

Sudipto Muhuri
 Savitribai Phule Pune University

Contact Inhibition Location (CIL)

CIL: Directional reorientation of migrating cells when they come in contact with other cells

A. Roycroft \& R. Mayor, Cell. Mol. Life Sci. 73, 1119 (2016)

Cell migration on fibronectin coated 1D substrate

Model to study effect of CIL on cellular organization in 1D

CIL interaction between particles: $\quad H=\sum_{i} J_{1} \Theta\left(\sigma_{i}-\sigma_{i+1}\right)-J_{2} \Theta\left(\sigma_{i+1}-\sigma_{i}\right)$

$\rightarrow \quad \leftarrow \quad E=+J_{1} \quad\left(J_{1}>0\right)$
$\leftarrow \quad \rightarrow \quad \equiv \quad E=-J_{2} \quad\left(J_{2}>0\right)$
$\rightarrow \quad \equiv \quad E=0$
$\leftarrow \quad \leftarrow \quad E=0$
T. Bertrand. et.al, arXiv 2012.00785

Confluent state: A reduced equilibrium model

- When all the adherent cells fill the fibronectin coated strip, it corresponds to a confluent state
- In confluent state, there are no vacancies in the lattice and there is no translation dynamics
- The dynamics is restricted to switching process between different states of polarization of the particles.

Average Energy: $\langle E\rangle=\frac{N \Delta J}{2}\left[\frac{1}{1+\exp (\Delta J / 2)}\right]$ where $\Delta J=J_{1}-J_{2}$

Correlation function: $\quad G(r)=\left(\frac{1-\exp (-\Delta J / 2)}{1+\exp (-\Delta J / 2)}\right)^{r}$

In the limit of $\exp (\Delta J / 2) \gg 1$, the correlation length $\xi \rightarrow \frac{1}{2} \exp (\Delta J / 2)$

For an external field h which couples to polarization ,

Av. Polarization: $\quad m=\frac{\operatorname{Sinh}(h)}{\left[\operatorname{Cosh}^{2}(h)+e^{-\Delta J}-1\right]^{1 / 2}}$

Dynamics \& clustering in presence of vacancies

$\mathbf{Q}=\mathbf{a} / \mathbf{b}$: Ratio of hopping and switching rate

Position along lattice (x)

FIG. 3. Spatio-temporal plot: Time snapshots of distribution of right polarized (+)(blue) and left polarized (-)(red) particles on the lattice. Here $Q=0.1,10,50, J_{1}=4, J_{2}=0$, with $\rho=0.6$. MC simulations where done with $L=1000$

Cluster Size distribution

When $Q \ll 1: \quad P(m)=\left(\frac{1-\rho}{\rho}\right) e^{-m / \xi}$
(Identical for SEP or TASEP)

FIG. 4. (a) Probability distribution of cluster size (m) in low $Q \operatorname{limit}(Q=0.1)$ for different CIL strength: (i) $J_{1}=0.1$, (ii) $J_{1}=3$, (iii) $J_{1}=7$, (iv) Eq. 11 (PDF for TASEP). (b) logplot corresponding to (a). (c) Probability distribution of cluster size (m) in high Q limit ($Q=30$) for different CIL strength: (i) $J_{1}=0.1$, (ii) $J_{1}=3$, (iii) $J_{1}=7$. (d) logplot corresponding to (c). For all cases, $J_{2}=0, \rho=0.8, N=1000$. MC simulations are performed and averaging is done over 2500 samples.

Contour map of variation of mean cluster size $\langle\boldsymbol{m}\rangle$ with ΔJ and Q

- System exhibits 're-entrant' behavior for cluster size as function of $J 1$ when $\Delta J \neq 0$

Increasing CIL may increase av. Cluster size!

- For $Q \gg 1$ limit, the average cluster size $\langle m\rangle \sim Q^{1 / 2}$
- Average cluster size is a monotonically increasing function of Q

Mapping to an equivalent equilibrium process when $\mathbf{Q} \gg 1$

- The system comprises of alternate regions of dense Cluster phase (c) \& low density gas (g) phase.
- In this limit inter cluster interaction is weak and they evolve independently.
- Problem gets mapped to an equivalent equilibrium process for the sizes of clusters.
- Cluster size distribution is obtained by minimization of Helmholtz Free Energy

Average energy : $\langle E(l)\rangle=\frac{l}{2}\left[\frac{J_{1}}{1+e^{J_{1} / 2}}\right]$, when $J_{2}=0$
Configurational Entropy: $\quad S=\ln \left[\frac{C!}{\prod_{l} G_{c}(l)!}\right]-\lambda\left(N_{c}-\sum_{l} l G_{c}(l)\right)-\gamma\left(C-\sum_{l} G_{c}(l)\right)$
$N_{c}=\#$ of particles in c phase
$G_{C}=\#$ of clusters of size I
$C=\#$ of clusters

Helmholtz Free energy

$$
F=\left[\frac{J_{1} / 2}{1+e^{J_{1} / 2}}\right] \sum_{l} l G_{c}(l)-\ln \left[\frac{C!}{\prod_{l} G_{c}(l)!}\right]+\lambda\left(N_{c}-\sum_{l} l G_{c}(l)\right)+\gamma\left(C-\sum_{l} G_{c}(l)\right)
$$

Approximate expression for average cluster size

$$
\left\langle m_{c}\right\rangle=1+\sqrt{1+2 Q\left(\frac{\rho-2 / Q}{1-\rho}\right) e^{J_{1} / 2}}
$$

- Average cluster size $\sim \sqrt{Q}$

Polarization characteristics within Cluster

$$
S_{F}=\frac{1}{m} \sqrt{\left(\sum_{i=1}^{m} \sigma_{i}\right)^{2}}
$$

Figure 7. (a) Plot of RMS Fluctuation of Polarization in a cluster of size $m\left(S_{F}\right)$ vs Cluster size (m) : (i) No CIL and low Q ($Q=0.1)$, (ii) No CIL and high $\mathrm{Q}(Q=30)$, (iii) $J_{1}=7$ and low $\mathrm{Q}(Q=0.1)$, (iv) $J_{1}=7$, high $\mathrm{Q}(Q=30)$. The binomial distribution corresponds to solid black line. (b) The corresponding log-log plot for (a). Here $J_{2}=0$, with $\rho=0.8$. MC simulations where done with $L=1000$ and averaging was done over 2000 samples.

Effect of external field on cluster characteristics

- The hopping rate of the (\rightarrow) particle becomes $a+h$, while for (\leftarrow) particles, hopping rate is $\boldsymbol{a} \boldsymbol{-} \boldsymbol{h}$

Figure 9. (a) Plot of Cluster size distribution function for low $\mathrm{Q}(\mathrm{Q}=1$) with $a=1$: (i) $\mathrm{h}=0$, (ii) $\mathrm{h}=0.2$, (iii) $\mathrm{h}=0.5$, (iv) $\mathrm{h}=$ $0.9,(v) h=1$. (b) The corresponding logplot for (a). (c) Plot of Cluster size distribution function for high $Q(Q=50)$ with $a=50$: (i) $\mathrm{h}=0$, (ii) $\mathrm{h}=25$, (iii) $\mathrm{h}=40$, (iv) $\mathrm{h}=50$. (d) The corresponding logplot for (c). Here $J_{1}=3, J_{2}=0$ and $\rho=0.8$. MC simulations where done with $L=1000$ and averaging was done over 2000 samples.

- Average cluster size varies non-monotically on increasing h
- As h approaches the hopping rate a, average cluster size sharply increases.

CONCLUSION \& OUTLOOK

- For the confluent state (no vacancies), an exactly solvable model discussed
- Average cluster size depends non-monotically on CIL strength.
- Corresponding contour plot exhibits a 're-entrant' like behavior.
- For $Q \gg 1$ limit, an approximate expression for average cluster size obtained.
- We do not observe any MIPS transition
- How does interplay of CIL with cell-cell adhesion and alignment manifest itself ?
- Generalization to 2D, and comparison with Continuum Hydrodynamic models.

Co-workers

Harshal Potdar
SPPU, pune

Ignacio Pagonabarraga
CECAM, UB

Financial Support : ICTP Associates Program (2022-27)

