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Pulsar timing array

Credit: David Champion/Max Planck Institute for Radio Astronomy 



  

New data release
NANOGrav measured a common red noise 
spectrum in the nHz regime (1/10 year)

Other PTA experiements had similar results 
with somewhat less statistics (EPTA, PPTA, 
CPTA) [NANOGrav 2023]



  

Are these really GWs?
The smoking gun for a stochastic GW source is 
a correlation that follows the Hellings-Downs 
curve

[NANOGrav 2023]

The data seems to support a Hellings-Downs 
curve, even though there is also a quite large 
monopole.



  

[Jinno, TK, Rubira, Stomberg 2022]
[Hindmarsh 2016]

The spectra have two features due to the 
                    bubble size and the shell thickness.

Simulation of cosmological 
phase transitions



  

Where do they come from?

The power law fit is somewhere between the 
IR tail and plateau. So the fit will probably further 
improve with the  new spectra.

IR tail plateau

[NANOGrav 2023]



  

How to distiguish SMBHs from 
cosmological backgrounds?
There are in principle different ways to distinguish a 
background from supermassive black holes from a 
stochastic cosmological background

1) In principle the shape of the power spectrum can 
provide information. 

2) For a SMBH background, isolated point sources should 
be at some point identifyable

3) more general, one would expect some anisotropies for 
SMBHs

4) specific cosmological models might have additional 
signatures (e.g. beam dump or Neff)

5) Signal in LISA/LIGO



  

Anisotropies

No anisotropies have been found so far. 

The bands denote expectations from SMBH.
The measurements are upper limits. [NANOGrav 2023]



  

Cosmic Variance in anisotropy 
searches at PTAs

Credit: David Champion/Max Planck Institute for Radio Astronomy 



  

Let’s dig into the details a bit ...
We observe time-delays in pulsar a that is in direction pa in a 
metric background. The time delay is the metric projected 
onto the line of sight, integrated along the path of the pulsar

Assuming the background is a collection of GWs this can 
be integrated

Here eij
A is the polarization tensor that is orthogonal to Ω.



  

Let’s dig into the details a bit ...

The two terms are called earth and pulsar terms and 
neglecting the puslar term is in principle O(1). 

R is called response function. 



  

Collinear limits

Consider no two cases: the pulses ride on the wave or 
ride against the wave

no simplification

The prefactor in F can develop a divergence which 
however cancels due to the pulsar term.

So PTAs are sensitive to the direction of the GWs.
Notice also that pipjeij

A = 0 for both cases. 



  

Large wavelength 
/ small frequency

In the case of a large wavelength / small frequency

So in this limit one cannot distinguish between p 
and -p. 

Notice that in groundbased experiments, one 
measures the phase difference from the round-trip 
and is hence anyway hardly sensitive to the 
direction flip anyway.



  

Correlation function
Many of the noise sources are specific to the pulsar, so in 
order to reduce the noise one considers the correlation of the 
time delays across several pulsars

When the source is transformed into a discrete Fourier 
sum (in time),  this yields 

So one has a double sum over sources and polarizations. 
 
To what extent is interference between sources important?

k and k’ is the sum over sources 



  

Hellings-Downs Curve

The Hellings-Downs curve can be obtained in two cases

1) An infinite sum over a large number of random uncorrelated 
sources for a single pair of pulsars 

the correlation function then reduces to the sum 

This exactly gives the Hellings-Downs correlation.



  

Hellings-Downs Curve

The Hellings-Downs curve can be obtained in two cases

2) If the sources is a single plane wave and one averages over a 
large number of pulsars and then bins by angular separation. 

Both cases have in common that interference is irrelevant.
However, including interference r = HD is not exactly recovered 
even for an infinite number of sources and pulsars! 
(~cosmic variance)

(see ”Variance of the Hellings-Downs correlation”, B. Allen)



  

Neglecting interference

The analysis of anisotropies often neglect interference from 
the start

which is motivated by the fact that this is often true in the 
average of ensemble statistical models. All the information 
is in the power spectrum.

For many sources (or small patches) the power seen by the 
experiment is limited by the resolution → coarse graining

Any stochastic source looks isotropic when interference is 
neglected. 



  

Adding interference
Stochastic sources are often modeled by the Gaussian 
ensemble. Every patch contains two complex amplitudes for 
the polarisation (per freqency).

The amplitude per patch is a Rayleigh distribution
and the power is a c2 distribution

How does coarse graining work including interference? 
The sum of Gaussians are Gaussian, e.g. for Re hk

+

And the coarse-grained amplitude is still Rayleigh distributed.
Hence, stochastic sources are not isotropic.



  

Cosmic variance
There is another way to 
state the same fact: 
When interference is 
included, cosmic 
variance is large even in 
the limit of many 
sources and many 
pulsars. 



  

Cosmic variance vs pulsar 
variance

The total variance of the HD-
correlations has two 
components: Pulsar variance 
and cosmic variance.

Pulsar variance vanishes in 
the limit of many pulsars.

Cosmic variance vanishes in the limit of many realisations 
(but we only measure one! → irreducible)

Cosmic variance is mostly due to interference (not amplitude 
variations).

See also the very informative work 
”Variance of the Hellings-Downs correlation”, B. Allen



  

Anisotropies in NANOGrav

The anisotropy search in NANOGrav usues the following 
likelyhood function 

Where R is (another) response function and P parametrizes 
the power of the sky (e.g. pixel or spherical harmonics). The 
matrix Σ contains the cross-correlation uncertainties. 

For a given cross-correlation r, maximizing with respect to P  
reconstructs the sky map. 

(notice the confusing notation Rabk ~ RakRbk when interference 
neglected)



  

Anisotropies in NANOGrav
In order to decide if a sky is isotropic, one needs a 
detection statistics

In order to obtain a p-value, one determines the SNR 
distribution of a null-distribution

But this neglects cosmic variance and also the 
correlations between the cross-correlations.

Instead, one can use the Gaussian ensemble to 
calculate null-distributions.



  

Anisotropies in NANOGrav

Including interference in this null-distribution makes a big difference:Including interference in this null-distribution makes a big difference:

So including interference introduces a confusion noise that makes 
it harder to distinguish stochastic backgrounds from astrophysical 
backgrounds. 



  

Reconstructing hot spots

Reconstructing a single hot spot in the sky is not inhibited 
by cosmic variance, since intereference is irrelevant. 



  

Reconstructing hot spots

Reconstructing multiple hot spots in the sky can be 
inhibited by cosmic variance, since intereference is 
relevant. 



  

Conclusion

Neglecting interference in the null-distribution of 
anisotropy searches leads to inflated p-values for the 
observation of astro-physical backgrounds. 

Overall, interference makes it much harder to distinguish 
a stochastic (Gaussian ensemble) model from an 
astrophysical one (with hot spots). 

Notice that ”cosmic variance” in the current context can 
be overcome by measuring anisotropies at different 
frequencies. (Instead of using the broadband approach,
see Pitrou and Cusin, 2024).

This will however take much more data.
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