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Epithelial plasticity – a hallmark of metastasis

Tam and Weinberg, Nat Med 2013



Questions to ponder

• What is the physics underlying cell motility as 
needed for cancer cell dispersal?

• How do cells dynamically change their 
“phenotype” from one state to another? 

• Can understanding these issues help us better 
understand and treat cancer?



Questions to ponder

• What is the physics underlying cell motility as 
needed for cancer cell dispersal?
– Active Media, A New Branch of CMT

• How do cells change their “phenotype” from 
one state to another? 

• Can understanding these issues help us better 
understand and treat cancer?



The world of Active Media 



Single cell dynamics

Here cell is polarized into protruding and contracting regions
by an external chemical field – “chemotaxis”, a story unto itself 



Collective cell motility
• Cells have self-propulsion just like 

other living systems 
• Direction of the propulsive forces is 

determined by cell polarization 
• Here polarization is determined 

collectively by cell-cell interactions; 
cells “go with the flow”

• System can order even in 2d due to 
non-equilibrium effects; gave rise to 
the field of “active media”

• Seminal papers
Vicsek, Ben-Jacob et al PRL (1995)
Toner and Tu, PRE (1998)

Dictyostelium rotating aggregate
Rappel, Levine et al, PRL 1999



The making of a motility model

The physics of eukaryotic chemotaxis 8
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Figure 3. A. A chemotaxing Dictyostelium cell moving to the right and showing
an accumulation of myosin at its back and actin enrichment at its front. B.
Schematic illustration of the LEGI: a signal S activates an inhibitor I and an
activator A that act on a reporter molecule R. C. The response of the LEGI
model following the establishment of a gradient at t=0, followed by a reversal at
t=100 s. Parameters, in arbitrary units, were chosen as k

−a = 2, ka = 6, k
−i = 1,

ki = 1, k
−r = 0.1, kr = 0.1, D = 20, and p = 0.1. D. The amplification of the

BI model as a function of the gradient steepness p for the same parameter set as
in [35]. E. The steady state response of a Turing model, showing the level of u
along the cell membrane in a gradient that is pointing to the right. F. The steady
state response of a WP model, showing the level of u along the cell membrane in
a gradient that is pointing to the right.

the diffuse cytosolic component. Assuming that the cytosolic concentration of all
components is uniform, the core of the Ras adaptation model can then be written as:

d[GEF ]
dt = kGEF [R] − k

−GEF [GEF ]
d[GAP ]

dt = kGAP [R] − k
−GAP [GAP ]

d[RasGT P ]
dt

= kRas[GEF ](Rastot − [RasGTP ]) − k
−Ras[GAP ][RasGTP ]

(5)

where R represents the input from the bound receptors.
We should also point out that the response of the LEGI model to sudden stimulus

changes can also be scale invariant. A response is said to be scale invariant if its
dynamics depends solely on the ratio between the pre- and post-stimulus level. In
other words, scale invariance implies that a stimulus change from S0 to S1 gives the
same response as a stimulus change from pS0 to pS1. Such a “fold-change detection”
has been investigated theoretically [43, 44] and has been demonstrated experimentally
in E. coli chemotaxis [45]. In a more recent study, general necessary and sufficient rules
for scale invariance were obtained for three-node network topologies [46]. Furthermore,
this study investigated whether the topology found in Ref. [30] (and shown in Fig.
3B) exhibits scale invariance. Examining the core of the adaptation model (Eqns. 4)
reveals that it is not perfectly scale invariant: changing the input R → pR in the core

M. Basan et al PNAS (2013)
New version; Zimmerman PNAS (2016)
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Lin et al, Nat Comm (2014) – another guidance mechanism! 

S(r); as a minimal assumption, we take the CIL strength to be proportional to S(r). Thus,66

the cells at higher values of S are more polarized, and the cluster moves up the gradient of S67

(Fig. 1). Consistent with our model, [3] observe that exterior protrusions in neural crest clusters68

are stabilized by the chemoattractant Sdf1. We also note that recent experiments on breast cancer69

cells also support the idea that there is an interaction between chemoattractants and CIL, though70

in a more complicated way than we model here [20].71

Single-cell dynamics. We model single cell dynamics using a stochastic particle model that,72

in the absence of other cells, creates an unbiased persistent random walk even in the presence of a73

chemoattractant gradient.74

Mathematical description of model75

We use a two-dimensional stochastic particle model to describe cells exposed to a chemical76

gradient S(r). We describe each cell i with a position ri and a polarity pi. The cell polarity77

indicates its direction and propulsion strength: an isolated cell with polarity pi will travel with78

velocity pi. We will assume that physical forces like cell-cell adhesion and exclusion change the79

cell’s velocity, while chemically-induced e↵ects like CIL alter its biochemical polarity pi; this aspect80

of our model could easily be generalized. Our model is:81

@tr
i = pi +

X

j 6=i

Fij (1)

@tp
i = �1

⌧
pi + �⇠i(t) + �i

X

j⇠i

r̂ij (2)

where Fij are the intercellular forces of cell-cell adhesion and volume exclusion (see Methods), and82

⇠i(t) are Gaussian Langevin noises, h⇠iµ(t)⇠
j
⌫(t0)i = 2�µ⌫�ij�(t � t0), where the Greek indices µ, ⌫83

run over the dimensions x, y. The first two terms on the right of Eq. 2 are a standard Ornstein-84

Uhlenbeck model [21, 22]: pi relaxes to zero with a timescale ⌧ , but is driven away from zero by a85

fluctuating noise ⇠(t). The last term on the right of Eq. 2 models contact inhibition of locomotion86

(CIL): the cell’s polarity is biased away from nearby cells and toward the direction qi =
P

j⇠i r̂
ij ,87

where r̂ij = (ri�rj)/|ri�rj | is the unit vector pointing from cell j to cell i and the sum over j ⇠ i88

indicates the sum over the neighbors of i (those cells close enough to i that Fij 6= 0; see Methods).89

For cells along the cluster edge, the direction of the CIL bias (qi) points outward from the90

cluster, but for interior cells qi is typically smaller or zero (Fig. 1a). Cells around the edge are91
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Theory of epithelial 
spreading

tissue center are in a jammed state. An increase in cell speed towards the tissue edge has been measured
experimentally in [37] (but cell speed never drops to zero there). The relationship between cell speed
and cell density (Fig. 3 G) agrees well with the experimental data in [32].
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Figure 3: Simulation of a spreading cell colony. N = 500 cells were seeded in the center of the
computational domain at t = 0 and allowed to divide and migrate outward. (A) Snapshot of the x-
component of the traction stress at t = 1400, Rtrac = 2.0. (B) Average normal stress (�max + �min)/2
calculated with the Hardy method [29] at t = 1400, Rh = 2.0. (C ) Average cell density as a function
of x-coordinate. (D) Average tension in x-direction ��xx, calculated by integrating average traction
stresses Tx. (E ) Average speed |vm| as a function of x-coordinate. In (C-E ), averages are taken along y
within the region indicated in panel (A). Colors indicate di↵erent time points. (F ) Average tension as
a function of cell density. (G) Average speed as a function of cell density. Colors indicate data points
from di↵erent time frames. Parameters are as in Table 1. All units are simulation units. See also movie
S2.

What is the feedback mechanism leading to a close coupling between cell density and intercellular
tension? Contact inhibition aligns the propulsion forces of cells at the tissue edge away from the bulk,
such that those cells “escape”. Consequently, they reach a distance to their neighbors close to Rcc,
above the distance for maximal adhesion, and experience week intercellular forces. At the same time,
they make room for their followers, which also exert large propulsion forces since the number of neighbors
is low and CI is weak. The ability to exert large propulsion forces on the other hand increases the cell
length, leading to a lower cell density. As the number of neighbors increases, CI decreases forces on
the substrate. Therefore, cells cannot escape, get closer to their neighbors, and the cell-cell adhesion
force tends to assume its maximum value, making it even less likely for cells to move away from their

5

tissue center are in a jammed state. An increase in cell speed towards the tissue edge has been measured
experimentally in [37] (but cell speed never drops to zero there). The relationship between cell speed
and cell density (Fig. 3 G) agrees well with the experimental data in [32].

0.0

0.2

0.4

0.6

0.8

 0  100  200  300

A
ve

ra
g

e
 c

e
ll 

d
e

n
si

ty

x

t = 200, N = 1112
t = 400, N = 2468
t = 600, N = 4667
t = 800, N = 7744
t = 1000, N = 11494
t = 1200, N = 16217
t = 1400, N = 22003

-0.8

-0.4

 0

 0.4

 0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

0.0

0.2

0.4

0.6

 0  100  200  300

A
ve

ra
g

e
 in

te
rc

e
llu

la
r 

te
n

si
o

n
 -

σ
xx

x

0.00

0.02

0.04

0.06

0.08

0.10

 0  100  200  300

A
ve

ra
g

e
 s

p
e

e
d

 |
v m

|

x

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  0.2  0.4  0.6  0.8

A
ve

ra
g
e
 s

p
e
e
d

Cell density

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8
A

ve
ra

g
e
 in

te
rc

e
llu

la
r 

te
n
si

o
n

Cell density

x

y

A B

C

A
ve

ra
g
e
 n

o
rm

a
l i

n
te

rc
e
llu

la
r 

st
re

ss

D E

GF

x−
co

m
p
o
n
e
n
t 
o
f 
tr

a
ct

io
n
 s

tr
e
ss

Figure 3: Simulation of a spreading cell colony. N = 500 cells were seeded in the center of the
computational domain at t = 0 and allowed to divide and migrate outward. (A) Snapshot of the x-
component of the traction stress at t = 1400, Rtrac = 2.0. (B) Average normal stress (�max + �min)/2
calculated with the Hardy method [29] at t = 1400, Rh = 2.0. (C ) Average cell density as a function
of x-coordinate. (D) Average tension in x-direction ��xx, calculated by integrating average traction
stresses Tx. (E ) Average speed |vm| as a function of x-coordinate. In (C-E ), averages are taken along y
within the region indicated in panel (A). Colors indicate di↵erent time points. (F ) Average tension as
a function of cell density. (G) Average speed as a function of cell density. Colors indicate data points
from di↵erent time frames. Parameters are as in Table 1. All units are simulation units. See also movie
S2.

What is the feedback mechanism leading to a close coupling between cell density and intercellular
tension? Contact inhibition aligns the propulsion forces of cells at the tissue edge away from the bulk,
such that those cells “escape”. Consequently, they reach a distance to their neighbors close to Rcc,
above the distance for maximal adhesion, and experience week intercellular forces. At the same time,
they make room for their followers, which also exert large propulsion forces since the number of neighbors
is low and CI is weak. The ability to exert large propulsion forces on the other hand increases the cell
length, leading to a lower cell density. As the number of neighbors increases, CI decreases forces on
the substrate. Therefore, cells cannot escape, get closer to their neighbors, and the cell-cell adhesion
force tends to assume its maximum value, making it even less likely for cells to move away from their

5



Tissues under Tension (Trepat et al)



Spreading 
around an 
obstacle

compare to 
Trepat

experiment



Returning to tumors

• Cancer biologists have suggested that cells at 
the margin become motile, involving a 
reduction in cell-adhesion and remodeling of 
their internal cytoskeleton

• What does this type of active media motility 
model predict for the edge of a tumor when 
the cells have become motile?



Role of cadherin-based adhesion

Simulation of motility, with different proteomes of M vs E/M states
Based on Basan, et al  PNAS (2013); Zimmerman et al, PNAS (2016) 



Under some circumstances, collective motion can lead to fingers 
and streaming – Yang and Levine, Physical Biology, (2020)

• Linear instability of the 
moving front due to curvature 
dependence of leader cell 
emergence

• May be other mechanisms 
such as growth or 
orientational ordering but 
these have not yet been 
shown to lead to stable 
fingers



Lessons so far

• Cells are self-propelled objects that can 
cooperatively organize their motion

• One can expect that some cells will move 
individually, other as collective objects

• This transition is controlled by biophysical 
parameters such as cell-cell adhesion versus 
the strength of self-propulsion forces



Questions to ponder

• What is the physics underlying cell motility as 
needed for cancer cell dispersal?

• How do cells change their “phenotype” from 
one state to another? 
– Dynamical systems and bifurcation theory

• Can understanding these issues help us better 
understand and treat cancer?



Focus on change in microenvironment

Melanoma example
Golan et al, Mol Cell (2015)

Phenotypic transition is not 
caused by additional mutations

Cells become metastatic 
competent by being exposed to a 
new chemical environment; 
seems to be irreversible

Notch pathway plays the critical 
role in this transition



The World of Networks



simplified EMT circuit diagram

Albert group, 2015



The core EMT genetic circuit

• Each arrow is a quantitative relationship between the input and output levels
• This has been done for many transcription circuits, e.g. in microorganisms
• We needed to develop a new method for translation regulation



Biology since I went to High School

Levine, Erel, Eshel Ben Jacob, and Herbert Levine. "Target-specific and global effectors 
in gene regulation by MicroRNA." Biophysical journal 93.11 (2007): L52-L54
Loinger, A., Shemla, Y., Simon, I., Margalit, H. and Biham, O., 2012. Competition 
between small RNAs: a quantitative view. Biophysical journal, 102(8), pp.1712-1721.



Generalized equations

µ200 = gµ200H
S (Z,λZ ,µ200 )H

S (S,λS,µ200 )−mZYµ (µ200 )− kµ200µ200
mZ = gmZ

H S (Z,λZ ,mZ
)HS (S,λS,mZ

)−mZYm (µ200 )− kmZ
mZ

Z = gZmZL(µ200 )− kZZ

These sums define
• L = translation suppression
• Yμ = degradation increase
• Ym= decay increase

• H – standard Hill form for 
transcription regulation



Coexistence of multiple phenotypes

• Note that at intermediate EMT driving, population with this 
network is expected to be multimodal

• Other cell lines with other modulating factors (e.g. GRHL2) 
can create unimodal hybrid states

 



With Hanash group, MD Anderson Cancer Center 

What kind of cells move collectively

• Three types identified; E, 
M and E/M

• Correlates with motility
• Can be de-stabilized by 

knockdown of predicted 
stability factors



Phenotypic stability factors

• Form of coupling to baseline 
circuit can predict effect of 
specific perturbations

• Key is increased frustration

With Hanash, MDACC; Pienta (JHU) – (Oncotarget, 2016)



Results are robust upon going to 
more complete EMT circuit



Most recent ideas
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• Physiological networks are designed to have small number of 
”phenotypes” with large basins of attraction

• Hybrid states specifically require expression of phenotypic stability factors. 
i.e. added frustration, for stabilization

• See Tripathi, Kessler and Levine, PRL (2020)



From sequencing of head and neck tumors
classification based on scRna-seq

Sidharth V. Puram, Anuraag S. Parikh & Itay Tirosh (2018) Single cell 
RNA-seq highlights a role for a partial EMT in head and neck cancer, 
Molecular & Cellular Oncology, based on Cell paper (2017)



Collective motility leads to clusters 

414 P Bronsert et al

(a)

PDAC

CRC

CRC/LM

LAC

IDBC

(b) (c)

Figure 2. Legend on the next page.

estimated the proportion of tumour buds that did not con-
tain cells with altered morphology or ECad expression
(non-altered tumour buds). The confidence interval was
calculated as only 1.3–2.7% in meta-analysis across
tumours (Figure 4d).

ZEB1 expression and reduced E-cadherin expression
with shift to cytoplasmic staining occur in the same
cells
To confirm that ZEB1 expression and ECad alterations
occur in the same cells, we performed ZEB1+ECad

Copyright © 2014 Pathological Society of Great Britain and Ireland. J Pathol 2014; 234: 410–422
Published by John Wiley & Sons, Ltd. www.pathsoc.org.uk www.thejournalofpathology.com

Main tumor = red, multicellular buds = green, from Bronsert et J. Path (2014))

• Clusters are typically 
composed of several cells

• Cells in cluster express 
ZEB1, reduced membrane 
resident E-cadherin

• Hypothesized to be 
partial EMT phenotype

Yu et al. Science 2013



At this point in the story …

• Cells can undergo motility transformation at the edge 
of the tumor

• This can create individually moving cells (full EMT) or 
collectively moving cells (partial EMT)

• Evidence that partial EMT is common and leads to 
the formation of clusters of metastasizing cells



Questions to ponder

• What is the physics underlying cell motility as 
needed for cancer cell dispersal?

• How do cells change their “phenotype” from one 
state to another? 

• Can understanding these issues help us better 
understand and treat cancer?
– Key insight relates to “tumor initiation potential”



The World of Cancer Research



Clusters of CTCs co-express epithelial 
and mesenchymal features

34

Yu et al. Science 2013

Hybrid Clusters Seem to be More Metastatic

Aceto et al. Cell 2014
Ewald group, PNAS 2016

Clusters of CTCs are 
associated with poor 
prognosis, have more 

metastatic potential and are 
more apoptosis-resistant



More recent evidence
Identification of the tumour transition states occurring during EMT  
Pastushenko et al, Nature 556, 463 (2018) – GEM model of SCC

"It was particularly exciting to observe that, in contrast to what one would expect, 
the tumor cells in the early stage of EMT with intermediate epithelial and 
mesenchymal hybrid phenotype, rather that tumor cells that underwent complete 
EMT, are the most metastatic populations," comments Ievgenia Pastushenko, the 
first author of the study.



EMT	coupling	to	“stemness”;
the	breakdown	of	modularity

• The	E/M	state	can	be	more	
likely	to	become	stem-like	
than	either	the	E	or	M	states

• This	is	strongly	dependent	
on	state	of	the	network

• Can	evaluate	statistical	
correlation	between	
different	states

Jolly	et	al,	J.	Roy	Soc Interface	(2014),	
Oncotarget (2015);		with	Mani	grop,	
MDACC;	Pienta group	at	JHU



Why are hybrid cell clusters more metastaic?    

(Ombrato and Malanci Crit Rev Onco 2014)

“….growing evidence that a 
cell that has only undergone 
partial EMT is best 
positioned to acquire stem 
cell properties.” 
Pattabiraman and Weinberg 2016

Hybrid cells  can 
initiate more tumors 
in vitro

Goldman et al.
Nat Comm 2015

Coupling the modules of EMT and 
stemness: A tunable ‘stemness
window’ Jolly et al,  Oncotarget
(2015); JR Interface (2014)



Results keep on coming
Acquisition of a hybrid E/M state is essential for tumorigenicity of 
basal breast cancer cells
Cornelia Kröger, Alexander Afeyan, … and R. A. Weinberg
PNAS published ahead of print March 25, 2019 
https://doi.org/10.1073/pnas.1812876116

Showed that hybrid subpopulation of HMLER cells the most 
tumorigenic and this cannot be matched by mixing E and M cells;  
plasticity at the single cell level is absolutely the key.

New paradigm: Treatments must target hybrid, plastic cells in order to 
prevent metastasis. This is hard because these cells are naturally 
resistant to many different types of treatment.

https://doi.org/10.1073/pnas.1812876116


The take-home message

• Dynamical network models predict new types of cell 
phenotypes, hybrid E/M states

• These cells move collectively in vitro and in vivo lead 
to metastasizing clusters, as seen in pathology 
images and in the bloodstream

• These clusters can be a major contributor to the 
growth of new secondary tumors and hence are a 
priority for proposed treatments



Summary

• “Many worlds” interpretation of how to make progress 
in this type of problem
– Soft-matter physics + information processing via networks 

+ cancer biology

• This talk: role of hybrid phenotypes in getting the right 
combination of properties to effectively metastasize

• Have we made progress? 
– At a scientific level, yes
– At a clinical level, ???
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