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From discrete to continuous measurement

Continuous measurement – without Zeno effect

▶ time between ancillas ∆t ∝ ε

▶ interaction strength ω ∝
√
ϵ



From discrete to continuous measurement

−→
ε→0



Continuous measurement (diffusive / homodyne case)

For single measured operator L we have the SME:

dρt = L(ρt) dt
Lindblad

+M(ρt , dYt)
Measurement

with the signal It = dYt
dt

dYt =
√
η tr

[
(L + L†)ρt

]
dt + dWt

Wiener
.

▶ today only homodyne – but applies to jump and heterodyne too



Continuous measurement (diffusive / homodyne case)

For single measured operator L we have the SME:

dρt = L(ρt) dt
Lindblad

+M(ρt , dYt)
Measurement

with the signal It = dYt
dt

dYt =
√
η tr

[
(L + L†)ρt

]
dt + dWt

Wiener
.

▶ today only homodyne – but applies to jump and heterodyne too



Continuous measurement signals are digitized

The sharp signal It is not empirically
accessible:
▶ Formally it has the regularity of

white noise (distribution)
▶ Practically, one can only store

its average on time bins

Blais et al. “Circuit quantum electrodynamics.” Rev. Mod. Phys. (2021) –
quantum computer image from IBM



From the discrete to the continuum and back

−→
ε→0

−→
digitization

discrete time continuous time discretized continuous time



A problem in theory and practice

→
ADC

Currently: reconstruct with Euler, Runge-Kutta,or Rouchon scheme and

dYt

dt ≃ ∆Yt

∆t =
Ik
∆t with Ik =

∫ k∆t

(k−1)∆t
dYt

push ADC to the max so ∆t ≪ relevant timescales

Problems:
▶ As we probe faster timescales, ∆t is not so small...
▶ ∆t small =⇒ lots of data: at 1GHz in Float16, 4GB/s per quadrature
▶ Theoretically, we would like to know the error!



A problem in theory and practice

→
ADC

Currently: reconstruct with Euler, Runge-Kutta,or Rouchon scheme and

dYt

dt ≃ ∆Yt

∆t =
Ik
∆t with Ik =

∫ k∆t

(k−1)∆t
dYt

push ADC to the max so ∆t ≪ relevant timescales

Problems:
▶ As we probe faster timescales, ∆t is not so small...
▶ ∆t small =⇒ lots of data: at 1GHz in Float16, 4GB/s per quadrature
▶ Theoretically, we would like to know the error!



2 Solutions

Tasks like parameter estimation and max-like tomography are sensitive to ∆t

Possible fix:
1. Rely on correlation functions as much as possible [Pierre Guilmin’s talk]

E
[
Ik1 Ik2 · · · Ikn ]

since they are known exactly
2. Construct the Kraus map ΦIk

∆t(ρ) for a finite time bin ∆t



2 Solutions

Tasks like parameter estimation and max-like tomography are sensitive to ∆t

Possible fix:
1. Rely on correlation functions as much as possible [Pierre Guilmin’s talk]

E
[
Ik1 Ik2 · · · Ikn ]

since they are known exactly

2. Construct the Kraus map ΦIk
∆t(ρ) for a finite time bin ∆t



2 Solutions

Tasks like parameter estimation and max-like tomography are sensitive to ∆t

Possible fix:
1. Rely on correlation functions as much as possible [Pierre Guilmin’s talk]

E
[
Ik1 Ik2 · · · Ikn ]

since they are known exactly
2. Construct the Kraus map ΦIk

∆t(ρ) for a finite time bin ∆t



Setup:

All we know is the binned signal

Ik =

∫ k∆t

(k−1)∆t
dYt

Some information is gone: we cannot know the true ρt beyond order ∆t!



Definition

The “binned” conditional state ρ̄k

ρ̄k := E
[

ρk∆t
true state

| Ik , Ik−1, . . . , I1
digitized signal

]

▶ Clearly the best one can hope for → Bayesian optimum

▶ In French we call it robinet (faucet) [binned ρ = rho binné = robinet]
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Tool 1: Bayes’ rule

ρ̄k = E
[
ρk∆t | Ik , Ik−1, . . . , I1

]
Definition

= E
[
ρk∆t | Ik , ρ̄k−1

]
Markov

=
E
[
δ
(

Ik −
∫(k+1)∆t

k∆t dYt

)
ρk∆t | ρ̄k−1

]
E
[
δ
(

Ik −
∫k∆t
(k−1)∆t dYt

)
| ρ̄k−1

] Bayes



Tool 2: Fourier transform

Write the Dirac δ in Fourier:

δ(x) = 1
2π

∫
R

dp e ipx

which implies

δ

(
Ik −

∫ k∆t

(k−1)∆t
dYt

)
=

1
2π

∫
R

dp exp
[
ip
(

Ik −
∫ k∆t

(k−1)∆t
dYt

))



Tool 3: Tilted Lindbladian

Define the p-tilted ρ:

ρ
(p)
t = E

[
exp

(
−ip

∫ t

0
dYt

)
ρt

]

Using Itô’s lemma, one can show it obeys the p-tilted Lindblad equation

dρ(p)
t

dt = L · ρ(p)
t − ipCL · ρ(p)

t −
p2

2 ρ
(p)
t

with CL · ρ =
√
η
(
Lρ+ ρL†)



Final formula

Putting all together:

Exact Kraus map

ρ̃k =
1

2π

∫
R

dp e ip Ik−∆t p2
2 Texp

(∫ k∆t

(k−1)∆t
Lt − i p CL

)
· ρ̄k−1

ρ̄k =
ρ̃k

tr[ρ̃k ]

▶ T exp = time-ordered exponential = solution to linear ODE
(regular exponential if L time-independent)

▶ Is it numerically tractable?
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Large time bins with Gaussian quadratures
Numerical integration (Folklore)

1d integrals of smooth functions numerically exact with ≈ 100 points∫
f (x)dx =

Float64

100-ish∑
j=1

wj f (xj) [Gauss quadrature]

We include exp(−∆t p2

2 ) into the measure and use a Gauss-Hermite quadrature:

ρ̃k =
1

2π

∫
R

dp e ip Ik−∆t p2
2 Texp

(∫ k∆t

(k−1)∆t
L− i p CL

)
· ρ̄k−1

=
Float64

1
2π

∑
j

wj e ipj Ik Texp
(∫ k∆t

(k−1)∆t
L− i pj CL

)
· ρ̄k−1︸ ︷︷ ︸

solution of linear ODE

=⇒ Solving (tilted) Lindblad equation on a time bin ∆t for ≈ 100 different pj
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A first sanity check: signal probability for qubit
Empirical average with 106 very fine grained trajectories against analytical formula
for 1 large time bin ∆t = T = 2

H =
1
2σx +

1
2σy

L = σm

measure L with η = 1
ρ0 = |e⟩⟨e|

▶ with MC: Qutip 10min → Dynamiqs CPU 20s → Dynamiqs GPU 0.7s
▶ with Robinet and 32 quadrature points: 0.5ms
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Deflating a coherent state with 2 photon loss
Simulate quantum trajectories with Robinet, Rouchon, Euler with coarse time bin
∆t = 0.1 and compare fidelity with “true” state (simulated with δt = 0.001)

H = 0
L = a2

measure L with η = 0.5
ρ0 = |α⟩⟨α| with α = 3



Deflating a coherent state with 2 photon loss
Averaged dynamics, qualitatively

Euler

Rouchon

Robinet

True



A perturbative expansion

What are the corrections to standard discretizations?

If ∆t is small:
▶ Ik ∼

√
∆t → define Ik = Ik/

√
∆t

▶ In the integral p ∼ 1/
√
∆t → define u =

√
∆t p

Assuming time-independent L:

ρ̃k =
1

2π
√
∆t

∫
R

du e iu Ik−
u2
2 exp

(
∆tL− i

√
∆t u CL

)
︸ ︷︷ ︸

Taylorable

· ρ̄k−1

can be expanded in (
√
∆t)n
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Perturbative expansion continued

ρ̃k ≃
∫
R

du e iuIk−
u2
2

2π
√
∆t

(
1 − ∆t1/2 [i u CL]

+ ∆t
[
L−

u2

2 C2
L

]
+ ∆t3/2

[
iu3

6 C3
L −

iu
2 (CLL+ LCL)

]
+ ∆t2

[
u4

24C
4
L +

−u2

6
(
C2

LL+ CLLCL + LC2
L
)
+

1
2L

2
])

ρ̄k−1

The integrals in u are Gaussian!



Perturbative expansion continued

Exact filter expanded to order
√
∆t4

= ∆t2:

ρ̃k ≃ e−I2
k/2

√
2π∆t

(
1

+
√
∆t

1
[Ik CL]

+
√
∆t

2
[
L−

(1 − I2
k)

2 C2
L

]
+
√
∆t

3
[
Ik(I

2
k − 3)
6 C3

L +
Ik

2 (CLL+ LCL)

]
+
√
∆t

4
[
(I4

k − 6I2
k + 3)

24 C4
L +

(I2
k − 1)

6
(
C2

LL+ CLLCL + LC2
L
)
+

1
2L

2
])

ρ̄k−1



Sampling trajectories

So far we assumed I1, . . . , In experimentally given → reconstruction problem

We can also sample:
dP

[
Ik | ρ̄k−1

]
= tr

[
ρ̃k
]
dIk

Using normalized Ik = Ik/
√
∆t this gives

dP[ Ik |ρ̄k−1] =
[
1 + A1I

1
k + A2I

2
k + A3I

3
k + A4I

4
k + . . .

] e−Ik/2
√

2π
dIk

where Aℓ are simple traces of operators applied to ρ̄k−1

→ positive polynomial × Gaussian = can be efficiently sampled

Question: Does the scheme fit the criteria of Wonglakhon, Wiseman, and
Chantasri 2408.14105?
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Experimental tests of quantum trajectories
How to test quantum trajectory theory
[Benjamin Huard’s talk]:

▶ ideally: condition on full signal
trajectory {Ik}=1···n, do tomography,
compare [exponentially expensive]

▶ practically: condition on predicted
observable values e.g. tr[σzρt ], then
projectively measure σz to compare

=⇒ powerful consistency check
Campagne-Ibarcq et al. PRX 2016

Cannot in principle falsify poor use of signal
(e.g. mix with noise, and use lower efficiency in SME)
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Experimental tests of quantum trajectories

In principle, one could see that there is no more Bayesian juice to squeeze from the
signal:

▶ Consider 1 (or a few) large bins and associated signal(s) I1, (I2, I3)
▶ Conditioned on the binned value(s), do a state tomography → ρtomo(I)
▶ Compute the quantum trajectory prediction (Robinet) → ρrobinet(I)
▶ Compare ρtomo(I) and ρroinet(I) for various I and ρ0

Any suboptimal use of the signal will give lower fidelity
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Summary

→
ADC

1. Real signals are digitized / discretized / binned
2. The corresponding Kraus map expressible exactly → Robinet
3. It can be computed numerically exactly with Gaussian quadratures
4. Or expanded perturbatively, giving systematic corrections of order ∆tn/2 to

standard schemes
5. It can be used to reconstruct state from data or direct simulation
6. It always gives physically sound states
7. It makes quantum trajectory theory testable in a slightly stronger sense


