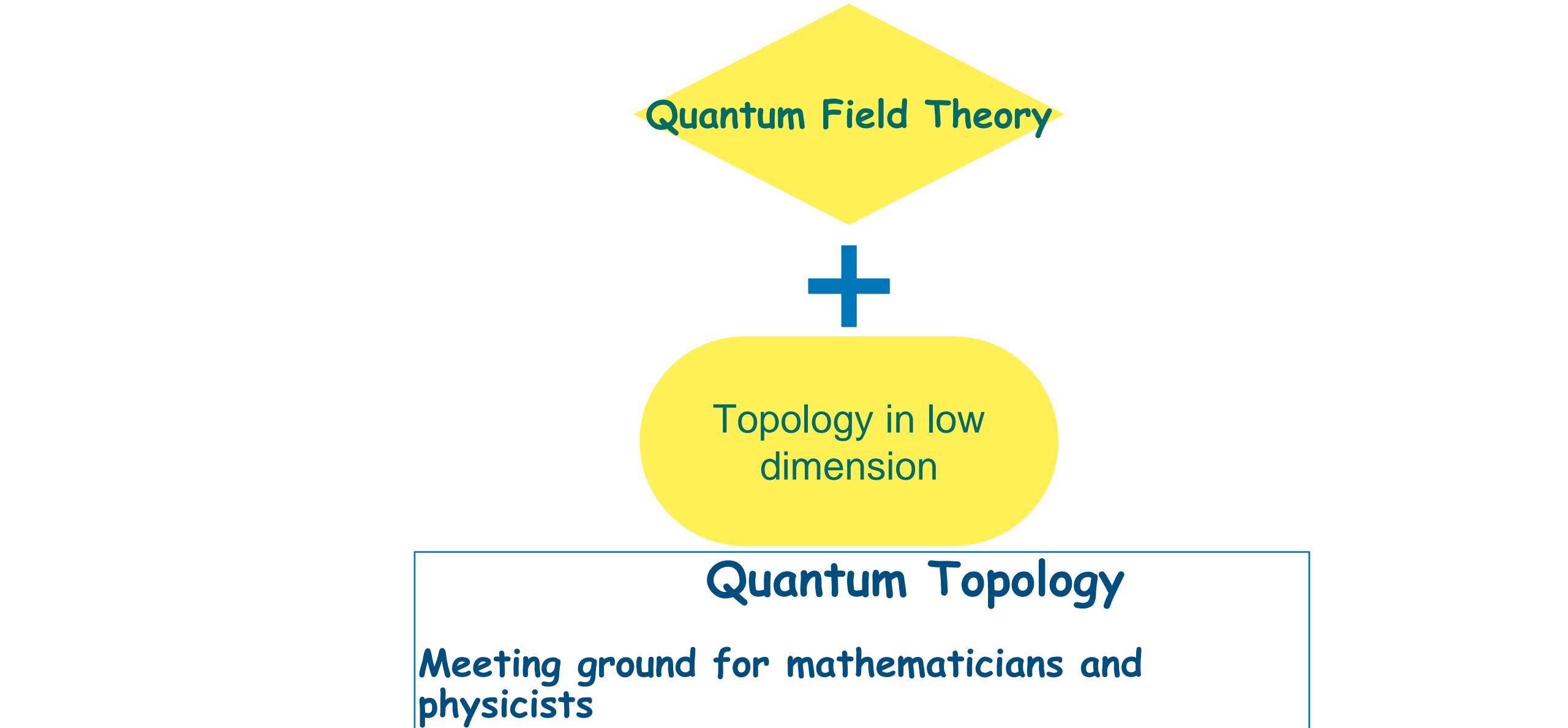


# Quantifying Three-Manifolds (Physicists' and Mathematicians' Perspectives)

Ramadevi Pichai,  
Dept of Physics, IIT Bombay  
30<sup>th</sup> Dec 2025

Women at the Intersection of Mathematics & Physics  
(Dec 29, 2025 –Jan 2<sup>nd</sup>, 2026 )

Based on work with Swatee Naik (arXiv:9901061)  
Commun.Math.Phys. 209 (2000) 29-49



Quantum Field Theory



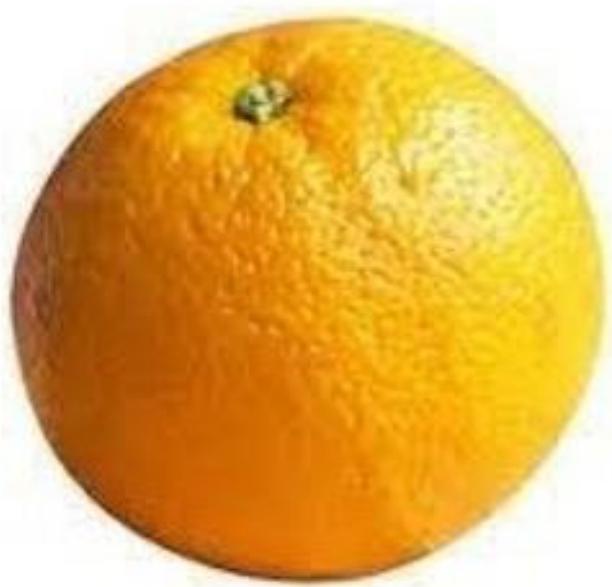
Topology in low  
dimension

Quantum Topology

Meeting ground for mathematicians and  
physicists

Challenging open problems- Machine learning/neural network approach

## Two-dimensional topological spaces



$$S^2 \not\cong T^2$$



Orange surface is  $S^2$  (two-sphere)      Doughnut surface is  $T^2$  (torus)

Euler characteristic  $\chi = V - E + F = 2 - 2g$

Such a mathematical quantity for 3-dimensional manifolds?

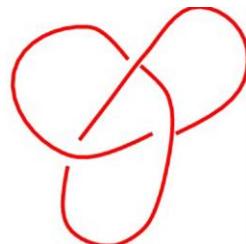
$$S^3, S^2 \times S^1, S^1 \times S^1 \times S^1, S^3/\Gamma$$

# Fundamental Theorem of Lickorish-Wallace

- Any connected, closed, orientable 3-manifold can be obtained by surgery on a framed knot/link in  $S^3$
- Can we quantify this theorem?

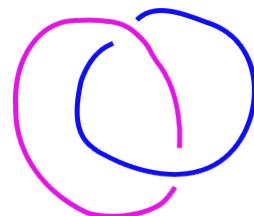
# Definition of a knot/Link

- **Knot** is an embedding of a curve inside 3-manifold:



Trefoil

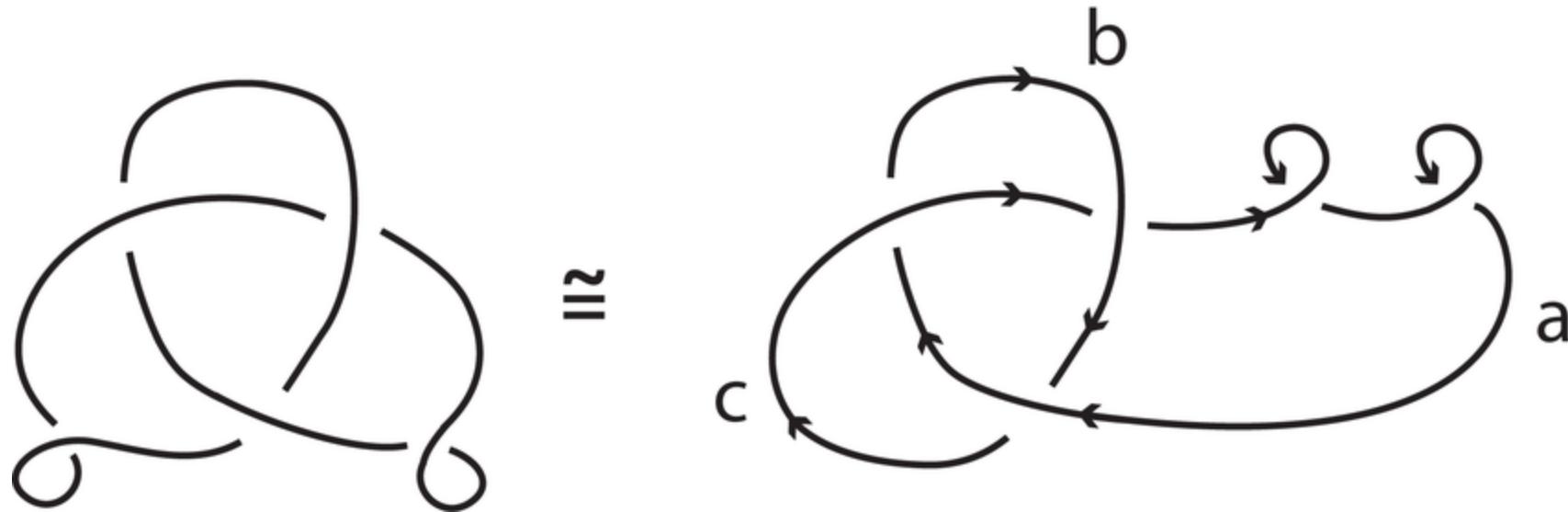
- **Link** is a collection of knots entangled



2-component Hopf-Link

# What is framed knot/link?

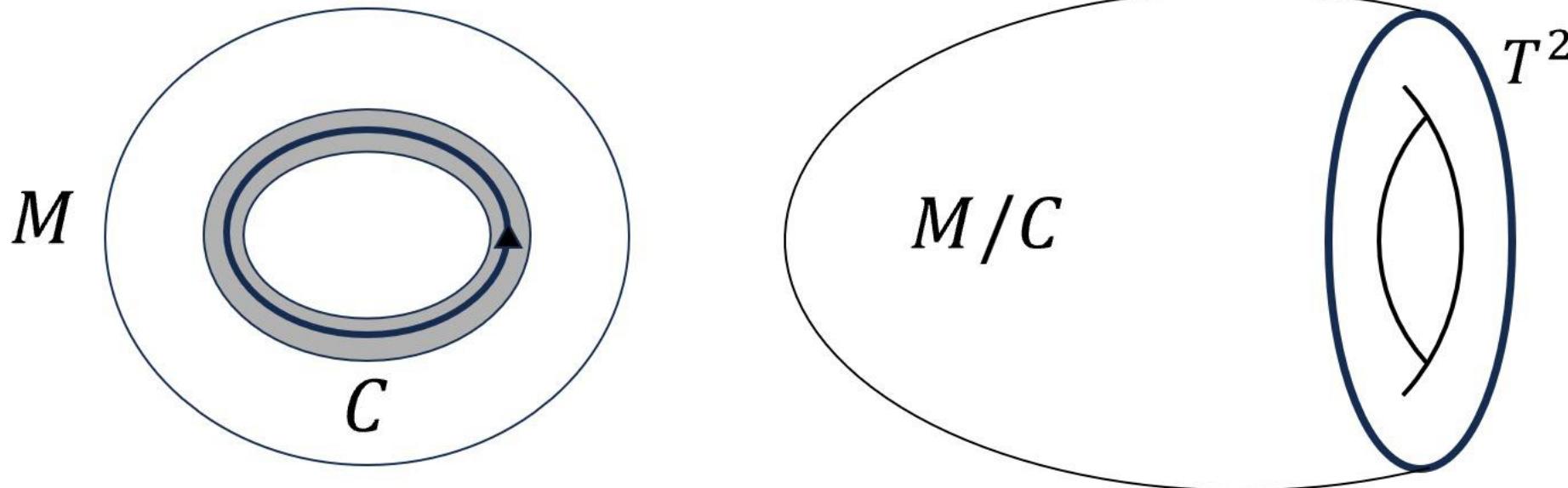
- Framed Knot/Link projected on a black-board frame



- The above knot is **framed trefoil** with framing +1 :  $[T, f=1]$
- Similar framing  $f$  on every component of a link  $L$ :  $[L, f]$

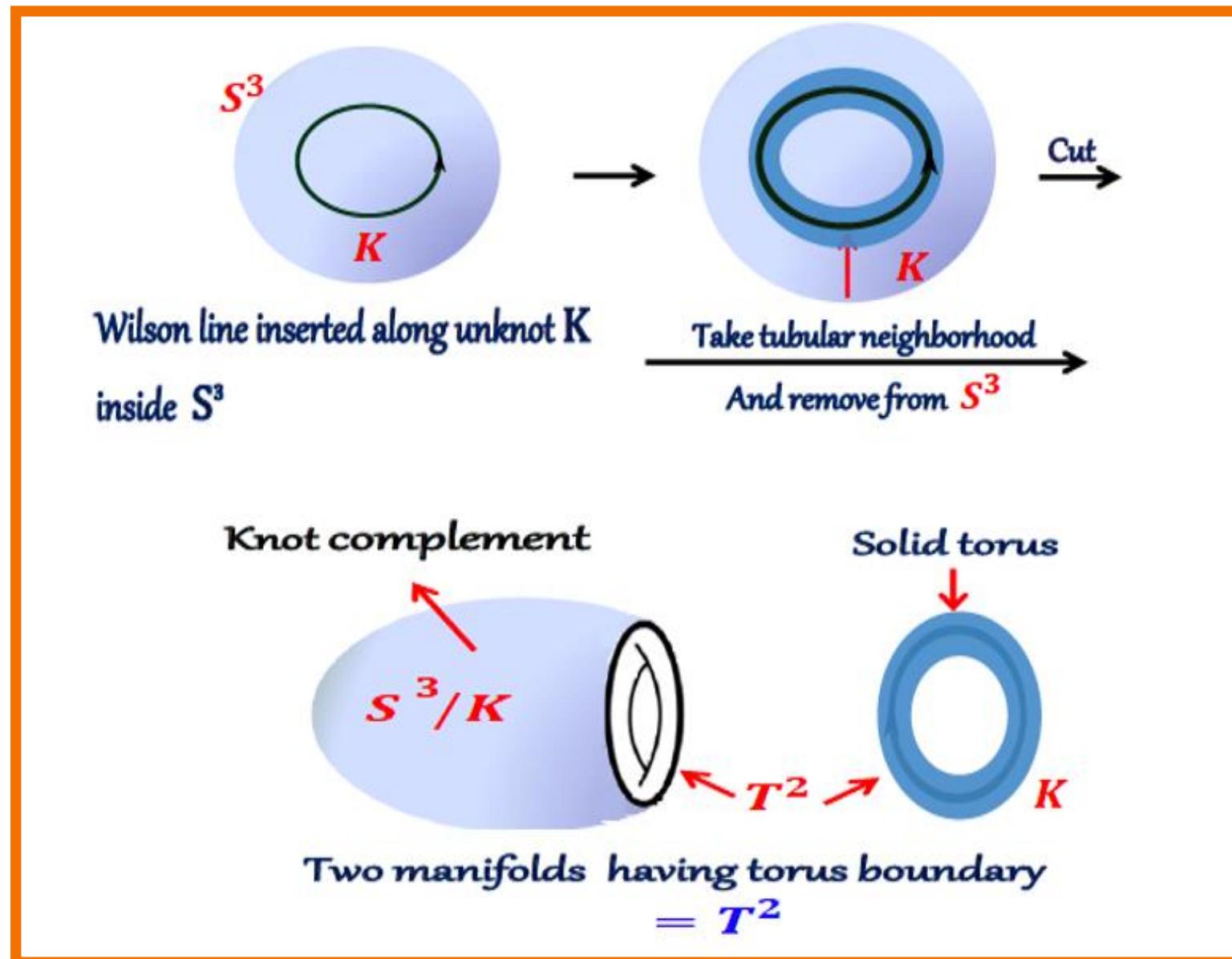
# Surgery of framed knot/link in $M$

- Tubular neighbourhood of a knot  $C$  in a 3-manifold



- Remove this tubular neighbourhood- we call this knot complement  $M/C$

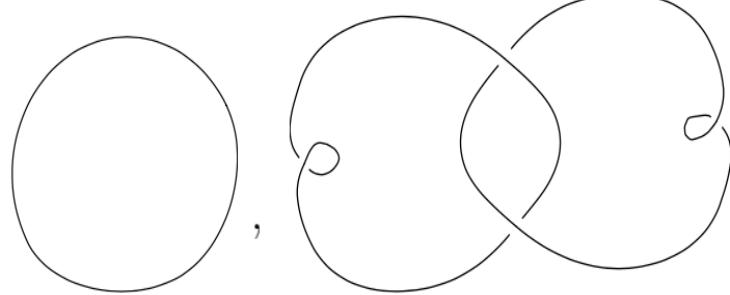
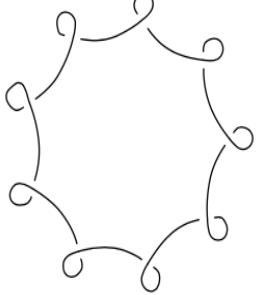
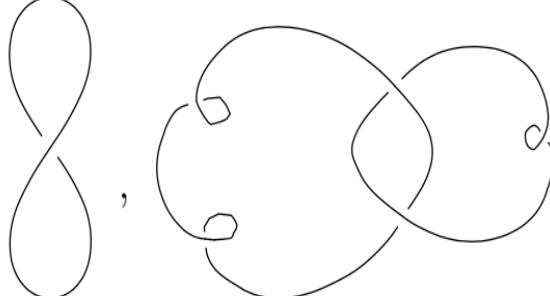
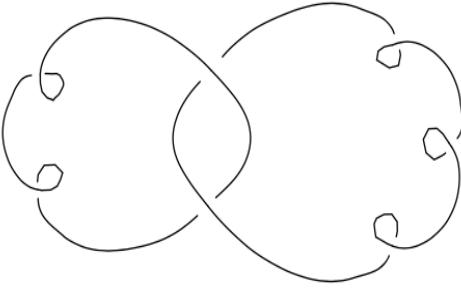
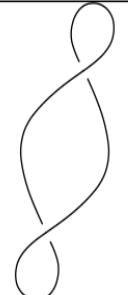
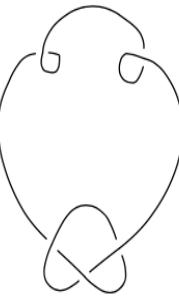
# Three-Manifolds – from Surgery of knots in $S^3$



$$S: \partial(S^3/K) \rightarrow T^2$$

p/r surgery :  $S_{\frac{p}{r}}^3(K)$

# Some examples of 3-manifolds

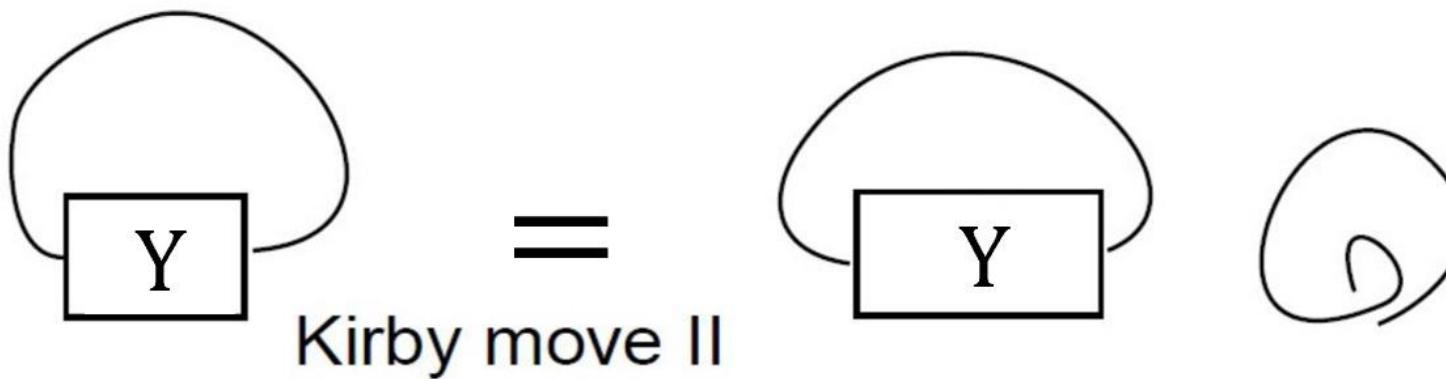
| Framed Link Diagram                                                                | 3-manifold       | Framed Link Diagram                                                                  | 3-manifold     |
|------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|----------------|
|    | $S^2 \times S^1$ |   | $L(9,1)$       |
|   | $S^3$            |   | $L(5,1)$       |
|  | $\mathbb{RP}^3$  |  | $\mathbb{P}^3$ |

framed link corresponding to  $M$  is not unique

# 3-manifolds are same for framed links related by Kirby moves



Kirby move I



Kirby move II

# Strategy to quantify 3-manifolds

- An algebraic expression involving
  - (i) Invariants of the framed links
  - (ii) Homeomorphism map
- Such that the expression is unchanged under Kirby moves
- Then the expression qualifies to be a three-manifold invariant

# Invariants of framed links

- Bracket polynomials  $\langle D_L \rangle$  through a recursive relation

$$\langle \times \times \rangle = A \langle \circ \circ \rangle + A^{-1} \langle \smile \smile \rangle$$

- Proportional to the Jones polynomial

$$\langle D_L \rangle = q^{\left(\frac{3\omega}{4}\right)} J[L, q] | A = -q^{1/4}$$

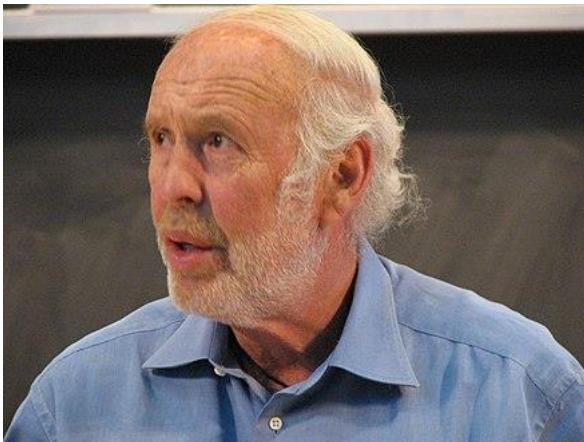
# Invariants of framed links(contd)

- Invariants from Chern-Simons field theory
- Includes Jones polynomials and the new pool of generalized invariants
- Brief overview of Chern-Simons theory

# Chern-Simons Theory

## (Historical remarks)

- This theory was discovered first by Albert Schwarz
- Named after the two mathematicians **Shiing-Shen Chern** and **James Harris Simons** introduced the 3-form term.



Founder of Simons Foundation

April 25, 1938- May 10, 2024

# Chern-Simons Theory- Schwarz type theory



Edward Witten

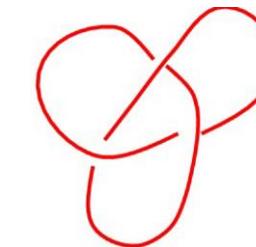
Three-dimensional gauge theory whose partition function

$$Z[M^3] = \int \mathcal{D}A \exp \left[ i \int_{M^3} S(A) \right]$$

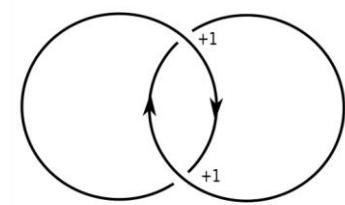
Metric independent

Z[M<sup>3</sup>]: Topological invariant of the three-manifold M<sup>3</sup>

∞ Witten-Reshetikhin-Turaev (WRT) invariant



Trefoil knot



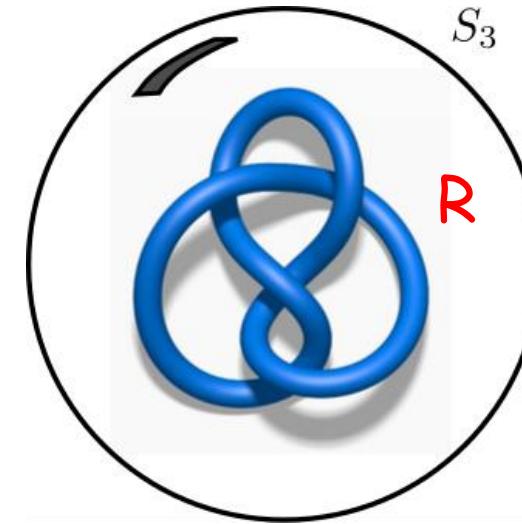
Hopf Link

The expectation value of  
Wilson loop operators

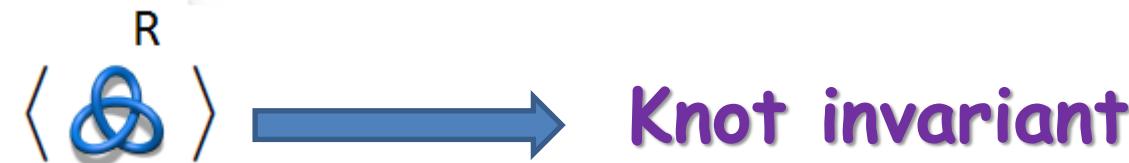
Knot and Link invariants

# Wilson loop operator

$$W_{\underline{R}}[K] = \text{Tr}_{\underline{R}} \exp \oint_K dx^u A_\mu^a T_R^a$$



$T_R^a$  = Generators for representation  $\underline{R}$  of  $SU(N)$



Knot invariant

|         | $R = \square$ (fundamental) | Higher rank representation |
|---------|-----------------------------|----------------------------|
| $SU(2)$ | Jones Polynomial            | Colored Jones              |
| $SU(N)$ | HOMFLY-PT Polynomial        | Colored HOMFLY-PT          |

$$J(\text{Jones}, q) = q + q^3 - q^4$$

$$J_n(K, q) \quad n \equiv \overbrace{\text{---}}^{n-1}$$

Variables:  $q = e^{\frac{2\pi i}{k+N}}$ ,  $a = q^N$

## Colored framed link invariants

$$P_{n_1, n_2, \dots} [L, f] = q^{3\omega/4} J_{n_1, n_2, \dots} [L, f]$$

Colored framed link invariants

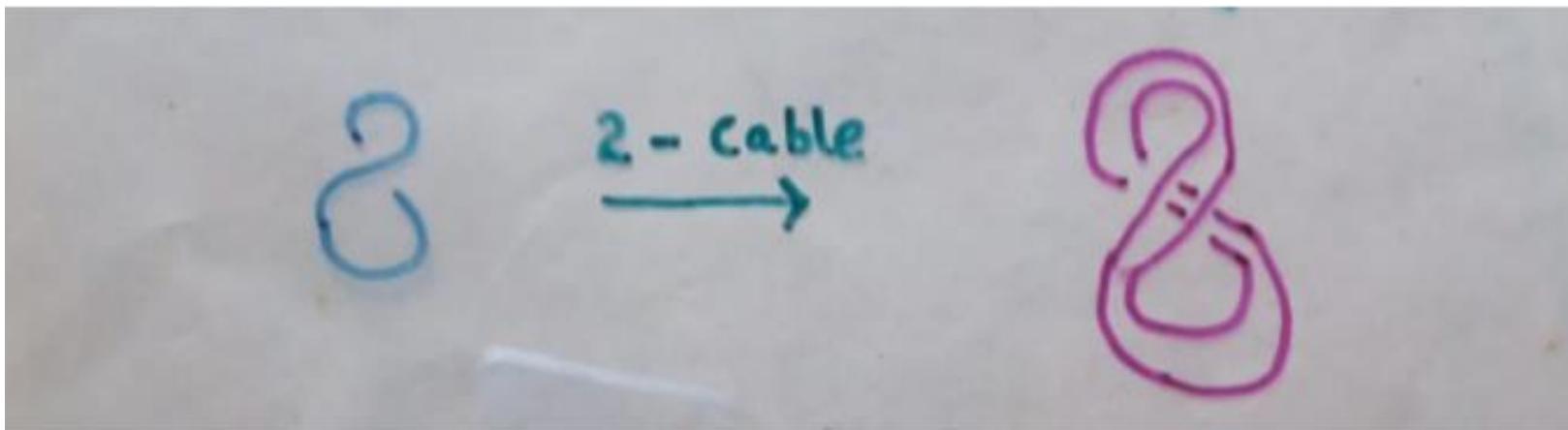
$$P_{n_1, n_2, \dots} [L, f] = q^{3\omega/4} J_{n_1, n_2, \dots} [L, f]$$

Bracket polynomial

$$\langle D_L \rangle | A = -q^{\frac{1}{4}} = P_{2, 2, \dots} [L, f]$$

## Two different looking 3-manifold invariants

- I ) Lickorish invariant  $F_\ell[M]$  involve
  - (i) bracket polynomials of the framed links
  - (ii) forces the introduction of **c-cables** of framed knot/link  $\langle c * D_L \rangle$



## Two different looking 3-manifold invariants(contd)

- I ) Lickorish invariant

$$F_\ell[M] \propto \sum_c \lambda_c \langle c * D_K \rangle$$

where  $A$  is 4rth root of unity &

$$c = [1, r - 2]$$

## Two different looking 3-manifold invariants (contd)

- II) Kaul invariant  $F_k[M]$  involves
  - (i)colored framed link invariants in  $SU(2)$

Chern-Simons theory:

- $F_k[M] \propto \sum_n \mu_n P_n[K, f]$
- Here  $n \leq k + 1$

## Two different looking 3-manifold invariants (contd)

- We validated that

**Cabling = tensor product of spins  $\frac{1}{2}$**

- So  $\langle c * DL \rangle$  can be converted as a linear combination of colored framed link invariants
- Indeed we verified in the paper [with Swatee Naik (arXiv:9901061)]
- $$F_k[M] \propto F_\ell[M]$$

Thank You