation where
Ho -+ uH1 — Uf(Ho + uHo)U; + /U] (£U,) and L, — UL, U..

» "['_contraction" properties. Such master equations generate contraction
semi-groups for many distances (nuclear distance?, Hilbert metric on the
cone of non negative operators®?).

> If the Hermitian operator A satisfies the operator inequality

- t Lot t
ilHo + uHy, Al + > (LIAL, — S (LILA+ALIL,) ) <0
then V(p) = Tr(Ap) is a Lyapunov function when A > 0.

20D.F’etz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications
2:I'R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC.
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Bosonic code with cat-qubits AT |psLa

MINES PARIS

» Quantum error corrrection requires redundancy.

» Bosonic code: instead of encoding a logical qubit in N physical qubits
living in €?", encode a logical qubit in an harmonic oscillator living in
Fock space span{|0),|1),...,|n),...} ~ L*(R,C) of infinite dimension.

> Cat-qubit 22 |¢p;) € span{|a),|-a)} where |@) is the coherent state of
real amplitude a: aja) = aja) with a = (q + ip)/v/2 and [q,p] = i:

(g—av?2)?
.d R A
9) ~ (@) € LR, 0), alv) ~ a(a). ply) ~ —i5E(@). la) ~ <r>

» Stabilisation of cat-qubit via a single Lindblad dissipator L = a? — a?.
For any initial density operator p(0), the solution p(t) of

d 1
= LpLt — 5(LTL,JerUL)

converges exponentially towards a steady-state density operator since

% Tr (LTLp) <-2Tr (LTLp) ,  ker(L) = span{|a), |-a)}.

Any density operator with support in span{|a), |-a)} is a steady-state.

22\, Mirrahimi, Z. Leghtas, ..., M. Devoret: Dynamically protected cat-qubits: a
new paradigm for universal quantum computation. 2014, New Journal of Physics.
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Asymmetrically Threaded SQUID (ATS) stabilizing a cat-qubit 23

| PSL#

MINES PARIS

9

Buffer Cat-Qubit
| il |
EC,C
EaLNY Eup wbm Ecb )2 Era w ECa
\ —— L ]
Pext, 1 Pext, 2

®
(o)~ (o

v

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One
recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting ¢y, = (ext,1 + @ext,2) /2
and ¢, = (Pext,1 — Pext,2)/2. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator

is coupled to a transmon qubit

23R. Lescanne, M. Villiers, Th. Peronnin, ..

., M. Mirrahimi and Z. Leghtas:

Exponential suppression of bit-flips in a qubit encoded in an oscillator. 2020,

Nature Physics
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Master equations of the ATS super-conducting circuit K psim

Oscillator a with quantum controller based on a damped oscillator b:

9 p=ga[(a — a?)b' (@) ~a?)b, p] +rs(bpb' —(b'bp-+pb'b)/2)

with o € R such that o® = u/g, the drive amplitude u € R applied to mode b
and 1/kp > 0 the life-time of photon in mode b.

Any density operators 5 = p, @ |0)(0|, is a steady-state as soon as the support
of j, belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |o) and |-«) (range(p.) C span{|a), |-a)})

Usually &, > |g2|, mode b relaxes rapidly to vaccuum |0)(0|5, can be
eliminated adiabatically (singular perturbations, second order corrections) to
provides the slow evolution of mode a

d el (Lot t t 2
Pl (LpL (L Lp + pL L)) with L =a" — a”.

Convergence via the exponential Lyapunov function V(p) = Tr(L'Lp) **

24 . . .
For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A.

Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic
oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.
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Cat-qubit: exponential suppression of bit-flip for large «. X 1psim
Since (al-a) = e 2" 0
00) & Ja), [10) & |-a), |+ oc 2k ) oc lel—fe),
Photon loss as dominant error channel (dissipator a with 0 < k1 < 1):
d
P2 = Paz—a2(p) + K1Da(p)

with DL(p) = LpLT — I(LTLp + pLTL).
» if p(0) = |0.)(0c] or |1.)(1.|, p(t) converges to a statistical mixture of
quasi-classical states close to 1|a)(a| 4+ %|-a) (- in a time

202

Thit—flip ~
K1

since al0.) ~ «|0.) and a|1.) ~ —al,).
» if p(0) = |[+1){+.| or |[=1)(—L]|, p(t) converges also to the same

statistical mixture in a time
1

K1
since a|+.) = a| — L) and a|—() = o| + L).
Take « large to ignore bit-flip and to correct only the phase-flip with 1D
repetition code: important overhead reduction investigated by the startup
Alice&Bob and also by AWS. 6365

Tphasef flip ™~



Quantum feedback engineering for robust quantum information processing X 1psim

-

S
I 4 system S Y, decoherence
CLASSICALWORLD 1 Hilbert space?, '
Hilbert space

H=H;QH

I A quantum
= interaction
: ¥

classical

||
1
1
1

reference classical decoherence
input U 1 quantum Y
classical t controller
controller] Hilbert space .. quantum measurem'ent

\
classical N QUANTUMWORLD ¢

outputy S e mmm=

To protect quantum information stored in system S:

» fast stabilization and protection mainly achieved by quantum controllers
(autonomous feedback stabilizing decoherence-free sub-spaces);

» slow decoherence and perturbations, parameter estimation mainly tackled
by classical controllers and estimation algorithms (measurement-based
feedback and estimation "finishing the job")

Need of adapted mathematical and numerical methods for high-precision
dynamical modeling and control based on (stochastic) master equations.
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Quantic research group ENS/Inria/Mines/CNRS, June 2023 K psim
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