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Introduction

Isolated quantum systems: Unitary dynamics ⇒ coherent evolution,
essential for preserving information

Perfect isolation never possible;
isolation only for finite time intervals until external effects kick in

External effects due to interactions with external environment or measuring
apparatus ⇒ Non-unitary evolution ⇒ Decoherence

P: Preparation, D: Detection

Typically interactions kick in at random times

Study Unitary Evolution interspersed with Non-unitary Interactions at
Random Times (classical randomness)

Main Question:
Interplay of Classical and Quantum Randomness ⇒ Consequences ??
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Evolution scheme

Generic Hamiltonian H

Interaction operator: T

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

0
t1t2t3tq−1tqt

time · · ·

Interaction:
(Realization 2)

123q−1q

τ1τ2τ3τq

Time gaps τp: independently sampled from a distribution p(τ)

t: observation time

Interplay of Classical and Quantum randomness !



Averaged density operator

Consider a typical realization, say realization 1:

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ(1)(t) = e−iL(t−tp)T e−iL(tp−tp−1)T . . . e−iL(t2−t1)Te−iLt1ρ(0)

L → unitary evolution:
ρ(t ′ > t ′′) = e−iL(t′−t′′)ρ(t ′′) = e−iH(t′−t′′)ρ(t ′′)eiH(t′−t′′)

Density operator averaged over realizations of random times of interactions:
ρ(t) =

∑∞
p=0

∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

F (t − tp)e
−iL(t−tp)Tp(tp − tp−1)e

−iL(tp−tp−1)T ..p(t2 − t1)e
−iL(t2−t1)Tp(t1)e

−iLt1ρ(0)

F (t) ≡
∫∞
t

dτ p(τ): probability of no interaction during time t
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Averaged density operator
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I−TL(p(t)e−iLt)



Averaged density operator

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ(t) =
∑∞

p=0

∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

F (t − tp)e
−iL(t−tp)Tp(tp − tp−1)e

−iL(tp−tp−1)T ..p(t2 − t1)e
−iL(t2−t1)Tp(t1)e

−iLt1ρ(0)
= U(t)ρ(0)

Laplace transform L of a convolution g1 ∗ g2 ≡
∫ t

0
dτ g1(τ)g2(t − τ):

L(g1 ∗ g2) = L(g1)L(g2)

ρ̃(s) ≡ L(ρ(t)) = Ũ(s)ρ(0)
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L(F (t)e−iLt)

I− TL(p(t)e−iLt)

Hamiltonian H

Interaction operator T

Distribution of time gaps p(τ)



Averaged density operator

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp
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Averaged density operator for the case of exponential p(τ)

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ̃(s) = Ũ(s)ρ(0), Ũ(s) =
L(F (t)e−iLt)

I− TL(p(t)e−iLt)

Interactions happen at exponentially-distributed time intervals with constant
rate λ: p(τ) = λe−λτ

F (t) = exp(−λt)

Ũ(s) = [(s + λ)I+ iL − Tλ]−1
(L(tne−at ) = n!

(s+a)n+1 ; t > 0, n ∈ [0, 1, . . . ,∞))

Ũ(s) = Ũ0(s) + λŨ0(s)TŨ0(s)︸ ︷︷ ︸
One interaction

+λ2Ũ0(s)TŨ0(s)TŨ0(s)︸ ︷︷ ︸
Two interactions

+ . . .

No-interaction term Ũ0(s) ≡ [(s + λ)I+ iL]−1



Averaged density operator for the case of exponential p(τ)

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ̃(s) = Ũ(s)ρ(0), Ũ(s) =
L(F (t)e−iLt)

I− TL(p(t)e−iLt)

Interactions happen at exponentially-distributed time intervals with constant
rate λ: p(τ) = λe−λτ

F (t) = exp(−λt)
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Application to the tight-binding model



The tight-binding model (TBM) in absence of interaction

A quantum particle residing on the sites of a 1d lattice and because of
quantum fluctuations undergoing tunnelling to nearest-neighbour sites

H = −∆
2

∑∞
n=−∞

(
|n⟩⟨n + 1|+ |n + 1⟩⟨n|

)
|n⟩: Wannier state of the particle on site n;
⟨m|n⟩ = δmn,

∑∞
m=−∞ |m⟩⟨m| = I

Probability Pm(t) to be on site m at time t > 0, while starting from
site n0 at time t = 0?? Pm(t) = J2m−n0(∆t)

5 15 25 35 45
𝑚

0.0

0.2

0.4

0.6

𝑃 𝑚
(𝑡)

𝑡 = 1
5
15
20

(n0 = 25, ∆ = 1.0)

Spreading with time (Delocalization)
1 Average displacement from n0:

µ ≡ ∑∞
m=−∞(m − n0)Pm(t) = 0

2 Mean-squared displacement:

S(t) ≡
∞∑

m=−∞
(m − n0)

2Pm(t)) =
∆2t2

2
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TBM subject to representative interactions:

1 Projective measurements at random times

2 Stochastic resets at random times



TBM in presence of Projective Measurements at Random Times



TBM + Projective Measurements at Random Times: Earlier work

1 Earlier work (Dhar, Dasgupta, Dhar (2015), Dhar, Dasgupta, Dhar, Sen (2015), Friedman, Kessler, Barkai

(2017), Friedman, Kessler, Barkai (2017), Thiel, Barkai, Kessler (2018), Thiel, Mualem, Kessler, Barkai (2019), Lahiri,

Dhar (2019), Meidan, Barkai, Kessler (2019), Yin, Ziegler, Thiel, Barkai (2019), Thiel, Mualem, Meidan, Barkai, Kessler

(2020), Thiel, Mualem, Kessler, Barkai (2020), Dubey, Bernardin, Dhar (2021), Thiel, Mualem, Kessler, Barkai (2021),

Liu, Ziegler, Kessler, Barkai (2022), Kessler, Barkai, Ziegler (2021),. . . ): Evolution following projective
measurements (operator P) continued with the leftover component:

1 ρ−(t1) = e−iLt1ρ(0)
2 ρ+(t1) = (I−P)ρ−(t1)(I−P)†

3 ρ−(t2) = e−iL(t2−t1)ρ+(t1)
4 ρ+(t2) = (I−P)ρ−(t2)(I−P)†

5 . . .
6 A representative result: Start at n0 and perform projective

measurements to n0 at regular time intervals τ :
Survival probability Pn0(t) decays as a power law Pn0(t) ∼ t−3/2

(Dhar,

Dasgupta, Dhar (2015))
2 Our work: Evolution with the projected component (Zeno effect set-up):

1 ρ+(t1) = Pρ−(t1)P
†

2 ρ−(t2) = e−iL(t2−t1)ρ+(t1)
3 ρ+(t2) = Pρ−(t2)P

†

4 . . .



TBM + Projective Measurements at Random Times: Results

1 Start at n0 and perform projective
measurements to n0 at random time
intervals τ distributed as p(τ) = λe−λτ

2 Zeno limit of frequent-enough
measurements: λ → ∞ at fixed t

0 1 2 3 4
𝑡

0.90
0.92
0.94
0.96
0.98
1.00

𝑃 𝑛
0(𝑡

)

𝜆 = 20
40
100

(n0 = 10, ∆ = 1.0)

3 Pn0(t) ≈ 1− ∆2t
λ

Comparable suppression in
conventional Zeno effect

4 Measurements at random times much
more feasible than at regular intervals



TBM in presence of Stochastic Resets at Random Times



Stochastic Resets at Random Times: Earlier work

1 Classical systems: Introduced in the context of Brownian motion (Evans,

Majumdar (2011)); many interesting static and dynamic effects in single and
many-body systems (review: (Evans, Majumdar, Schehr (2020)))

2 Quantum systems:

1 Integrable and non-integrable systems (Mukherjee, Sengupta, Majumdar (2018))

2 Purity, fidelity in closed quantum systems (Sevilla, Valdé s-Hernández (2023))

3 Dynamics of a qubit in presence of detectors (Dubey, Chetrite, Dhar (2023))

4 Quantum-search processes (Yin, Barkai (2023))

5 Eigenvalue spectrum of a Markovian generator (Rose, Touchette, Lesanovsky,

Garrahan (2018))

6 Entanglement in many-body systems (Turkeshi, Dalmonte, Fazio, Schirò (2022))

7 von Neumann entropy, fidelity, and concurrence (Kulkarni, Majumdar (2023))

8 Long-range correlations (Magoni, Carollo, Perfetto, Lesanovsky (2022))

9 Quantum-jump trajectories (Perfetto, Carollo, Lesanovsky (2022))

10 Quantum collapse (Riera-Campeny, Ollé, Masó-Puigdellosas (2021))

11 Ground state preparation from frustration-free Hamiltonians (Puente, Motzoi,

Calarco, Morigi, Rizzi (2023))



TBM + Stochastic Resets at Random Times: Results

1 Start at n0 and perform stochastic resets
to n0 at random time intervals τ
distributed as p(τ) = λe−λτ

5 15 25 35 45
𝑚

0.0

0.2

0.4

0.6

𝑃 𝑚
(𝑡)

𝑡 = 1
5
15
20

(n0 = 25, ∆ = 1.0, λ = 0.25)

2 t → ∞:
Time-independent probabilities to be
on different sites (Localization)



Notion of a superoperator

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ(t) =
∑∞

p=0

∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

F (t − tp)e
−iL(t−tp)Tp(tp − tp−1)e

−iL(tp−tp−1)T ..p(t2 − t1)e
−iL(t2−t1)Tp(t1)e

−iLt1ρ(0)
= U(t)ρ(0)

L and T are superoperators: act on operators to yield operators

TA = B; A,B → ordinary operators

If A,B are defined in Hilbert space H with complete basis set {|m⟩},
superoperator lives in a product Hilbert space {|mn) ≡ |m⟩ ⊗ |n⟩};∑

m, n |mn)(mn| = I
“Matrix elements” of T labeled by four indices:
⟨m|B|n⟩ = ⟨m|TA|n⟩ = ∑

m′,n′(mn|T |m′n′)⟨m′|A|n′⟩



TBM + Projective Measurements at Random Times: Analysis

ρ̃(s) = Ũ(s)ρ(0);

Ũ(s) = Ũ0(s) + λŨ0(s)TŨ0(s)︸ ︷︷ ︸
One interaction

+λ2Ũ0(s)TŨ0(s)TŨ0(s)︸ ︷︷ ︸
Two interactions

+ . . .

Start at n0, project to N , obtain the probability at m

Density operators before and after an interaction must satisfy
ρ+(t) = Tρ−(t) = Pρ−(t)P

†; P = |N ⟩ ⟨N |

⇒ (n1n
′
1|T |n2n′2) = δn1N δn′1N δn2N δn′2N

Pm(t) = ⟨m|ρ(t)|m⟩
P̃m(s) = ⟨m|Ũ0(s)ρ(0) + λŨ0(s)TŨ0(s)ρ(0) + λ2Ũ0(s)TŨ0(s)TŨ0(s)ρ(0) + . . . |m⟩

≡
∞∑
p=0

P̃
(p)

m (s)

P
(0)

m (s) = (mm|Ũ0(s)|n0n0)
P

(1)

m (s) = λ(mm|Ũ0(s)|NN )(NN|Ũ0(s)|n0n0)
P

(2)

m (s) = λ2(mm|Ũ0(s)|NN )(NN|Ũ0(s)|NN )(NN|Ũ0(s)|n0n0)
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ρ+(t) = Tρ−(t) = Pρ−(t)P

†; P = |N ⟩ ⟨N |

⇒ (n1n
′
1|T |n2n′2) = δn1N δn′1N δn2N δn′2N

Pm(t) = ⟨m|ρ(t)|m⟩
P̃m(s) = ⟨m|Ũ0(s)ρ(0) + λŨ0(s)TŨ0(s)ρ(0) + λ2Ũ0(s)TŨ0(s)TŨ0(s)ρ(0) + . . . |m⟩

≡
∞∑
p=0

P̃
(p)

m (s)

P
(p)

m (t) = λp
∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

×
[
e−λ(t−tp)J2m−N (∆(t − tp))

] [
e−λ(tp−tp−1)J2N−N (∆(tp − tp−1))

]
. . .

×
[
e−λ(t2−t1)J2N−N (∆(t2 − t1))

] [
e−λt1J2N−n0

(∆t1)
]



TBM + Stochastic Resets at Random Times: Analysis

ρ̃(s) = Ũ(s)ρ(0);

Ũ(s) = Ũ0(s) + λŨ0(s)TŨ0(s)︸ ︷︷ ︸
One interaction

+λ2Ũ0(s)TŨ0(s)TŨ0(s)︸ ︷︷ ︸
Two interactions

+ . . .

Start at n0, reset to N , obtain the probability at m

Density operators before and after an interaction must satisfy
ρ+(t) = Tρ−(t) = |N ⟩ ⟨N |; Tr[ρ+(t)] = Tr[ρ−(t)] = 1

⇒ (n1n
′
1|T |n2n′2) = δn1n′1δn2n′2δn1N

Pm(t) = ⟨m|ρ(t)|m⟩
P̃m(s) = ⟨m|Ũ0(s)ρ(0) + λŨ0(s)TŨ0(s)ρ(0) + λ2Ũ0(s)TŨ0(s)TŨ0(s)ρ(0) + . . . |m⟩

≡
∞∑
p=0

P̃
(p)

m (s)

P
(p)

m (t) = λp e−λt
∫ t

0
dt ′ (t−t′)p−1

(p−1)! J2m−N (∆t ′); p ∈ [1,∞)

Pm(t) = e−λtJ2m−n0(∆t) + λ
∫ t

0
dt ′ e−λt′J2m−N (∆t ′)



TBM + Stochastic Resets at Random Times: Analysis

Pm(t) = e−λtJ2m−n0(∆t) + λ
∫ t

0
dt ′ e−λt′J2m−N (∆t ′)

(Evans, Majumdar (2011), Mukherjee, Sengupta, Majumdar (2018), Das, Dattagupta, Gupta (2022))



Conclusions

TBM + projective measurements at random times: Freezing of the
system in the initial state, akin to the Zeno effect

TBM + stochastic resets at random times: Localization

TBM subject to external forcing field that is periodic in time +
stochastic resets at random times:
H(t) = −∆

2 (K + K †) + F0 cos(ωt)
∑∞

n=−∞ n|n⟩⟨n|: Localization

0 50 100 150
𝑡

0

100

200

300

𝑆(
𝑡)

𝜆 = 0
0.025
0.05
0.10

Coherence-to-Decoherence cross-over: Delocalization/dynamic
localization crosses over to Localization in presence of stochastic resets

Future: Unitary evolution + continuous monitoring (Lami, Santini, Collura (2023))

Many-body interacting quantum systems
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The tight-binding model (TBM) in absence of interaction: Analysis

A quantum particle mostly localized on the sites of a 1d lattice but because
of spontaneous quantum fluctuations makes occasional tunnelling to
nearest-neighbour sites

H = −∆
2

∑∞
n=−∞

(
|n⟩⟨n + 1|+ |n + 1⟩⟨n|

)
|n⟩: Wannier state of the particle when on site n;
⟨m|n⟩ = δmn,

∑∞
m=−∞ |m⟩⟨m| = I

H = −∆
2 (K + K †); K ≡ ∑∞

n=−∞ |n⟩⟨n + 1|, [K ,K †] = I

Bloch state |k⟩ ≡ 1√
2π

∑∞
n=−∞ e−ink |n⟩; K |k⟩ = e−ik

eiHt |m′⟩ = 1√
2π

∫ π

−π
dk eikm

′
eiHt |k⟩ = 1√

2π

∫ π

−π
dk eikm

′
e−i∆t cos k |k⟩

Probability Pm(t) to be on site m at time t > 0, given that the
particle was on site n0 at time t = 0??

Pm(t) = ⟨m|ρ(t)|m⟩; ρ(t) = e−iHtρ(0)eiHt = e−iHt |n0⟩⟨n0|eiHt

Pm(t) =
1

(2π)2

∫ π

−π
dk

∫ π

−π
dk ′ ei(m−n0)(k−k′) e−i∆(cos k′−cos k)t = J2m−n0(∆t)



The TBM in presence of Projective Measurements at Random Times

Ground state of 87Rb in presence of a magnetic field: two hyperfine levels (F = 1
and F = 2). A laser induced Raman transition couples the sub-levels
|F = 1,mF = 0⟩ and |F = 2,mF = 0⟩, while a laser resonant with the transition
|F = 2⟩ → |F ′ = 3⟩ (red arrows) depletes the population of the former
(Gherardini, Lovecchio, Müller, Lombardi, Caruso and Cataliotti (2017))



Averaged density operator for the case of exponential p(τ): Generalization

0
t1t2t3tp−1tpt

time · · ·

Initial density
operator ρ(0)

Interaction:
(Realization 1)

123p−1p

τ1τ2τ3τp

ρ(t) =
∑∞

p=0

∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

×F (t − tp)e
−iL(t−tp)Tp(tp − tp−1)e

−iL(tp−tp−1)T ..p(t2 − t1)e
−iL(t2−t1)Tp(t1)e

−iLt1ρ(0)
= U(t)ρ(0)

Formalism very general:
1 Works for any H and any T
2 Works even for time-dependent Hamiltonian:

ρ(t) =
∑∞

p=0

∫ t

0
dtp

∫ tp
0

dtp−1 . . .
∫ t3
0
dt2

∫ t2
0
dt1

×F (t − tp)e
−i

∫ t
tp

dt′ L(t′)

+ Tp(tp − tp−1)e
−i

∫ tp
tp−1

dt′L(t′)

+ T ..p(t2 − t1)e
−i

∫ t2
t1

dt′ L(t′)

+ T
×p(t1)e

−i
∫ t1
0 dt′ L(t′)

+ ρ(0)

Ũ(s) = Ũ0(s) + λŨ0(s)TŨ0(s)︸ ︷︷ ︸
One interaction

+λ2Ũ0(s)TŨ0(s)TŨ0(s)︸ ︷︷ ︸
Two interactions

+ . . .;

Ũ0(s) ≡
∫∞
0

dt e
−(s+λ)t−i

∫ t
0
dt′ L(t′)

+


