Computer Engineered 2D Materials: *Host for Unconventional Properties*

Tanusri Saha-Dasgupta

t.sahadasgupta@gmail.com

S. N. Bose National Centre for Basic Sciences, Kolkata, India

Players:

Rajdeep Biswas (SNB)

Koushik Pradhan (SNB) Prabuddha Sanyal Shiladitya Karmakar (SNB -> Czech Academy of Sciences)

(MAKUT)

Acknowledgement:

Saumya Mukherjee (Diamond light source)

PART I

Robust Half-metallicity and Topological Properties in square-net Potassium Manganese Chalcogenides

The ternary manganese chalcogenide having chemical composition KMnX₂ crystallize in a tetragonal structure, space group $I-4m2$ (No.119), with two formula units per unit cell ($Z=2$).

Synthesis and Structures of New Layered Ternary Manganese Selenides: AMnSe₂ $(A=Li, Na, K, Rb, Cs)$ and $Na₂Mn₂Se₃$

Synthesis and Structures of New Layered Ternary Manganese Tellurides: AMnTe₂ (A = K, Rb, Cs), $Na₃Mn₄Te₆$, and NaMn_{1.56}Te₂

Inorg. Chem. 1999, 38, 2, 235-242

Journal of Solid State Chemistry Volume 146, Issue 1, August 1999, Pages 217-225

Spin-polarized Density of States

➢ *Mn-d states are mostly occupied in the majority spin channel and empty in the minority spin channel, suggestive of a counter intuitive Mn2+ nominal valence with d ⁵ occupancy.*

➢ *In contrast to the essentially non-magnetic nature of X2− anions, the X-p states are found to be strongly spin split, dominating the half-metallic electronic structure close to Ef.*

➢ *The dominance of low-energy X-p states over Mn-d states progressively decreases as one moves from Te to Se to S to O.*

➢ **The moment of Mn and X are opposite!**

- ➢ **Mn should have moment 4µ (d⁴), but Mn has an average moment significantly larger than 4 µ B Bfor Te,Se and S compounds. Also Te,Se,S have significant moment, opposite to that of Mn.**
- **▷ There are ligand holes in KMnX**₂. The ligand hole is prominant for Te, Se and S compounds.

MECHANISM OF MAGNETISM – KINETIC ENERGY DRIVEN TWO SITE DOUBLE EXCHANGE

 $SR₂FEMOO₆$

- □ Half-metallic FM with T_c ~ 450 K
- \Box Large T_c point to large inter-atomic exchange coupling

- □ Counter-intuitive considering the fact that Mo is usually nonmagnetic
- ❑ Exchange interaction between Fe d⁵ via essentially non-mag ions is expected to AF.

Fe

Mo

 Ω

Two Sublattice Double Exchange Mechanism

Sarma, Mahadevan, Saha-Dasgupta et. al., PRL 85, 2549

Key concept is the energy gain contributed by the negative spin polarization of the non-magn. element induced by hybridization

Effective double exchange type model Hamiltonian

- Iron: 3d⁵: Hund's rule: Large (classical) spin S=5/2 : Site-localized.
- Mo: 4d¹: S= -1/2: Mobile electron: gives rise to metallic behaviour.
- Ferrimagnet: $S_{total} = 2$ hopping t_{2a} $\mathrm{t}_{2\mathrm{q}}$ $S=5/2$ **Mo** Fe

➢ **The X-p(up) state is pushed up and the X-p(dw) state is pushed further down by the corresponding states at Mn site.**

 \triangleright The splitting at X site is renormalised by the large splitting at Mn site and the substantial hopping **coupling between Mn and X.**

➢ **For KMnO² the O-p states are not between the Mn-d states, so two sublattice double exchange mechanism is not possible.**

D. D. Sarma, Priya Mahadevan, T. Saha-Dasgupta, Sugata Ray, and Ashwani Kumar Phys. Rev. Lett. 85, 12 (2000)

Exact Diagonalization of Model Hamiltonian

The two sublattice double exchange model Hamiltonian, considering two X atoms and one Mn atom in the basis, is thus given as follows:

➢ *The filling corresponding to actual compounds is 4.8, at which all three compounds exhibit stabilization of the ferromagnetic phase.*

TOPOLOGICAL PROPERTIES

Band Anticrossing

➢ *The crossing at k =(0,0.35,0), between the high symmetry points N and Γ arises due to bands of two different orbital characters, pz and py.*

➢ *Upon inclusion SOC, a band inversion happens, with the bands interchanging their orbital characters.*

➢ *Thus the crossing k=(0,0.35,0) is an "anti-crossing" point.*

Anomalous Hall Conductivity

➢ *The Chern number corresponding to the anti-crossing bands is ONE in each of the three compounds. Thus, the bands forming the anti-crossing, are Chern bands.*

➢ *Berry curvature peaks around the anti-crossing points. AHC arises solely out of the majority spin channel. Chern metal in one spin channel and insulator in other spin channel.*

Monolayer limit: Cleavage Energy Calculation

The cleavage energy is the normalized energy required to generate two (top and bottom) surfaces by cleaving the bulk layered structure.[]*

$$
E_{\text{cleavage}} = [E(d_{\text{sat}}) - E_{g.s}] / A
$$

➢ *Except KMnO² (Ec = 3.05 J/m²) the computed Ec values for KMnX² are reasonably small (0.92,1.31,1.61 J/m² for KMnTe² , KMnSe² ,KMnS² respectively). This strongly suggest that these compounds, except KMnO² , are cleavable.*

➢ *These compounds are not van der Waals compounds, the 2D counterparts may be obtained through chemical etching.*

➢ *The magnetic ground states of the cleaved layers continued to ferromagnetic.*

*** Dipayan Sen et al. PHYSICAL REVIEW B 102, 054411 (2020)**

CONCLUSION

- Robust half-metallicity in these compounds is driven by two-sublattice double exchange mechanism that arises due to positioning of essentially non-magnetic $X-p$ levels within the strongly spin-split levels of Mn $S = 5/2$.
- These compounds are topological half-metals, with a metallic character of nontrivial topology in one spin channel and an insulating character in the other spin channel.

Chern half-metals – Route to Topological Quantum Spintronics

Dimensionality reduction may open up exotic physics!

PHYSICAL REVIEW B 107, 155115 (2023)

Robust half-metallicity and topological properties in square-net potassium manganese chalcogenides

Koushik Pradhan,¹ Prabuddha Sanyal,² and Tanusri Saha-Dasgupta $\mathbb{D}^{1,*}$

¹Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, West Bengal 700106, India

²Department of Applied Physics, Maulana Abul Kalam Azad Univeristy of Technology, West Bengal 700064, India

(Received 5 January 2023; revised 26 March 2023; accepted 28 March 2023; published 7 April 2023)

PART II

Giant Rashba Effect and Non-linear Anomalous Hall Conductivity in 2D Janus MXene

[Materials Today Bio](https://www.sciencedirect.com/journal/materials-today-bio)

[Volume 4,](https://www.sciencedirect.com/journal/materials-today-bio/vol/4/suppl/C) September 2019, 100033

[Pharmaceutics](https://www.researchgate.net/journal/Pharmaceutics-1999-4923?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24iLCJwb3NpdGlvbiI6InBhZ2VIZWFkZXIifX0) 15(2):423

Janus 2D structures

ACS Nano 2017, 11, 8, 8192–⁸¹⁹⁸ *[Nature Nanotechnology](https://www.nature.com/nnano)* **volume ¹²**, pages 744–749 (2017)

MAX and MXenes

Port of

J. Mater. Chem. C, 2016, 4, 6500-6509

Chakraborty, Das & Saha-Dasgupta

Comprehensive Nanoscience and Nanotechnology (Second Edition) Volume 1, 2019, Pages 319-330

Emmanuel I. Rashba (1927-)

Ref: Rashba, Sov. Phys. Solid State (1960)

a. TR & IR symmetry intact b. TR broken, IR intact
c. TR intact, IR broken

The momentum-dependent spin splitting (2DEG) subjected to a perpendicular electric field

$$
H_{R} = \mathbf{\alpha}_{R} (k_{y} \mathbf{\sigma}_{x} - k_{x} \mathbf{\sigma}_{y})
$$

$$
\mathbf{\varepsilon}_{k} = (\hbar^{2}k^{2}/2m^{*}) \pm \mathbf{\alpha}_{R}k
$$

Polarization Properties

The Rashba Scale: Emergence of Band Anticrossing as a Design Principle for Materials with Large Rashba Coefficient

Energy (eV)

Energy (eV)

Carlos Mera Acosta, Elton Ogoshi, Adalberto Fazzio, Gustavo M. Dalpian, Alex Zunger

Design principle for A $KSn, Se_{A}(Cm)$ Matter 3, 145-165 (2020)**Rashba coefficients** $\alpha_{\rm R} = 0.6$ eVÅ $\alpha_p = 2E_p/k_p$ Rashba coefficients for the valence band maximum А **Bands do not cross** 0.5 $\sqrt{29}$ meV Energy (eV) 40 Weak Rashba **Strong Rashba** Number of materials $=0.1$ Å **SERVICE STATES OF THE SERVICE STATES** 30 BiTel $(P3mI)$
ICSD 74501 Small α_{ν} 20 -0.5 10 k_{R} X B Momentum k $Bifel(P3mI)$ θ \overline{a} Rashba coefficients vs spin-orbit coupling **Bands anti-crossing** в $\alpha_{\rm R} = 4.6$ eVÅ 80 Weak Rashba Strong Rashba $\sqrt{192}$ meV 0.5 60 A-SOC Large α_{p} $\frac{\text{BiCl}_3(Pmn2_I)}{\text{ICSD }41179}$ GeTe $(R3m)$ $k = 0.08 \text{ Å}$ **ICSD 56040** θ E_{R} K_2 BaCdSb (Pmc2₁) -0.5 **ICSD 422272** k_R Rashba coefficient α_R (eVÅ) $\overline{4}$ 5 Momentum k A

Strong Rashba compounds ($\geq 1.0 \text{ eV}$ A)

Z. Z. Du,^{1,2} Hai-Zhou Lu,^{1,2,*} and X. C. Xie^{3,4,5}

Can one achieve NAHE in absence of external field ? Applications:

Experiments on non-linear Hall effect

- Berry curvature memory device
- Piezoelectric device
- Photo detection device

Nonlinear Hall effects

Z. Z. Du, Hai-Zhou Lu ⊠ & X. C. Xie

Nature Reviews Physics 3, 744-752 (2021)

Evolution of Wannier Charge Centers along TR-invariant plane kz= 0 line

CONCLUSION - II

COMPOSITE QUANTUM MATERTIALS

Highlights Recent Accepted Collections Authors Referees Search Press About **Editorial Team**

Giant Rashba effect and nonlinear anomalous Hall conductivity in a two-dimensional molybdenum-based Janus structure

Shiladitya Karmakar, Rajdeep Biswas, and Tanusri Saha-Dasgupta Phys. Rev. B 107, 075403 - Published 6 February 2023

Application in spintronics devices through interface engineering

Berry curvature memory device

Janus MXene

RR