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 Directional reorientation of migrating cells when they come in contact with other cells CIL :

180!. Forcing the cells to completely reverse their front–rear

polarity makes it easier to establish the steps required for this
repolarisation and the temporal regulation of these events. In

addition, restricting the cells to 1D lanes makes it easier to

predict when cells are going to interact and allows for easier
analysis [39 , 40]. An additional assay has been generated that

restricts cells to 1D migration through the use of

microchannels. In this assay microfluidic chambers constrain
cell migration to 1D channels whilst allowing chemoattractant

gradients to be generated across the chamber [41]. These

chambers have proved useful in understanding how CIL is
affected by chemotactic cues found in vivo [15]. This is of

particular interest as cancer cells are known to migrate

through tracks generated in the extracellular matrix [40] and
respond to chemotactic cues [42, 43].

Contact inhibition of locomotion in vivo

Contact inhibition of locomotion has been identified as the
driving force behind many phenomena in developing

embryos [44]. As with all in vitro assays, there is some

uncertainty as to whether cells’ behaviour in vitro mimics

their behaviour in vivo. This question has begun to be

addressed thanks to the improvement in imaging of CIL in
the developing embryo. Haemocytes undergoing CIL can

be imaged in vivo in the ventral surface of Drosophila [6 ].

The behaviour observed between these cells is strikingly
similar to what Abercrombie first observed in fibroblasts

in vitro over 50 years earlier [2, 17 ]. Further evidence that

CIL is similar in vivo has been observed in the zebrafish
cranial neural crest where the trajectories of cells under-

going collisions in vivo are similar to those of cells in vitro

[5]. These observations confirm that the in vitro assays are
mimicking what is happening in vivo and are therefore

useful in elucidating the molecular mechanisms driving

CIL. The development and improvement of new live
imaging techniques have helped elucidate some of the

mechanisms driving CIL. In the haemocytes of Drosophila

CIL occurs between individual cells and is required to
drive the uniform dispersion of the haemocytes throughout

the drosophila embryo [17 ]. Interestingly CIL drives a

completely distinct process within the neural crest, where it
is vital for their directional collective migration [5, 10, 30,

45]. It has been proposed that CIL contribute to collective

migration of the neural crest by inhibiting protrusions

Fig. 1 The multiply stages of contact inhibition of locomotion. a
Free migrating cells show polarised migration: Rac1 activity in the
leading edge stimulates protrusion formation. Microtubules stabilise
the directional migration of these cells. In addition, focal adhesions
generation traction forces enabling the cells to migrate along a
substrate. b Initially a contact is formed between the cells: the
lamellae of the colliding cells overlap and cell–cell adhesions form
between the two cells. The cytoskeletons of the colliding cells
become coupled. c Protrusive activity is inhibited at the site of
contact: Rac1 activity is lost at the contact site and RhoA become
active at the point. This causes the protrusions to collapse and

prevents new protrusions from forming at the contact site. d The cells
repolarise and new protrusions form away from the contact: Rac1
becomes active in the free edge away from the contact promoting the
formation of new protrusions in this area. Focal adhesions form in
these new protrusions and stabilises them. Microtubule dynamics
increase at the contact site with an increase in growth and shrinkage
rates and microtubule catastrophe events. e The cells separate and
migrate away from each other: the cells continue migrating in the
direction of the newly formed protrusions away from the direction of
contact. The cell–cell adhesions disassemble and the cells final
separate
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Cell migration on fibronectin coated 1D substrate



Model to study effect of CIL on cellular organization in 1D 

CIL interaction between particles: 

2

II. MODEL

We consider a discrete 1D lattice consisting of N lattice
sites. We represent individual cells as particles. The indi-
vidual lattice sites can either be empty or be occupied by
a particle. Each particle possesses discrete states of the
individual polarization vector ~P , associated with their
direction of movement on the lattice. The polarization
state of the particle at site i maybe described in terms
of a variable �i which can take value of ±1, depending
on whether the polarization vector points towards right
or left direction on the lattice respectively. A particle at
site i, with polarization state, �i = +1, corresponds to a
cell moving to the right, while a particle at site i, with
polarization state, �i = �1, corresponds to a cell moving
to the left. A general configuration of the system at a
given time t maybe represented as,

!  ! ! 0! 0 0!  0   

The primary characteristic of CIL is the propensity of
the cells to align the direction of movement away from
other cells. To mimic the e↵ect of CIL in 1D channel,
we consider a short range interaction between the parti-
cles which described by a nearest neighbour interaction
potential ,

H =
X

i

J1⇥(�i � �i+1)� J2⇥(�i � �i+1), (1)

where ⇥ is Heaviside function.
For this choice of H, the configurations of a pair of

neighbouring particles on the lattice would have the fol-
lowing energy:

!  ⌘ E = +J1 (J1 > 0)

 ! ⌘ E = �J2 (J2 > 0)

! ! ⌘ E = 0

  ⌘ E = 0

For this choice of interaction potential between parti-
cles, particle configurations for which polarization vectors
of neighbouring particles face each other is disfavoured
while configurations for which polarization vectors are
oppositely aligned is favoured. We define a cluster as a
continuous array of particles that are bounded by vacan-
cies on the 1D lattice. We consider that the switching
dynamics of the particles between the di↵erent polariza-
tion states occurs only for clusters comprising of two or
more particles, and is dictated by the interaction poten-
tial in Eqn. 1 such that the switching rates of the polar-
ity of particles ,ks / exp(�H), where �H is the energy
di↵erence between the configurations. Thus for a two-
particle cluster, the switching dynamics of the polarity
of the particles in the cluster maybe represented by rate
equations of the form,
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 !
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Similarly, for a cluster of size larger than or equal to
three, the switching dynamics of polarity state of the
particle in the cluster maybe represented by,

! ! ! beJ2�J1
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b
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b
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As far as the translational dynamics is concerned, the
particles at site i hops to the adjacent site in the direction
of its polarization vector, with rate a, provided that site
is vacant, i.e., if �i = +1, then the particle hops to site
i + 1 with rate a if it is vacant. On the other hand if
�i = �1 then it hops to site i � 1 with rate a, if the
site is vacant. These rules of particle movements maybe
summarized as,

! 0 =) 0 !
0  =)  0

Its worthwhile to point out that in the absence of CIL
interaction within clusters, which corresponds to setting
J1 and J2 to zero, the model reduces exactly to the one
discussed in Ref.[? ? ]. In the absence of CIL, the
model that we discuss is also very similar to Persistant
Exclusion Process (PEP) [? ] with the crucial di↵erence
that while for our case a single particle ( which are not
part of a cluster) does not undergo switching of their
polarities, the model in Ref. [? ] allows for switching of
single particle in the lattice.

A. Simulation Details

We perform Monte Carlo (MC) simulations of the sys-
tem starting with random configuration of particle with
fixed number density. For the initial configuration of par-
ticles on the lattice, we choose the polarization states of
individual particles randomly with equal probability. We
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biofilaments20, and growth process of fungal mycelium21–23.
We also adopt a similar modeling approach to gain insight on the role of CIL in determining the organization of cells

in quasi 1D settings, motivated by experiments performed with cells on 1D collision assays that have been designed using
micropatterning techniques. The confined nature of cellular movement in such collision assays allows for more precise
identification of collision event of cells apart from enhancing the efficiency of CIL response since the collisions between the
cells is head on. In particular, this experimental technique has been has been used to study and quantify the effect of CIL in
cultured Xenopus Neural crest cells which are confined to move on micropatterned fibronectin lines with very narrow width.
The narrow width of these assays forces the cells to move along the narrow fibronectin line and to undergo a repolarization by
180� due to CIL interaction15

We propose and study a minimal driven lattice gas model which mimics the movement of individual cell and binary cell-cell
interaction that is mediated by CIL in 1D assay. We use this model to investigate the dynamics of collective organization of
cells and the clustering characteristics of cells that are subject to CIL interactions in such 1D geometry.

Figure 1. Schematic representation of the dynamical process of (a) translation and (b) switching of polarity of a particle at the
boundary of the cluster

1 Model and Methods

We consider a discrete 1D lattice consisting of N lattice sites. We represent individual cells as particles. The individual lattice
sites can either be empty or be occupied by a particle. Each particle possesses discrete states of the individual polarization
vector ~P, associated with their direction of movement on the lattice. The polarization state of the particle at site i maybe
described in terms of a variable si which can take value of ±1, depending on whether the polarization vector points towards
right or left direction on the lattice respectively. A particle at site i, with polarization state, si = +1, corresponds to a cell
moving to the right, while a particle at site i, with polarization state, si =�1, corresponds to a cell moving to the left. A general
configuration of the system at a given time t maybe represented as,

! !! 0! 0 0! 0   

Here (!) corresponds to a particle moving to the right in the lattice, while( ) corresponds to a particle moving to the left
in the lattice and 0 corresponds to an empty lattice site.

The primary characteristic of CIL is the propensity of the cells to align the direction of movement away from other cells. To
mimic the effect of CIL in 1D channel, we consider a short range interaction between the particles which is described by a
nearest neighbour interaction potential ,

H = Â
i

J1Q(si�si+1)� J2Q(si+1�si), (1)

where Q is Heaviside function.
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FIG. 2. Dynamics of small trains of cells — (A) Cohesive cell triplet showing anti-aligned polarities at the edges (arrows denote polarity and
are provided as a guide) – the center cell flips polarity in the middle slowing down the train. Snapshots are separated by �t = 120 min, scale
bar = 100 µm (see Movie S2). (B) Cell train containing 8 cells shown in PBD-YFP fluorescence with repolarization of edge cells after fracture
of the train; cell boundaries have been highlighted for clarity �t = 85 min, scale bar = 100µm (see Movie S3). In panels (A) and (B), the
stars represent the location of the domain wall. (C) Examples of ring geometries at confluence (arrows show steady rotation direction for each
ring); rings have diameters D = 100µm, 200µm and 400µm (scale bar = 200µm – see Movie S4). (D) Steady state average cluster size hsci
as a function of the Péclet number Pe for various cohesiveness � = 10 (circles), 20 (squares) and 50 (diamonds) in the regime ↵ � �. Inset
shows that hsci / (Pe/�)�1. (E) Position of cells in two trains for closed boundaries (ring geometry) and open boundaries (line geometry)
showing high persistence in the case of closed boundaries. (F) Experimental velocity autocorrelation for open and closed boundaries. (G)
Velocity correlation time (measured as the time for which correlation function reaches 1/e) as a function of train size fitted by a quadratic law
(red line). (H) Cell train global polarity autocorrelation function for various train sizes (increasing from blue to yellow – N 2 [3, 100]) for
open boundaries (for cohesive trains) and closed boundaries (horizontal grey line) averaged over 50 realizations. (I) Correlation time obtained
from exponential fits of the autocorrelation function as a function of cell numbers N ; the red solid line shows the theoretical prediction given
by ⌧p ⇠ N2.

remains invariant under the dynamics. It is useful to introduce
the Péclet number Pe = v0�/D, where v0 = Fp/⇣ is the
self-propulsion velocity and D = T/⇣ is the self-diffusion
coefficient of the ABP. We will also make use of � = "/T as
the ratio of the strength of the Lennard-Jones potential to the
thermal fluctuations, and similarly define ↵,� in units of Tp;
finally, we introduce the normalized relaxation rate µ = ⌧/⇣p
for the polarization, where ⌧ = �2/D. Earlier agent based
models [25–27, 47] that take into account CIL interactions
can be checked retrospectively to fall within this symmetry
class, even though their specific choice of dynamics cannot
be re-expressed as deriving from a simple pairwise effective
potential.

The model is thus primarily controlled by (i) the volume
fraction of particles �, (ii) the competition between self-
propulsion (Pe) and cohesion (�), (iii) the strength of the sym-
metric and antisymmetric alignment interaction terms ↵,�,
and (iv) the relaxation rate µ. Given this relative complexity,
an exhaustive exploration of the phase behavior of this model
goes beyond the scope of this paper. Below, we primarily aim
to discuss the effect of the new asymmetric coupling ↵ on
the collective particle dynamics, and we restrict our analysis

to regimes that are most relevant to our experimental cellular
system.

Dynamics of small cell trains

We first focus on the effect of the asymmetric interaction
(parametrized by ↵) on finite-sized cell clusters (or ”trains”),
based on our one-dimensional setup. As is shown in Fig. 2A,B
(and Movies S2 and S3), we observe that cells at the edges of
cell trains generically have opposite polarities, pointing away
from the center of mass of the train; this is expected from
the CIL phenomenology – as reported in Fig. 1 – which fa-
vors ! configurations. This is evidenced by the extension
of lamellipodia (see Movie S3) and the PBD gradients (see
Fig. 2B). In a given cell train, we generally observe a single
domain wall where the polarity changes sign ( !). This
behavior can be simply accounted for by the interaction po-
tential Up introduced in Eq. 3. For ↵ > �, as is observed
experimentally (see Fig. 1D,E), the potential Up for a 1d train
of N particles is minimized for all configurations with a sin-
gle domain wall  !; in particular, inducing such domain

T. Bertrand. et.al, arXiv 2012.00785



Confluent state: A reduced equilibrium model 

• When all the adherent cells fill the fibronectin coated strip, it corresponds to a confluent state 

• In confluent state, there are no vacancies in the lattice and there is no translation dynamics  

• The dynamics  is restricted to switching process between different states of polarization of the particles. 

1.1 Simulation Details

We perform Monte Carlo (MC) simulations of the system starting with random configuration of particle with fixed number
density. For the initial configuration of particles on the lattice, we choose the polarization states of individual particles randomly
with equal probability. We adopt a random sequential update procedure by choosing a site among the N lattice sites randomly
with equal probability. For a site which is occupied by a particle, we perform the monte carlo (MC) move for a particular
process ( hopping or directional switching) with the prescribed relative rates for the different processes. In order to ensure
that the system settles to steady state, we wait for an initial transient of 1000 N

w
swaps , where w stands for the lowest rate (

among switching and translation rates). There after we collect the statistics for the cluster sizes and other cluster characteristics,
time averaging typically over atleast 5000 samples. These samples are collected with a time spacing of 10 N

w
to ensure that the

samples are uncorrelated.

2 Results

2.1 Confluent state: A reduced equilibrium model

In the experiments performed with MDCK cells on fibronectin coated strips, when all the cells adherent cells fill the strip
corresponds to a confluent state15. From the perspective of our minimal model, this state corresponds to a situation, where
there are no vacancies in the lattice and consequently translation dynamics of the particles is arrested and the dynamics of
the particles is restricted to switching process between different states of polarization of the particles. In this limit our model
reduces to an equilibrium model, which is described by an Hamiltonian of the form of Eq.1. The corresponding form of the
partition function Zc maybe expressed as,

Zc = Â
[si]

exp

"
�Â

i

J1Q(si �si+1)� J2Q(si+1 �si)

#

The corresponding transfer matrix for Zc is,

T =

2

4
1 e

�J1

e
J2 1

3

5

Using standard techniques of Transfer Matrix method, in the thermodynamic limit of N ! •, we obtain

Zc =


1+ exp

✓
�DJ

2

◆�
N

, (2)

where DJ = J1 � J2.
The corresponding expression for average energy is,

hEi = NDJ

2


1

1+ exp(DJ/2)

�
(3)

Fig.2(a) displays the plot of average energy per particle e vs DJ obtained from analytical expression of Eq.3 and its comparison
with the values obtained by Monte Carlo (MC) simulations.

While the average polarization is zero, the correlation function for polarization as a function of distance(r) between the
particles assumes the form,

G(r) =

✓
1� exp(�DJ/2)
1+ exp(�DJ/2)

◆
r

(4)

The corresponding expression for the correlation length is,

x = |ln(1� e
�DJ/2)� ln(1+ e

�DJ/2)|�1
(5)

In the limit of exp(DJ/2) >> 1, the correlation length x ! 1
2 exp(DJ/2). Thus as would be expected for equilibrium 1D

systems, there is absence of any long range correlation of the polarization. However, for any finite lattice size system of size L,
as long as x is sufficiently larger than L, the confluent state would tend to exhibit a polarized state.
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In the experiments performed with MDCK cells on fibronectin coated strips, when all the cells adherent cells fill the strip
corresponds to a confluent state15. From the perspective of our minimal model, this state corresponds to a situation, where
there are no vacancies in the lattice and consequently translation dynamics of the particles is arrested and the dynamics of
the particles is restricted to switching process between different states of polarization of the particles. In this limit our model
reduces to an equilibrium model, which is described by an Hamiltonian of the form of Eq.1. The corresponding form of the
partition function Zc maybe expressed as,

Zc = Â
[si]

exp

"
�Â

i

J1Q(si �si+1)� J2Q(si+1 �si)

#

The corresponding transfer matrix for Zc is,

T =

2

4
1 e

�J1

e
J2 1

3

5

Using standard techniques of Transfer Matrix method, in the thermodynamic limit of N ! •, we obtain

Zc =


1+ exp

✓
�DJ

2

◆�
N

, (2)

where DJ = J1 � J2.
The corresponding expression for average energy is,

hEi = NDJ

2


1

1+ exp(DJ/2)

�
(3)

Fig.2(a) displays the plot of average energy per particle e vs DJ obtained from analytical expression of Eq.3 and its comparison
with the values obtained by Monte Carlo (MC) simulations.

While the average polarization is zero, the correlation function for polarization as a function of distance(r) between the
particles assumes the form,

G(r) =

✓
1� exp(�DJ/2)
1+ exp(�DJ/2)

◆
r

(4)

The corresponding expression for the correlation length is,

x = |ln(1� e
�DJ/2)� ln(1+ e

�DJ/2)|�1
(5)

In the limit of exp(DJ/2) >> 1, the correlation length x ! 1
2 exp(DJ/2). Thus as would be expected for equilibrium 1D

systems, there is absence of any long range correlation of the polarization. However, for any finite lattice size system of size L,
as long as x is sufficiently larger than L, the confluent state would tend to exhibit a polarized state.
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Figure 3. Spatio-temporal plot: Time snapshots of distribution of right polarized (+)(blue) and left polarized (�)(red)
particles on the lattice. Here (a)Q = 0.1, (b) Q = 10, Q = 50, J1 = 4, J2 = 0, with r = 0.6. MC simulations where done with
L = 1000

Using this, the expression for the average polarization of the particle m is,

m =
Sinh(h)

[Cosh2(h)+ e�DJ�1]1/2 (7)

Fig.2(b) shows the variation of the average polarization with external field h obtained from analytical expression of Eq.7 and its
comparison with the values obtained by Monte Carlo (MC) simulations.

2.2 Clustering in the presence of vacancies

We next focus our attention on the nature of clustering behaviour of the particles that arises out of the interplay of translation
dynamics of particles and the switching dynamics of particles.

The CIL interaction strength is controlled by the parameters J1 and J2. While J1 is the energy cost associated with the
polarities of neighbouring cells pointing towards each other, J2 is the reduction of energy associated with the polarities of the
neighbouring cells pointing away from each other. In the absence of CIL interaction between particles in a cluster, the switching
rate from (!) to ( ) is b and it is identical to the switching rate between ( ) to (!). We define a dimensionless quantity
Q which is the ratio of the translation rate, a and the switching rate, b. When the switching rate, b is set to 1, Q = a. Q is a
measure of activity of the cells in the 1D array. In general, the clustering phenomenon of system would be determined by the
strength of CIL interaction and Q. The overall density of the vacancies is a conserved quantity and it would also affect the
cluster size distribution in the system. In Fig.3, we display the spatio-temporal evolution of the clusters for different strengths
of activity quantified in terms of Q for a fixed value of CIL interaction strength J1 and holding J2 = 0. At relatively high values
of Q ( See Fig. 3b and Fig.3c), the system segregates into alternating domains of dense clusters and a low density gas region.
The mean size of these dense clusters increases on increasing Q. For the dense clusters, the dynamics of their sizes is governed
by the processes at boundary of these clusters. Typically, for the high Q regime, the composition of the cluster is such that an
array of right pointing (!) particles occupy the left end of dense cluster domain while the right end comprises of an array of
left pointing ( ) particles. Thus the internal structure within the bulk of such dense cluster comprises of defects - pairs of (!)
and ( ) particles. It may also be noted that such dense cluster for which the polarity of the particles at both ends are pointing
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In this case, the corresponding transfer matrix is,

T =

2

4
e
�h

e
��J1

e
�J2 e

��h

3

5

Again, using transfer matrix method, we obtain

Zg =
h
Cosh(�h) + [Cosh

2(�h) + e
��J � 1]

1/2
iN

(9)

Using this, the expression for the average polarization of
the particle m is,

m =
Sinh(�h)

[Cosh2(�h) + e ��J � 1]1/2
(10)

Fig.2(b) shows the variation of the average polarization
with external field h obtained from analytical expression
of Eq.10 and its comparison with the values obtained by
Monte Carlo (MC) simulations.

B. Clustering in the presence of vacancies

We next focus our attention on the nature of cluster-
ing behaviour of the cells in the 1D array arising from the
interplay of translational dynamics of particles, and the
switching dynamics of particles in a cluster that arises
due to the e↵ect of CIL. The CIL interaction strength is
controlled by the parameters J1 and J2. While J1 is the
energy cost associated with the polarities of neighbour-
ing cells pointing towards each other, J2 is the reduction

of energy associated with the polarities of the neighbour-
ing cells pointing away from each other. In general the
clustering phenomenon of system would be determined
by the strength of CIL interaction. The overall density
of the vacancies is a conserved quantity and in general
the density would also a↵ect the cluster size distribution
in the system. In the absence of CIL interaction between
particles in a cluster, the switching rate from (+) to (�)
is b and it is identical to the switching rate between (�)
to (+). We define a dimensionless quantity Q which is
the ratio of the translation rate, a and the switching rate,
b. When the switching rate, b is set to 1, Q = a. Q is a
measure of activity of the cells in the 1D array.
At any instant of time, a cluster size can increase if a

(+) particle joins the left end of the cluster or a �) par-
ticle joins the cluster. On the other hand, a cluster size
can decrease if a single particle at the cluster ends leaves
the cluster. We systematically investigate the interplay
of CIL and activity on the cluster size distribution and
other collective steady state properties of the system. In
Fig.??, we display the temporal evolution of the clusters
for di↵erent strengths of activity in steady state.

1. E↵ect of CIL interaction strength

We investigate the e↵ect of variation of CIL interaction
strength (J1, J2) on cluster size distribution for a fixed
Q. The limit , Q << 1 ( a << ko), corresponds to a
situation of low activity of the cells. For this case, in the
absence of CIL interaction (J1 = J2 = 0), the probability
of m-particle cluster is simply proportional to ⇢

m(1� ⇢)
for N ! 1. Consequently, the normalized probability
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Q = a / b : Ratio of hopping and switching rate 
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of cluster size m, P (m) = ⇢
m�1(1 � ⇢) which maybe

expressed in the exponential form,

P (m) =

✓
1� ⇢

⇢

◆
e
�m/⇠

, (11)

where ⇠ = | ln⇢ |�1. The expression for the mean size
of the cluster is hmi = (1� ⇢)�1. The expression in ??
is identical to the cluster size distribution of a TASEP
process [? ? ]. .

For low activity, e↵ect of increasing the CIL strength
( by varying J1), does not change the exponential nature
of the cluster size distribution (See Fig.3) but it does
lead to slight decrease in the average cluster size (See
Fig.4a). Further, the average cluster size tends to ap-
proach a limiting value at high CIL interaction strength,
�J . The corresponding distribution of cluster remains
an exponential distribution. In Fig.3 we display the plot
of P (m) as a function of m for di↵erent values of J1 when

the translation rate a is small.

E↵ect of increasing activity manifests itself in a ten-
dency to increase the average cluster size and broaden-
ing probability distribution of cluster sizes both in the
presence and absence of CIL interaction ( Fig5a). Al-
though there is significant deviation from the exponen-
tial nature of cluster size distribution at high levels of
activity (Q >> 1), the tail of the distribution continues
to remain exponential as indicated by the logplot of the
distrubution ( Fig.5b). Intrestingly, e↵ect of increasing
CIL interaction ( increasing J1 ), at a fixed Q leads to
increase in the cluster average size ( Fig.4b) and broad-
ening the distribution when the activity is high ( Q = 30)
in contrast to the situation when activity is low ( Fig.4b).

In order to understand the e↵ect of CIL interaction
on the polarization of the individual clusters, we look at
root-mean square (RMS) fluctuation of the polarization
for di↵erent cluster sizes. We define RMS relative fluc-
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of the cluster is hmi = (1� ⇢)�1. The expression in ??
is identical to the cluster size distribution of a TASEP
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For low activity, e↵ect of increasing the CIL strength
( by varying J1), does not change the exponential nature
of the cluster size distribution (See Fig.3) but it does
lead to slight decrease in the average cluster size (See
Fig.4a). Further, the average cluster size tends to ap-
proach a limiting value at high CIL interaction strength,
�J . The corresponding distribution of cluster remains
an exponential distribution. In Fig.3 we display the plot
of P (m) as a function of m for di↵erent values of J1 when

the translation rate a is small.

E↵ect of increasing activity manifests itself in a ten-
dency to increase the average cluster size and broaden-
ing probability distribution of cluster sizes both in the
presence and absence of CIL interaction ( Fig5a). Al-
though there is significant deviation from the exponen-
tial nature of cluster size distribution at high levels of
activity (Q >> 1), the tail of the distribution continues
to remain exponential as indicated by the logplot of the
distrubution ( Fig.5b). Intrestingly, e↵ect of increasing
CIL interaction ( increasing J1 ), at a fixed Q leads to
increase in the cluster average size ( Fig.4b) and broad-
ening the distribution when the activity is high ( Q = 30)
in contrast to the situation when activity is low ( Fig.4b).

In order to understand the e↵ect of CIL interaction
on the polarization of the individual clusters, we look at
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In this case, the corresponding transfer matrix is,

T =

2
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e
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e
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Again, using transfer matrix method, we obtain

Zg =
h
Cosh(�h) + [Cosh

2(�h) + e
��J � 1]

1/2
iN

(9)

Using this, the expression for the average polarization of
the particle m is,

m =
Sinh(�h)

[Cosh2(�h) + e ��J � 1]1/2
(10)

Fig.2(b) shows the variation of the average polarization
with external field h obtained from analytical expression
of Eq.10 and its comparison with the values obtained by
Monte Carlo (MC) simulations.

B. Clustering in the presence of vacancies

We next focus our attention on the nature of cluster-
ing behaviour of the cells in the 1D array arising from the
interplay of translational dynamics of particles, and the
switching dynamics of particles in a cluster that arises
due to the e↵ect of CIL. The CIL interaction strength is
controlled by the parameters J1 and J2. While J1 is the
energy cost associated with the polarities of neighbour-
ing cells pointing towards each other, J2 is the reduction

of energy associated with the polarities of the neighbour-
ing cells pointing away from each other. In general the
clustering phenomenon of system would be determined
by the strength of CIL interaction. The overall density
of the vacancies is a conserved quantity and in general
the density would also a↵ect the cluster size distribution
in the system. In the absence of CIL interaction between
particles in a cluster, the switching rate from (+) to (�)
is b and it is identical to the switching rate between (�)
to (+). We define a dimensionless quantity Q which is
the ratio of the translation rate, a and the switching rate,
b. When the switching rate, b is set to 1, Q = a. Q is a
measure of activity of the cells in the 1D array.
At any instant of time, a cluster size can increase if a

(+) particle joins the left end of the cluster or a �) par-
ticle joins the cluster. On the other hand, a cluster size
can decrease if a single particle at the cluster ends leaves
the cluster. We systematically investigate the interplay
of CIL and activity on the cluster size distribution and
other collective steady state properties of the system. In
Fig.??, we display the temporal evolution of the clusters
for di↵erent strengths of activity in steady state.

1. E↵ect of CIL interaction strength

We investigate the e↵ect of variation of CIL interaction
strength (J1, J2) on cluster size distribution for a fixed
Q. The limit , Q << 1 ( a << ko), corresponds to a
situation of low activity of the cells. For this case, in the
absence of CIL interaction (J1 = J2 = 0), the probability
of m-particle cluster is simply proportional to ⇢

m(1� ⇢)
for N ! 1. Consequently, the normalized probability

:
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• Average cluster size is a monotonically increasing function of Q 

• System exhibits ‘re-entrant’ behavior for  cluster size as function of  J1 when  �J 6= 0
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• For Q >> 1 limit, the average cluster size ⟨m⟩ ∼ Q 
1/2

Increasing CIL may increase av. Cluster size !



  Helmholtz Free energy  

• The system comprises of alternate regions of dense Cluster phase (c) & low density gas (g) phase. 

• In this limit inter cluster interaction is weak and  they evolve independently. 

 C = # of clusters 

Nc = # of particles in c phase 

= # of clusters of size l

Mapping to an equivalent equilibrium process when Q >> 1 

• Problem gets mapped to an equivalent equilibrium process for the sizes of clusters.  

• Cluster size distribution is obtained by minimization of Helmholtz Free Energy 

Average energy : 

Configurational Entropy:

of clusters is obtained by minimizing the configurational entropy for the system as was done for persistent exclusion process
(PEP) in Ref.24.

2.3.1 Minimization of Helmholtz Free energy(F)

In order to simplify the analysis, we incorporate the effect of CIL through J1 alone and set J2 = 0. However it maybe noted that
the procedure outlined to obtain the form of cluster size distribution can easily be generalized for the case where J2 6= 0. Then
from Eq.3 it follows that the expression for average energy hEi has the form,

hE(l)i = l

2


J1

1+ eJ1/2

�
(9)

For the dense cluster phase, the configurational entropy S corresponds to the number of ways in which C different clusters
in the phase can be arranged where clusters of same length are indistinguishable and are subject to the constraint that the total
number of sites occupied by the clusters (Nc) is held fixed. Then by fixing the total number of clusters (C), it follows that the
expression of entropy has the form,

S = ln


C !

’l Gc(l)!

�
�l

 
Nc �Â

l

lGc(l)

!
� g

 
C �Â

l

Gc(l)

!

Here Gc(l) is the number of clusters of length l in the cluster (C) phase and l and g are the two Lagrange’s multipliers.
This form of configurational entropy is exactly the same as that obtained in Ref.?? in context of cluster size distribution for PEP
process. For our system, apart from the configurational entropy, due to the internal energy contribution coming CIL interaction,
the steady state configuration is determined by minimization of Helmholtz Free energy F instead of simply maximizing the
configurational entropy. The corresponding expression for Helmholtz Free energy (F) comprising of the internal energy of the
clusters and the configurational entropy contribution of the dense clusters is,

F =


J1/2

1+ eJ1/2

�
Â

l

lGc(l)� ln


C !

’l Gc(l)!

�
+l

 
Nc �Â

l

lGc(l)

!
+ g

 
C �Â

l

Gc(l)

!

The corresponding expression for dF is

dF = Â
l


lnGc(l)+

✓
l +

J1/2
1+ eJ1/2

◆
l + g

�
dFc(l) (10)

We set dF = 0. For independent variations of dGc(l), we obtain an exponential form ,

Gc(l) = Ace
�l/lc (11)

Similar argument for the gas(g) phase yields Gc(l) -the number of clusters of length l, with the corresponding form being,

Gg(l) = Age
�l/lg (12)

In order to fix the constants, Ag, Ac, lg and lc, following considerations have to be taken into account :
(a) The total number of clusters in the gas phase must equal total number of clusters in the dense cluster phase. This implies,

Â
l

Gc(l) = Â
l

Gg(l) =C (13)

(b) The total number sites occupied by clusters in the gas phase together with the total number sites occupied by clusters in the
dense cluster phase must equal total number of lattice sites. This implies,

Â
l

lGc(l)+Â
l

lGg(l) = N (14)
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of clusters is obtained by minimizing the configurational entropy for the system as was done for persistent exclusion process
(PEP) in Ref.24.

2.3.1 Minimization of Helmholtz Free energy(F)

In order to simplify the analysis, we incorporate the effect of CIL through J1 alone and set J2 = 0. However it maybe noted that
the procedure outlined to obtain the form of cluster size distribution can easily be generalized for the case where J2 6= 0. Then
from Eq.3 it follows that the expression for average energy hEi has the form,

hE(l)i = l

2


J1

1+ eJ1/2

�
(9)

For the dense cluster phase, the configurational entropy S corresponds to the number of ways in which C different clusters
in the phase can be arranged where clusters of same length are indistinguishable and are subject to the constraint that the total
number of sites occupied by the clusters (Nc) is held fixed. Then by fixing the total number of clusters (C), it follows that the
expression of entropy has the form,

S = ln


C !

’l Gc(l)!

�
�l

 
Nc �Â

l

lGc(l)

!
� g

 
C �Â

l

Gc(l)

!

Here Gc(l) is the number of clusters of length l in the cluster (C) phase and l and g are the two Lagrange’s multipliers.
This form of configurational entropy is exactly the same as that obtained in Ref.?? in context of cluster size distribution for PEP
process. For our system, apart from the configurational entropy, due to the internal energy contribution coming CIL interaction,
the steady state configuration is determined by minimization of Helmholtz Free energy F instead of simply maximizing the
configurational entropy. The corresponding expression for Helmholtz Free energy (F) comprising of the internal energy of the
clusters and the configurational entropy contribution of the dense clusters is,

F =


J1/2

1+ eJ1/2

�
Â

l

lGc(l)� ln


C !

’l Gc(l)!

�
+l

 
Nc �Â

l

lGc(l)

!
+ g

 
C �Â

l

Gc(l)

!

The corresponding expression for dF is

dF = Â
l


lnGc(l)+

✓
l +

J1/2
1+ eJ1/2

◆
l + g

�
dFc(l) (10)

We set dF = 0. For independent variations of dGc(l), we obtain an exponential form ,

Gc(l) = Ace
�l/lc (11)

Similar argument for the gas(g) phase yields Gc(l) -the number of clusters of length l, with the corresponding form being,

Gg(l) = Age
�l/lg (12)

In order to fix the constants, Ag, Ac, lg and lc, following considerations have to be taken into account :
(a) The total number of clusters in the gas phase must equal total number of clusters in the dense cluster phase. This implies,

Â
l

Gc(l) = Â
l

Gg(l) =C (13)

(b) The total number sites occupied by clusters in the gas phase together with the total number sites occupied by clusters in the
dense cluster phase must equal total number of lattice sites. This implies,

Â
l

lGc(l)+Â
l

lGg(l) = N (14)
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Figure 6. (a) Comparison of the average cluster size in the "cluster phase" obtained by Monte Carlo simulations with
expression in Eq. (20). Here J1 = 4, J2 = 0 and r = 0.5. MC simulations where done with L = 1000 and averaging was done
over 2500 samples.

where Pm = Âm

i=1 si, is the net polarization of a cluster of size m , obtained by summing over the polarization states si = ±1,
of the particles constituting the cluster. In the absence of CIL interaction, when Q << 1, this measure is identical to RMS
fluctuation of a binomial distribution and which is equal to m

�1/2 ( Fig.8a and 8b). We find that for Q >> 1 ( corresponding to
high activity), in the absence of CIL interaction, for relatively small cluster sizes, there is a negative deviation of SF compared
to m

�1/2, although for sufficiently large clusters, it merges with the form corresponding to Binomial distribution (Fig.6c).
Interestingly, in the presence of CIL interaction for which J1 is high ( and J2 = 0), both for the case of high and low activity, for
range of cluster sizes, SF does not fall as m

�1/2 and instead remains virtually unchanged ( Fig.8d and 8e). However the cases of
high and low activity is distinguished by the fact that the formation of large size clusters is much more prevalent when activity
is high as compared to the case when activity is low. Its worthwhile to point out that when the activity is high, the effect of CIL
with J1 6= 0 and J2 = 0 is to stabilize large size clusters leading to an increase in average size of clusters as compared to the
case without CIL. This maybe qualitatively understood in the following manner. High value of J1 leads to a propensity for local
ordering within a cluster. Now due to the translation dynamics, input of particles to a such a cluster leads to a tendency to form
of defect ( a pair of oppositely polarized particles) within the bulk, and such defects have a tendency to remain trapped within
bulk of the cluster. A typical configuration in such a case would have a form,

!!!!!!   

Such a cluster would be stable to disintegration since the polarity of the particles at left end of the cluster is such that it points
inwards and similarly the polarity of the particles at the right end also tend to point inwards. In fact further addition at the
cluster ends would only result in further increase of the size. Fig.3c shows a typical time snap shot of the steady configuration of
the clusters in the lattice, showing the prevalence of the kind of configurations described, and which arises due to the tendency
of having local order within the cluster and the consequent jamming of the defects. Obviously this tendency of jamming of the
defect in the bulk of a cluster would not occur in the absence of CIL with non-zero J1. However, CIL interaction for which
J2 6= 0 while J1 = 0 has an opposite effect. For this case, effect of increasing J2 leads to a tendency of an "anti-ferromagnetic"
like order within the cluster such that the polarity of the particles at ends of the cluster are preferentially pointed outwards,
which is turn would lead to a tendency of cluster to disintegrate at both the ends, leading to a decrease in average size of the
cluster when compared to the case when both J1 = J2 = 0 ( No CIL) case for a fixed value of Q.

2.5 Effect of external field on cluster characteristics

We incorporate a the effect of an external field h whose effect is to aid translation of right end directed (!) particles and
oppose motion of left end directed ( ) particles. Effectively the hopping rate of the (!) particle becomes a+h, while for
( ) particles, hopping rate is a�h. As long as h < a, the natural direction of movement of both (!) and ( ) particles is
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Approximate expression for average cluster size

J1 = 4, J2 = 0 and ρ = 0.5 
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Polarization characteristics within Cluster 

(c) If fc and fg are the number density of particles in dense cluster region and gas region, with hlci and hlgi being the average
length of the dense cluster and gas region, then the overall particle density f should be such that,

hlcifc + hlgifg = (hlci+ hlgi)f (15)

(d) If the hopping rate is much larger than switching rate be
J1 , the gas region has typically very low density of particles so

that fg is small. When a switching event at the boundary of dense cluster occurs, there would be emission of particle into the
gas region. This will lead to production of dimer within the gas region which is between two dense cluster region. Following
the prescription proposed in Ref.24, we invoke the condition that in the limit of Q >> 1, the steady state is determined by

the condition of matching the production rate of dimer with dimer disintegration rate. The production of a dimer in the gas
region would occur when a particle each from the two dense cluster regions adjoining the gas region switch their polarity and
meet in the gas region to form a dimer. Thus the rate of production of dimer should be proportional to b

2 , the average time (
hti ⌘ hlgi/a) required for particle to travel from one dense cluster region to the next one through the gas region, as well as the
total number of clusters in the gas region. Thus the overall production rate of dimers W

p

2 would be,

W
p

2 = b
2 hlgi

a
Â

l

Gg(l) (16)

A typical configuration of a dimer would be (!)( ). The disintegration of a dimer would occur when either of the particles
of the 2 particle dimer cluster switches their direction of polarity. While in the absence of CIL interaction, the switching rate is
b, in the presence of CIL interaction, the switching rate is be

J1/2. Thus the overall disintegration rate of the dimer clusters is,

W
c

2 = 2be
J1/2

Gc(2) (17)

For steady state, we equate Eq.16 and Eq.17 to obtain, the condition,

2Qe
J1Gc(2) = hlgiÂ

l

Gg(l) (18)

Additionally, in steady state, the flux of particle from gas region to cluster region must equal flux of particles from dense
cluster region, for the domain wall separating the gas and dense cluster region to be stable. While the incoming flux into the
cluster region at the boundary is simply afg/2, the outgoing flux is due to the switching of the particle at the boundary of the
dense cluster phase and is thus equal to b. This condition is equivalent to,

fg = 2/Q (19)

2.3.2 Mean Cluster size

:
Using conditions, Eq.13, Eq.14, Eq.15 and Eq.18, by first converting the summations into integrals, we obtain a set of

equations involving lg, lc, Ac and Ag. After simplification, we finally obtain a quadratic equation in terms of average cluster size
in dense cluster phase, hmci, which we solve to obtain,

hmci= 1+

s

1+2Q

✓
f �2/Q

1�f

◆
eJ1/2 (20)

In Fig.6 we show the comparison of value of hmci obtained using this expression with MC simulations.

2.4 Polarisation characteristics within Cluster

In order to understand the effect of CIL interaction on the polarization of the individual clusters, we look at root-mean square
(RMS) fluctuation of the polarization for different cluster sizes. We define RMS relative fluctuation of the polarization of a
cluster of size m in terms of

SF =
1
m

vuut
 

m

Â
i=1

si

!2

(21)
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Figure 7. (a) Plot of RMS Fluctuation of Polarization in a cluster of size m (SF ) vs Cluster size (m) : (i) No CIL and low Q (
Q = 0.1), (ii) No CIL and high Q (Q = 30), (iii) J1 = 7 and low Q ( Q = 0.1) , (iv) J1 = 7, high Q ( Q = 30). The binomial
distribution corresponds to solid black line. (b) The corresponding log-log plot for (a). Here J2 = 0, with r = 0.8. MC
simulations where done with L = 1000 and averaging was done over 2000 samples.

retained. When h = a, the � ended particles do not move. For h > a, both (!) and ( ) particles move in the same direction (
counterclockwise) on the lattice. For the case of relatively low activity, when h < a, increasing h has the effect of marginal
increase of the average cluster size. In general the cluster size is not significantly altered ( See Fig.9a and Fig.9b). On the other
hand, when activity is high ( See Fig. 9c and Fig.9d), average cluster size varies non monotically on increasing h. As h is
increased starting from h = 0, the average cluster size decreases initially. However for sufficiently high strength of external
field h, the the average cluster size again starts increasing and the corresponding distribution function of the cluster size starts
broadening with increase in h. As h approaches the hopping rate a, average cluster size sharply increases. Finally when h = a (
for which the ( ) particles stop moving), the cluster size distribution becomes broadest, with average cluster size increasing
drastically (around 2.5 times the average cluster size for h = 0). When h is increased further (h > a), not only do (!) particles
and ( ) particles move in the same direction, the corresponding average cluster size monotically decreases with increase in h (
See Fig.10a and Fig.10b).

Discussion

In this paper we have studied a minimal discrete driven lattice gas model which mimics the phenomenology of CIL interactions
between cells and the movement of the cells in confined in 1D channel. While experiments performed using micro-patterned 1
dimensional collision assays allow for quantitative measurement of CIL interactions, we focus our attention on the collective
organization of the cells in such confined geometry arising from the interplay of movement and CIL interaction between
the cells. In the absence of movement ( akin to dense packing of cells in 1D array), we show that the model reduces to an
equilibrium spin model which does not possess Z2 symmetry like Ising model. We solve this model exactly both in the presence
and absence of an external field which couples to the individual polarization of the cell. For the more general case, numerical
Monte Carlo simulations reveal that in general the cluster size distribution is exponentially distributed for the large size cluster.
The typical cluster size and the distribution function is controlled by CIL strength and strength of activity. Effect of increasing
activity and CIL strength leads to increase in the size of the clusters. For high activity ( high Q) we show that the system can
effectively be mapped on to an equivalent equilibrium system and can be described in terms of an effective Helmholtz Free
energy and the steady state cluster size distribution and the corresponding average size of the clusters are determined by the
condition of minimizing the free energy.

While in our present work we have focused solely on the interplay of cell movement and CIL interaction between cells,
and as such treated the cells as hard objects, its worthwhile to point out that apart from repolarization events, adhesion of the
colliding cells and the relatively rare event of cells walking past each other has also been observed7, 8. Cells are contractile
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MC simulations where done with L = 1000 and averaging was done over 2000 samples.
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Effect of external field on cluster characteristics 

• The hopping rate of the (→) particle becomes a + h, while for (←) particles, hopping rate is a − h 

• Average cluster size varies non-monotically on increasing h 

• As h approaches the hopping rate a, average cluster size sharply increases. 
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CONCLUSION & OUTLOOK

• Average cluster size depends non-monotically on CIL strength.

• Corresponding contour plot exhibits a ‘re-entrant’ like behavior.  

•  For Q >> 1 limit, an approximate expression for average cluster size obtained.

• For the confluent state ( no vacancies), an exactly solvable model discussed
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• How does interplay of CIL with cell-cell adhesion and alignment manifest itself ?

• Generalization to 2D, and comparison with Continuum Hydrodynamic models.

• We do not observe any MIPS transition 
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