Computer Engineered 2D Materials: *Host for Unconventional Properties*

Tanusri Saha-Dasgupta

<u>t.sahadasgupta@gmail.com</u> S. N. Bose National Centre for Basic Sciences, Kolkata, India

Players:

Koushik Pradhan (SNB)

Rajdeep Biswas (SNB)

Shiladitya Karmakar (SNB -> Czech Academy of Sciences) Prabuddha Sanyal (MAKUT)

Acknowledgement:

Saumya Mukherjee (Diamond light source)

PART I

Robust Half-metallicity and Topological Properties in square-net Potassium Manganese Chalcogenides

The ternary manganese chalcogenide having chemical composition KMnX₂ crystallize in a tetragonal structure, space group I-4m2 (No.119), with two formula units per unit cell (Z=2).

Synthesis and Structures of New Layered Ternary Manganese Selenides: *A*MnSe₂ (*A*=Li, Na, K, Rb, Cs) and Na₂Mn₂Se₃

Synthesis and Structures of New Layered Ternary Manganese Tellurides: $AMnTe_2$ (A = K, Rb, Cs), $Na_3Mn_4Te_6$, and $NaMn_{1.56}Te_2$

Inorg. Chem. 1999, 38, 2, 235-242

Journal of Solid State Chemistry Volume 146, Issue 1, August 1999, Pages 217-225

Spin-polarized Density of States

Mn-d states are mostly occupied in the majority spin channel and empty in the minority spin channel, suggestive of a counter intuitive Mn²⁺ nominal valence with d⁵ occupancy.

> In contrast to the essentially non-magnetic nature of X^{2-} anions, the X-p states are found to be strongly spin split, dominating the half-metallic electronic structure close to Ef.

The dominance of low-energy X-p states over Mn-d states progressively decreases as one moves from Te to Se to S to O.

The moment of Mn and X are opposite!

Mn should have moment 4μ_B(d⁴), but Mn has an average moment significantly larger than 4 μ_B for Te,Se and S compounds. Also Te,Se,S have significant moment, opposite to that of Mn.

 \succ There are ligand holes in KMnX₂. The ligand hole is prominant for Te, Se and S compounds.

MECHANISM OF MAGNETISM – KINETIC ENERGY DRIVEN TWO SITE DOUBLE EXCHANGE

SR₂FEMOO₆

- ❑ Half-metallic FM with T_c ~ 450 K
- Large T_c point to large inter-atomic exchange coupling

Counter-intuitive considering the fact that Mo is usually nonmagnetic

Exchange interaction between Fe d⁵ via essentially non-mag ions is expected to AF.

Fe

Mo

0

Two Sublattice Double Exchange Mechanism

Sarma, Mahadevan, Saha-Dasgupta et. al., PRL 85, 2549

Key concept is the energy gain contributed by the negative spin polarization of the non-magn. element induced by hybridization

Effective double exchange type model Hamiltonian

- Iron: 3d⁵: Hund's rule: Large (classical) spin S=5/2 : Site-localized.
- Mo: 4d¹: S= -1/2: Mobile electron: gives rise to metallic behaviour.

The X-p(up) state is pushed up and the X-p(dw) state is pushed further down by the corresponding states at Mn site.

> The splitting at X site is renormalised by the large splitting at Mn site and the substantial hopping coupling between Mn and X.

For KMnO₂ the O-p states are not between the Mn-d states, so two sublattice double exchange mechanism is not possible.

D. D. Sarma, Priya Mahadevan, T. Saha-Dasgupta, Sugata Ray, and Ashwani Kumar Phys. Rev. Lett. 85, 12 (2000)

Exact Diagonalization of Model Hamiltonian

The two sublattice double exchange model Hamiltonian, considering two X atoms and one Mn atom in the basis, is thus given as follows:

> The filling corresponding to actual compounds is 4.8, at which all three compounds exhibit stabilization of the ferromagnetic phase.

TOPOLOGICAL PROPERTIES

Band Anticrossing

> The crossing at k = (0, 0.35, 0), between the high symmetry points N and Γ arises due to bands of two different orbital characters, pz and py.

> Upon inclusion SOC, a band inversion happens, with the bands interchanging their orbital characters.

> Thus the crossing k=(0,0.35,0) is an "anti-crossing" point.

Anomalous Hall Conductivity

The Chern number corresponding to the anti-crossing bands is ONE in each of the three compounds. Thus, the bands forming the anti-crossing, are Chern bands.

> Berry curvature peaks around the anti-crossing points. AHC arises solely out of the majority spin channel. Chern metal in one spin channel and insulator in other spin channel.

Monolayer limit: Cleavage Energy Calculation

The cleavage energy is the normalized energy required to generate two (top and bottom) surfaces by cleaving the bulk layered structure.[*]

Except $KMnO_2$ (Ec = 3.05 J/m²) the computed Ec values for $KMnX_2$ are reasonably small (0.92,1.31,1.61 J/m² for $KMnTe_2$, $KMnSe_2$, $KMnS_2$ respectively). This strongly suggest that these compounds, except $KMnO_2$, are cleavable.

➤ These compounds are not van der Waals compounds, the 2D counterparts may be obtained through chemical etching.

The magnetic ground states of the cleaved layers continued to ferromagnetic.

* Dipayan Sen et al. PHYSICAL REVIEW B 102, 054411 (2020)

CONCLUSION

- Robust half-metallicity in these compounds is driven by two-sublattice double exchange mechanism that arises due to positioning of essentially non-magnetic X-p levels within the strongly spin-split levels of Mn S=5/2.
- These compounds are topological half-metals, with a metallic character of nontrivial topology in one spin channel and an insulating character in the other spin channel.

Chern half-metals – Route to Topological Quantum Spintronics

Dimensionality reduction may open up exotic physics!

PHYSICAL REVIEW B 107, 155115 (2023)

Robust half-metallicity and topological properties in square-net potassium manganese chalcogenides

Koushik Pradhan,¹ Prabuddha Sanyal,² and Tanusri Saha-Dasgupta^{1,*}

¹Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata, West Bengal 700106, India

²Department of Applied Physics, Maulana Abul Kalam Azad University of Technology, West Bengal 700064, India

(Received 5 January 2023; revised 26 March 2023; accepted 28 March 2023; published 7 April 2023)

PART II

Giant Rashba Effect and Non-linear Anomalous Hall Conductivity in 2D Janus MXene

Materials Today Bio

Volume 4, September 2019, 100033

Pharmaceutics 15(2):423

Janus 2D structures

ACS Nano 2017, 11, 8, 8192–8198

Nature Nanotechnology **volume 12**, pages 744–749 (2017)

MAX and MXenes

M ₂ X	Synthesis	Theory		
M2c	Ti ₂ C, Sc ₂ C, V ₂ C, Cr ₂ C, Mo ₂ C, W ₂ C, Zr ₂ C, Ta ₂ C, Nb ₂ C, Hr ₂ C,	Ti ₂ C, Sc ₂ C, V ₂ C, Cr ₂ C, Mo ₂ C, W ₂ C, Zr ₂ C, Ta ₂ C, Nb ₂ C, Ht ₂ C,		
M ² N	Ti ₂ N, V ₂ N, W ₂ N, Cr ₂ N, Mo ₂ N, Zr ₂ N, Nb ₂ N, Ta ₂ N, Hf ₂ N,	Ti_N, V_N, Sc_N, Cr_N, Mo_N, W_N, Zr_N, Ta_N, Hf_N,		
Mixed	(Ti,V) ₂ C, (Ti,Nb) ₂ C,	^а (Ti,V) ₂ C, ^а Ti ₂ (C,B),		

M3X2	Synthesis	Theory		
$M_{3}C_{2}$	$\begin{array}{l} {{\rm Ti}_{{_{3}}}{\rm C}_{{_{2}}}{\rm ,Sc}_{{_{3}}}{\rm C}_{{_{3}}}{\rm ,V}_{{_{3}}}{\rm C}_{{_{2}}}}, \\ {{\rm Zr}_{{_{3}}}{\rm C}_{{_{2}}}{\rm ,Mo}_{{_{3}}}{\rm C}_{{_{2}}}, \\ {{\rm Ta}_{{_{3}}}{\rm C}_{{_{2}}}{\rm ,Hf}_{{_{3}}}{\rm C}_{{_{2}}}, \end{array} \end{array}$	$\begin{array}{l} {{{\rm{Ti}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\;{{\rm{Sc}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\;{{\rm{V}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\;{{\rm{Cr}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}}}\\ {{{\rm{Zr}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\;{{\rm{Mo}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\;{{\rm{Nb}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}},\\ {{\rm{Ta}}_{{\rm{s}}}}{{\rm{C}}_{{\rm{s}}^{\prime}}} \end{array}$		
M ₃ N ₂	^d Ti ₃ N ₂ ^d Ta ₃ N ₂	$\begin{array}{l} {{\rm Ti}_{3}}{{\rm N}_{2}}, \ {{\rm e}_{{\rm SC}_{3}}}{{\rm N}_{2}}, {{\rm fv}_{3}}{{\rm N}_{2}}, \ {{\rm Cr}_{3}}{{\rm N}_{3}}, \\ {{\rm Ta}_{3}}{{\rm N}_{2}}, \ {{\rm Nb}_{3}}{{\rm N}_{2}}, \ {{\rm Zr}_{3}}{{\rm N}_{2}}, \end{array}$		
Mixed	$\begin{array}{c} (Ti,V)_{3}C_{2},\\ (Cr,V)_{3}C_{3},\\ (Ti,Cr_{2})C_{2},\\ (Ti,Mo_{2})C_{2},\\ ^{b}(Sc,Mo_{3})C_{2},\\ ^{Ti}_{3}(C,N)_{2}, \end{array}$	$ \begin{array}{l} (Ti_{1},Ta)C_{2}, (Ti,Cr_{2})C_{2}, \\ (Ti_{2},Nb)C_{2}, (Ti,Mo_{2})C_{2}, \\ (V,Mo_{2})C_{2}, (V,Cr_{2})C_{2}, \\ (Nb,Cr_{1})C_{4}, (Ta,Mo_{2})C_{2}, \\ (Ta,Cr_{2})C_{2}, (Nb,Mo_{2})C_{3}, \\ (Cs,Mo_{3})C_{3}, \end{array} $		

nthesis	Theory		
	TIC to a we have		
Nb ₄ C ₃ ,	$\label{eq:main_set_s} \begin{split} {}^{k} Ti_{a}C_{a}, {}^{k}Sc_{a}C_{a}, V_{a}C_{a}, {}^{G}Mo_{a}C_{a}, \\ {}^{k}Zr_{a}C_{a}, Nb_{a}C_{a}, \\ Ta_{a}C_{a}, \end{split}$		
, ^h V ₄ N ₃ , ₃'	$Tr_{a}N_{a}, Sc_{a}N_{a}, {}^{h}\!V_{a}N_{a}, {}^{h}Cr_{a}N_{a},$		
o) ₄ C ₃ , lo ₂)C ₃ , b) ₄ C ₃ ,	$\begin{array}{l} (T_{1,y}V_{y})C_{y}, (T_{1,y}Ta_{y})C_{y}, (T_{1,y}Nb_{y})C_{y}, \\ (T_{1,y}C_{y})C_{y}, (T_{1,y}Ma_{y})C_{y}, (V_{y}C_{y})C_{y}, \\ (V_{y}Ma_{y})C_{y}, (V_{y}Nb_{y})C_{y}, (V_{y}Ta_{y})C_{y}, \\ (Nb_{y}Ta_{y})C_{y}, (Nb_{x}C_{y})C_{y}, (Nb_{y}Ma_{y})C_{y}, \\ (Ma_{y}Ta_{y})C_{y}, (Cr_{y}Ta_{y})C_{y}, \end{array}$		
	, NID ₄ C ₃ , , , ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹		

J. Mater. Chem. C, 2016, 4, 6500-6509

Chakraborty, Das & Saha-Dasgupta

Comprehensive Nanoscience and Nanotechnology (Second Edition) Volume 1, 2019, Pages 319-330

Emmanuel I. Rashba (1927-)

Ref: Rashba, Sov. Phys. Solid State (1960)

a. TR & IR symmetry intactb. TR broken , IR intactc. TR intact , IR broken

The momentum-dependent spin splitting (2DEG) subjected to a perpendicular electric field

$$H_{R} = \boldsymbol{\alpha}_{R} (k_{y}\boldsymbol{\sigma}_{x} - k_{x}\boldsymbol{\sigma}_{y})$$

$$\boldsymbol{\varepsilon}_{k} = (\boldsymbol{\hbar}^{2}k^{2}/2m^{*}) \pm \boldsymbol{\alpha}_{R}k$$

Polarization Properties

The Rashba Scale: Emergence of Band Anticrossing as a Design Principle for Materials with Large Rashba Coefficient

KSn₂Se₄ (Cm)

A

Design principle for

Carlos Mera Acosta, Elton Ogoshi, Adalberto Fazzio, Gustavo M. Dalpian, Alex Zunger

Matter 3, 145-165 (2020)

Strong Rashba compounds ($\geq 1.0 \ ev A$)

Z. Z. Du,^{1,2} Hai-Zhou Lu,^{1,2,*} and X. C. Xie^{3,4,5}

Can one achieve NAHE in absence of external field ?

Experiments on non-linear Hall effect

Materials	Dimension	Temperature (K)	Input current frequency (Hz)	Input current maximum (µA)	Output voltage maximum (μV)	Carrier density (cm^{-2}) in 2D (cm^{-3}) in 3D
Bilayer WTe ₂ [24]	2	10-100	10-1000	1	200	$\sim 10^{12}$
Few-layer WTe ₂ [25]	2	1.8 - 100	17-137	600	30	$\sim 10^{13}$
Strained monolayer WSe ₂ [40]	2	50-140	17.777	5	20	$\sim 10^{13}$
Twisted bilayer WSe ₂ [42]	2	1.5-30	4.579	0.04	20000	$\sim 10^{12}$
Corrugated bilayer graphene [41]	2	1.5 - 15	77	0.1	2	$\sim 10^{12}$
Bi_2Se_3 surface [45]	2	2-200	9-263	1500	20	$\sim 10^{13}$

Applications:

- Berry curvature memory device
- Piezoelectric device
- Photo detection device

Nonlinear Hall effects

Z. Z. Du, <u>Hai-Zhou Lu</u> [№] & <u>X. C. Xie</u>

Nature Reviews Physics 3, 744-752 (2021)

Evolution of Wannier Charge Centers along TR-invariant plane kz= 0 line

2

CONCLUSION - II

COMPOSITE QUANTUM MATERTIALS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team

Giant Rashba effect and nonlinear anomalous Hall conductivity in a two-dimensional molybdenum-based Janus structure

Shiladitya Karmakar, Rajdeep Biswas, and Tanusri Saha-Dasgupta Phys. Rev. B **107**, 075403 – Published 6 February 2023

Application in spintronics devices through interface engineering

Rashba Effect

E(k)

Janus MXene

Mot Mo2

Inversion sym.

Breaking

SOC

RR

X

v

Berry curvature memory device

Non-linear Anomalous

Berry Curvature

v

Hall effect