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Axioms of Quantum Dynamics

(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.
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(1) Unitary evolution (Schrödinger):
i d
dt
|ψ〉 = H|ψ〉 , i d

dt
ρ = [H, ρ] .

Continuous, Reversible, Deterministic.
Pure state evolves to pure state.

(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.

Born rule and state collapse are separate aspects.
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(2) Projective measurement (von Neumann):

|ψ〉 −→ Pi |ψ〉/|Pi |ψ〉|, Pi = P†
i , PiPj = Piδij ,

∑

i Pi = I .
Discontinuous, Irreversible, Probabilistic choice of “i”.
Pure state evolves to pure state. Consistent on repetition.

{Pi} is fixed by the measurement apparatus eigenstates. But there is
no prediction for which “i” will occur in a particular experimental run.

This is the crux of “the measurement problem”.

Born rule and state collapse are separate aspects.

Instead, with Born rule and ensemble interpretation,
prob(i) = 〈ψ|Pi |ψ〉 = Tr(Piρ) , ρ −→

∑

i PiρPi .
Pure state evolves to mixed state. Predicted expectation values are
averages over many experimental runs with the same initial state.
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.
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• Can all measurements be made continuous? What about decays?
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Weak Measurements

Information about the measured observable is extracted from the system
at a slow rate (e.g. by weak coupling). Stretching out the time scale can
allow one to monitor collapse of the system to a measurement eigenstate.

Note: A measurement interaction is the one where the apparatus does not,
for whatever reasons, remain in a superposition of pointer states.

New questions:
• Can all measurements be made continuous? What about decays?
• What is the local evolution rule during measurement?
• What is the state if the measurement is left incomplete?
• How should multipartite measurements be described?

The answers are important for increasing accuracy of quantum control and
feedback. Knowledge of what happens in a particular experimental run
(and not just the ensemble average) can improve efficiency and stability.

The projective measurement axiom needs to be replaced by a different
continuous stochastic dynamics.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum trajectories are continuous, stochastic and tractable.
(b) Quantum jumps are discontinuous, probabilistic and irreversible.
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Unraveling of quantum collapse:
(a) Quantum trajectories are continuous, stochastic and tractable.
(b) Quantum jumps are discontinuous, probabilistic and irreversible.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.
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Unraveling of quantum collapse:
(a) Quantum trajectories are continuous, stochastic and tractable.
(b) Quantum jumps are discontinuous, probabilistic and irreversible.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.

A. Patel (CHEP, IISc) Understanding Born Rule 21 Jan 2025, ICTS-TIFR 4 / 27



Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum trajectories are continuous, stochastic and tractable.
(b) Quantum jumps are discontinuous, probabilistic and irreversible.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.

• Lack of simultaneity in special relativity must not conflict with
probabilities of measurement outcomes in multipartite measurements.
⇒ The Born rule does not conflict with special relativity. It should be a
constant of evolution during measurement, when averaged over the noise.
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Continuous Stochastic Measurement

Unraveling of quantum collapse:
(a) Quantum trajectories are continuous, stochastic and tractable.
(b) Quantum jumps are discontinuous, probabilistic and irreversible.

An ensemble of quantum trajectories can be constructed by adding
random noise to a deterministic evolution. But properties of quantum
measurements impose strong constraints.

• To ensure repeatability of measurement outcomes, the measurement
eigenstates need to be fixed points of the evolution. Both attraction and
noise have to vanish at the fixed points.
⇒ The evolution dynamics must be nonlinear or non-unitary.

• Lack of simultaneity in special relativity must not conflict with
probabilities of measurement outcomes in multipartite measurements.
⇒ The Born rule does not conflict with special relativity. It should be a
constant of evolution during measurement, when averaged over the noise.

Such a dynamical process exists! Gisin (1984)
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Salient Features

A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.
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unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.
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A precise ratio of evolution towards the measurement eigenstates and
unbiased white noise is needed to reproduce the Born rule as a constant
of evolution.

This is reminiscent of the “fluctuation-dissipation theorem” that connects diffusion
and viscous damping, implying a common origin for both in molecular scattering.

The measurement dynamics is completely local between the system and
the apparatus, independent of any other environmental degrees of freedom.

This is also an indication that the deterministic and the stochastic contributions to
the evolution arise from the same underlying process. The rest of the environment can
influence the system only via the apparatus.

Technological advances allow us to monitor the
quantum evolution during weak measurements.
That can test the validity of the stochastic
measurement formalism, and then help us figure
out what may lie beyond.

Measurement ≡ An effective process of a more fundamental theory.
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Quantum Geodesic Trajectory

Leave out i [ρ,H] from the evolution description for simplicity.
Unitary interpolation between ρ and Pi gives the geodesic evolution:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.
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ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.

• Projective measurement, ρ∗ = Pi , is the fixed point of this evolution.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2} and
∑

i Pi = I imply that
partial trace over the unobserved degrees of freedom (and projections)
gives the same equation for the reduced density matrix for the system.
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Quantum Geodesic Trajectory

Leave out i [ρ,H] from the evolution description for simplicity.
Unitary interpolation between ρ and Pi gives the geodesic evolution:

d
dt
ρ = g [ρPi + Piρ− 2ρ Tr(Piρ)] .

g is the system-apparatus coupling, and t is the “measurement time”.

• This nonlinear evolution preserves ρ2 = ρ (pure states), and Tr(ρ) = 1.

• Projective measurement, ρ∗ = Pi , is the fixed point of this evolution.

• In a bipartite setting, {Pi} = {Pi1 ⊗ Pi2} and
∑

i Pi = I imply that
partial trace over the unobserved degrees of freedom (and projections)
gives the same equation for the reduced density matrix for the system.

• For pure states, the equation can be written as:
d
dt
ρ = −2gL[ρ]Pi

This structure (involving the Lindblad operator) hints at an action-reaction
relation between the dynamics of the system and the apparatus.
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Ensemble of Quantum Geodesic Trajectories

The pointer basis {Pi} is fixed by the system-apparatus interaction.
A criterion is needed to determine which of the many fixed points Pi

will be approached in a particular experimental run.

Assign time-dependent real weights wi (t) to the evolution trajectory for Pi .
d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .
Evolution still preserves ρ2 = ρ. Every ρ = Pi becomes a fixed point.
wi depend only on the observed degrees of freedom (not the environment).

The sum over i has to be done for the density matrix, and not for the wavefunction.
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A criterion is needed to determine which of the many fixed points Pi

will be approached in a particular experimental run.

Assign time-dependent real weights wi (t) to the evolution trajectory for Pi .
d
dt
ρ =

∑

i wi g [ρPi + Piρ− 2ρTr(Piρ)] ,
∑

i wi = 1 .
Evolution still preserves ρ2 = ρ. Every ρ = Pi becomes a fixed point.
wi depend only on the observed degrees of freedom (not the environment).

The sum over i has to be done for the density matrix, and not for the wavefunction.

The weighted trajectory evolution is:
d
dt
(PjρPk) = PjρPk g [wj + wk − 2

∑

i wiTr(Piρ)] .

Diagonal projections of ρ fully determine the evolution:
2

PjρPk

d
dt
(PjρPk) =

1
PjρPj

d
dt
(PjρPj) +

1
PkρPk

d
dt
(PkρPk)

The evolution is totally decoupled from the decoherence process.
There are n − 1 independent variables (diagonal projections Tr(Piρ)).
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Choice of Trajectory Weights

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.
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Choice of Trajectory Weights

The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.

Naive guess (instantaneous Born rule): wj = w IB
j ≡ Tr(ρ(t)Pj)

The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.
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The diagonal projections evolve according to:
d
dt
dj = 2g dj(wj − wav) , wav ≡

∑

i widi .
Diagonal elements with wj > wav grow; those with wj < wav decay.

Naive guess (instantaneous Born rule): wj = w IB
j ≡ Tr(ρ(t)Pj)

The evolution converges towards the subspace specified by the dominant
diagonal projections of ρ(t = 0), i.e. the closest fixed points.
Though this result is consistent on repetition, it conflicts with experiments,
because it is (i) deterministic and (ii) does not obey the Born rule.

A way out: Instead of heading towards the nearest fixed point,
the trajectories can be made to wander around the state space and
explore other fixed points, by adding noise to the geodesic dynamics.
Properties of such a noise have to be found, while retaining

∑

i wi = 1.
The type of the noise is not universal. It depends on the choice of the apparatus.
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Quantum Diffusion: Single Qubit Measurement

The evolution equations simplify considerably for a qubit.
Let |0〉 and |1〉 be the measurement eigenstates.

d
dt
ρ00 = 2g (w0 − w1)ρ00ρ11 ,

ρ01(t) = ρ01(0)
[

ρ00(t)ρ11(t)
ρ00(0)ρ11(0)

]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.
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]1/2
.

With ρ11(t) = 1− ρ00(t) and w1(t) = 1− w0(t), only one independent
variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .
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variable describes evolution of the system.

Evolution obeys Langevin dynamics, when unbiased white noise with
spectral density Sξ is added to w IB

i . The trajectory weights become:
w0 − w1 = ρ00 − ρ11 +

√

Sξ ξ .
〈〈ξ(t)〉〉 = 0 , 〈〈ξ(t)ξ(t ′)〉〉 = δ(t − t ′) .

This is a stochastic differential process on the interval [0, 1].
The fixed points at ρ00 = 0, 1 are perfectly absorbing boundaries.
A quantum trajectory would zig-zag through the interval
before ending at one of the two boundary points.
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Individual quantum evolution trajectories for the initial state ρ00 = 0.5, with measurement
eigenstates ρ00 = 0, 1, and in presence of measurement noise satisfying gSξ = 1.
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .
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Single Qubit Measurement (contd.)

Let P(x) be the probability that the initial state with ρ00 = x evolves to
the fixed point at ρ00 = 1. Then by symmetry,

P(0) = 0, P(0.5) = 0.5, P(1) = 1 .
No noise : Sξ = 0 =⇒ P(x) = θ(x − 0.5) .
Only noise : Sξ → ∞ =⇒ P(x) = 0.5 .

It is instructive to convert the stochastic evolution equation from the
differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.
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differential Stratonovich form to the Itô form that specifies forward
evolutionary increments:
dρ00 = 2g ρ00ρ11(ρ00 − ρ11)(1− gSξ)dt + 2g

√

Sξ ρ00ρ11 dW ,
〈〈dW (t)〉〉 = 0 , 〈〈(dW (t))2〉〉 = dt .

The Wiener increment, dW = ξ dt, can be modeled as a random walk.

The first term produces drift in the evolution, while the second gives rise
to diffusion. The evolution with no drift, i.e. the pure Wiener process with
gSξ = 1, is rather special:

〈〈dρ00〉〉 = 0 ⇐⇒ Born rule is a constant of evolution.
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Ensemble Evolution Dynamics

During measurement, the probability distribution p(ρ00, t) of the set of
quantum trajectories evolves according to the Fokker-Planck equation:

∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .
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∂p(ρ00,t)
∂t = 2g ∂2

∂2ρ00

(

ρ200(1− ρ00)
2p(ρ00, t)

)

, with gSξ = 1 .

Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
non-interfering components with areas x and 1− x , monotonically
travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.
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The precise nature of this distribution is experimentally testable.
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Its exact solution corresponding to initial p(ρ00, 0) = δ(x) has two
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travelling to the boundaries at ρ00 = 1 and 0 respectively.

Let tanh(z) = ρ00 − ρ11 map ρ00 ∈ [0, 1] to z ∈ (−∞,∞). Then the two
components are Gaussians centred at z± = z0 ± gt, z0 = tanh−1(2x − 1):

p(z , t) = 1√
2πgt

(

x exp
[

− (z−z+)2

2gt

]

+ (1− x) exp
[

− (z−z−)2

2gt

]

)

.

The precise nature of this distribution is experimentally testable.

Parametric freedom: With the Born rule as a constant of evolution,
g can be time-dependent, and gt is replaced by τ ≡

∫ t

0 g(t ′)dt ′.
The white noise distribution remains unspecified beyond the mean and the
variance. Suitable choice can be made, e.g. Gaussian noise or Z2 noise.
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Distribution of the quantum measurement trajectories for quantum diffusion evolution of a
qubit. The initial state is ρ00(τ = 0) = 0.6, and the curves are labeled by the values of the
dimensionless evolution parameter τ ≡

∫ t

0 g(t′)dt′. The narrow initial distribution splits into two
non-interfering components that travel to the measurement eigenstates at ρ00 = 1, 0 as τ → ∞.

For τ > 10, 99% of the probability is within 1% of the two fixed points.
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Experimental Setup

The system is a superconducting 3D transmon qubit (nonlinear oscillator).
It consists of two Josephson junctions in a closed loop (SQUID) shunted by a capacitor.

It possesses good coherence and is insensitive to charge noise.
Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.
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Decoherence time ∼ 50− 100µs. Individual operation time: fraction of µs.

It is kept in a microwave resonator cavity dispersively coupled to it.
The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.
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The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

One-way isolator and circulator help extract the scattered wave.
Interference of the amplified wave with the reference wave yields
the quantum state signal, as a scattering phase-shift.

Both the cavity and the amplifier are bandwidth limited, with high frequencies suppressed.
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The cavity frequency depends on the qubit state, whether |0〉 or |1〉.

The cavity is probed by a microwave pulse. The scattered wave is
amplified by a near-quantum-limited Josephson parametric amplifier.

One quadrature of the signal is extracted with high gain and high accuracy.

One-way isolator and circulator help extract the scattered wave.
Interference of the amplified wave with the reference wave yields
the quantum state signal, as a scattering phase-shift.

Both the cavity and the amplifier are bandwidth limited, with high frequencies suppressed.

With a phase-sensitive amplifier, the scattering phase-shifts are Gaussians
peaked at the two eigenvalues. Weak measurements result when the
probe magnitude is small, making the two Gaussians closely overlap.
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Weak Measurement Stern-Gerlach Signal
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Measurement current distributions for the qubit eigenstates after evolution for 0.5µs, for an
ensemble of 106 trajectories. They are Gaussians to high accuracy. Weak measurement needs
|I0 − I1| ≪ σ. The system-apparatus coupling increases mostly by an increase in ∆I without
much change in σ. The taller curves (a) correspond to a weaker system-apparatus coupling than
the shorter curves (b). Gaussian fits give the parameters: (a) I0 = 128.443(2), I1 = 127.856(2),
σ = 5.56(3), and (b) I0 = 128.919(2), I1 = 127.286(2), σ = 5.93(2).
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Experimental Results

A quantum state initially polarised in XZ-plane is measured in the Z-basis.
Even though the weak measurement extracts only partial information, its
back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.
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Even though the weak measurement extracts only partial information, its
back-action on the qubit is completely known, and the qubit evolution
from a known starting state can be precisely constructed.

The quantum state is infered from the integrated signal measurement,
according to the Bayesian formalism (I0, I1, σ are known):

ρ00(t+∆t)
ρ11(t+∆t) =

ρ00(t)
ρ11(t)

exp[−(Im(∆t)−I0)
2/2σ2]

exp[−(Im(∆t)−I1)2/2σ2]
, Im(∆t) = 1

∆t

∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .
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∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .

The full quantum trajectories are constructed by combining these two
evolutions in a symmetric Trotter-type scheme, which has error O((∆t)2).
Trajectories are verified by quantum state tomography (i.e. strong measurement at time t).
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∆t

∫ ∆t

0 I (t ′) dt ′ .

Simultaneous relaxation of the excited state is accounted for, by
ρ11(t +∆t) = ρ11(t) exp(−∆t/T1) .

The full quantum trajectories are constructed by combining these two
evolutions in a symmetric Trotter-type scheme, which has error O((∆t)2).
Trajectories are verified by quantum state tomography (i.e. strong measurement at time t).

Quantum diffusion is not monotonic in time (unlike spontaneous collapse).
Quantum trajectories stochastically diffuse along the meridians of the
Bloch sphere (the phase of ρ01 remains unchanged).
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Experimental Results (contd.)

Relaxation time T1 is determined from the decay rate of the ensemble
averaged current, after preparing the qubit in the excited state.

The experimentally observed trajectory distribution fits the quantum
diffusion prediction very well, in terms of the single dimensionless
evolution parameter τ ≡

∫ t

0 g(t ′)dt ′, and excited state relaxation T1.
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The experimentally observed trajectory distribution fits the quantum
diffusion prediction very well, in terms of the single dimensionless
evolution parameter τ ≡

∫ t

0 g(t ′)dt ′, and excited state relaxation T1.

• With a large ensemble of trajectories, systematic errors dominate over statistical ones.
• For τ < 2, best fits have χ2 < few hundred, for 100 data points and one parameter.
• τ is independent of the initial state. It is almost linear in t, with a slower initial build-up.
• The mismatch between theory and experiment grows with increasing τ , quite likely due to
magnification of small initial uncertainties due to the iterative evolution.
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Relaxation time T1 is determined from the decay rate of the ensemble
averaged current, after preparing the qubit in the excited state.

The experimentally observed trajectory distribution fits the quantum
diffusion prediction very well, in terms of the single dimensionless
evolution parameter τ ≡

∫ t

0 g(t ′)dt ′, and excited state relaxation T1.

• With a large ensemble of trajectories, systematic errors dominate over statistical ones.
• For τ < 2, best fits have χ2 < few hundred, for 100 data points and one parameter.
• τ is independent of the initial state. It is almost linear in t, with a slower initial build-up.
• The mismatch between theory and experiment grows with increasing τ , quite likely due to
magnification of small initial uncertainties due to the iterative evolution.

Systematic errors:
• Uncertainty in the initial state ρ00(0).
• Uncertainties in I0, I1.
◦ Leftover heralding photons, after the initial state preparation pulse.
◦ Thermal mixing with the higher excited transmon states.
Detector inefficiency is absorbed in the value of τ . (Formally, g∆t = (∆I )2/(4σ2).)
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τ = 0.105, χ2 = 17.7 τ = 0.315, χ2 = 17.6 τ = 0.574, χ2 = 17.1

τ = 0.849, χ2 = 18.4 τ = 1.35, χ2 = 23.2 τ = 2.16, χ2 = 27.9

Time integrated coupling: τ ≈ 4.7× 104t − 0.1

Evolution of the quantum trajectory distribution for weak Z-measurement of a transmon qubit
initially polarised along the X-axis. The histograms (red) represent the experimental data for an
ensemble of 4× 105 trajectories. The curves (blue) are the best fits to the quantum diffusion
model distribution, with the single dimensionless evolution parameter τ ∈ [0, 2.2].
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Evolution of the quantum trajectory distribution for weak Z-measurement of a transmon with
the initial state ρ00 = 0.305(3). The histograms with bin width 0.01 (red) represent the
experimental data for an ensemble of 106 trajectories. The trajectory parameters (with errors)
were T1 = 45(4)µs, ∆t = 0.5µs, I0 = 128.44(2), I1 = 127.68(3), σ = 5.50(1). The blue curves
are the best fits to the quantum diffusion model including relaxation, with the evolution
parameter τ ∈ [0, 1.2]; the green curves show the theoretical distributions with the same
evolution parameters but with T1 set to infinity.
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The best fit values of the time integrated measurement coupling τ for two values of the
system-apparatus coupling, when experimental data for weak Z-measurement of a transmon
with different initial states ρ00(0) are compared to the theoretical predictions. It is obvious that
τ is essentially independent of the initial state, and varies almost linearly with time after a
slower initial build-up. The error bars correspond to changes in τ that would change the
χ2-values for the trajectory distribution fits by 100.
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Fluctuation-Dissipation Relation

The geodesic parameter is ρ00 − ρ11, with fixed points at ±1.
The size of the fluctuations is, dropping the subleading o(dt) terms:

〈〈(dρ00 − dρ11)
2〉〉 = 16g2Sξ ρ

2
00ρ

2
11 dt .

The geodesic evolution term is:
(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11 dt .
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11 dt .

The geodesic evolution term is:
(dρ00 − dρ11)geo = 4g(ρ00 − ρ11)ρ00ρ11 dt .

The constraint gSξ = 1 gives the coupling-free relation:

〈〈(dρ00 − dρ11)
2〉〉 = 4ρ00ρ11

(dρ00−dρ11)geo
ρ00−ρ11

.

The proportionality factor between the noise and the damping term is not
a constant, because of the nonlinearity of the evolution, but it becomes
independent of g dt when the Born rule is satisfied.
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The constraint gSξ = 1 gives the coupling-free relation:

〈〈(dρ00 − dρ11)
2〉〉 = 4ρ00ρ11

(dρ00−dρ11)geo
ρ00−ρ11

.

The proportionality factor between the noise and the damping term is not
a constant, because of the nonlinearity of the evolution, but it becomes
independent of g dt when the Born rule is satisfied.

In general stochastic processes, vanishing drift and fluctuation-dissipation
relation are quite unrelated properties, involving first and second moments
of the distribution respectively. The fact that both lead to the Born rule is
an exceptional feature of quantum trajectory dynamics.
Implication: The environment can influence the measurement process only via the apparatus.
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Non-classical Nature of Noise

Classical weights (probabilities) must satisfy wi ∈ [0, 1].
Non-classical weights correspond to w0 − w1 outside [−1, 1].
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Non-classical Nature of Noise

Classical weights (probabilities) must satisfy wi ∈ [0, 1].
Non-classical weights correspond to w0 − w1 outside [−1, 1].

Over an evolution interval ∆t, ρ00/ρ11 gets multiplied by e2g∆t w .

w = 1
∆t

∫ t+∆t

t
(w0 − w1)dt has mean ρ00 − ρ11 and variance Sξ/∆t.

It is non-classical when it exceeds its mean by 2ρ11 or falls below by 2ρ00.
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w = 1
∆t

∫ t+∆t

t
(w0 − w1)dt has mean ρ00 − ρ11 and variance Sξ/∆t.

It is non-classical when it exceeds its mean by 2ρ11 or falls below by 2ρ00.

For Gaussian distributions, the probability of the noise being non-classical
is, therefore, 1

2(erfc(
√

2∆t/Sξ ρ11) + erfc(
√

2∆t/Sξ ρ00)).
It is larger for smaller ∆t, and remains non-zero throughout the evolution.

With Gaussian current distributions, the multiplicative factor for ρ00/ρ11 is e−(Im−I )∆I/σ2
.

The relation (∆I )2 = 4∆t σ2/Sξ then implies that the non-classical noise steps occur

when (Im − I )/∆I is either larger than ρ00 or smaller than −ρ11.
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It is larger for smaller ∆t, and remains non-zero throughout the evolution.

With Gaussian current distributions, the multiplicative factor for ρ00/ρ11 is e−(Im−I )∆I/σ2
.

The relation (∆I )2 = 4∆t σ2/Sξ then implies that the non-classical noise steps occur

when (Im − I )/∆I is either larger than ρ00 or smaller than −ρ11.

Among all noise distributions, the Z2 noise with values ±σ has the
shortest tail. Even then,

√

Sξ/∆t will asymptotically always exceed
either 2ρ00 or 2ρ11 or both.
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Origin of Noise

The quadratically nonlinear quantum measurement equation for
state collapse supplements the Schrödinger evolution:

dρ = i [ρ,H]dt +
∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the non-universal system-apparatus
measurement interaction, and the nature of the noise depends on it.
What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Detailed balance: Apparatus-dependent noise ⇐⇒ System-dependent Born rule
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What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Detailed balance: Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
A model for the measurement apparatus is needed to understand where the noise comes from.
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∑

i wi g [ρPi + Piρ− 2ρTr(ρPi )] dt + noise .
The underlying dynamics is the non-universal system-apparatus
measurement interaction, and the nature of the noise depends on it.
What mechanism can simultaneously produce attraction towards the
measurement eigenstates (geodesic evolution) and irreducible noise
(stochastic fluctuations), with precisely related magnitudes?

Detailed balance: Apparatus-dependent noise ⇐⇒ System-dependent Born rule

Amplification incorporates quantum noise when the extracted information
is not allowed to return (e.g. spontaneous vs. stimulated emission).
A model for the measurement apparatus is needed to understand where the noise comes from.

The measurement problem, i.e. the location of the “Heisenberg Cut”
separating the quantum and the classical behaviour, is thus shifted
higher up in the dynamics of the apparatus-dependent amplification.

The Born rule is separated from this problem.
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Dynamics of Apparatus

The observed signal is amplified from the quantum to the classical regime.
Coherent states in the Fock space, which continuously interpolate between
these regimes, are a convenient choice for the apparatus pointer states:

|α〉 ≡ eαa
†−α∗a|0〉 = e−|α|2/2∑∞

n=0
αn√
n!
|n〉 , a|α〉 = α|α〉 .

e.g. the harmonic oscillator ground state is a stationary Gaussian (eigenstate of Hamiltonian),
but a pendulum is an oscillating Gaussian coherent state (eigenstate of annihilation operator).
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|n〉 , a|α〉 = α|α〉 .

e.g. the harmonic oscillator ground state is a stationary Gaussian (eigenstate of Hamiltonian),
but a pendulum is an oscillating Gaussian coherent state (eigenstate of annihilation operator).

The pointer states can be separated by amplifying α using a von Neumann
interaction. For measurement of a qubit using the electromagnetic field in
a cavity, the von Neumann interaction can be chosen to be:

Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .
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n=0
αn√
n!
|n〉 , a|α〉 = α|α〉 .

e.g. the harmonic oscillator ground state is a stationary Gaussian (eigenstate of Hamiltonian),
but a pendulum is an oscillating Gaussian coherent state (eigenstate of annihilation operator).

The pointer states can be separated by amplifying α using a von Neumann
interaction. For measurement of a qubit using the electromagnetic field in
a cavity, the von Neumann interaction can be chosen to be:

Hint = ig |1〉〈1| ⊗ (a† − a) ,
|0〉S |0〉A −→ |0〉S |0〉A , |1〉S |0〉A −→ |1〉S |α = gt〉A .

This interaction produces a macroscopic entangled state:
(c0|0〉+ c1|1〉)S |0〉A −→ c0|0〉S |0〉A + c1|1〉S |α〉A .

A qubit can get entangled with at most two states of a bosonic mode (Schmidt decomposition).

Amplification is a driven process. Irreversibility has to be added, possibly
as a boundary condition, to convert entanglement into measurement.
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Implications for State Collapse

Coherent pointer states have inherent uncertainty (equal to the zero-point
fluctuations). Still unitary amplification cannot create a “Heisenberg Cut”.
Actually, the dividing line between the system and the apparatus separates
the reversible and the irreversible parts of the dynamics.
Understanding the quantum state collapse is reduced to understanding
why large amplitude coherent states are not observed in superposition.
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Coherent pointer states have inherent uncertainty (equal to the zero-point
fluctuations). Still unitary amplification cannot create a “Heisenberg Cut”.
Actually, the dividing line between the system and the apparatus separates
the reversible and the irreversible parts of the dynamics.
Understanding the quantum state collapse is reduced to understanding
why large amplitude coherent states are not observed in superposition.

Does the coherent state uncertainty provide the quantum noise for the
trajectories through back-action (influence of apparatus on system)?
If gravity is responsible for the non-unitary and irreversible collapse,
it has to act only through the coherent pointer state mode.
(Sufficiently amplified coherent states have large energy compared to the
quantum scale; they may also be spatially spread.)
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Einstein strikes back!
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