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Reviews:

*Solitons and Instantons, R. Rajaraman, 1982.

« Solitons and Particles, C. Rebbi & G. Soliani, 1985.

 Aspects of Symmetry: Classical Lumps and Their Quantum Descendants, S. Coleman, 1985.
» Cosmic Strings and Other Topological Defects, A. Vilenkin & E.P.S. Shellard, 2000.

* Kinks and Domain Walls, T. Vachaspati, 2006.

(Please see Reviews for further references.)



Most of the lecture drawn from:

 Kinks and Domain Walls, T. Vachaspati, 2006.

Focus — topics related to cosmology.
Missing — quantum properties.

Lectures intended for younger audiences but hope there will be something new for everyone.



Kinks In elementary models
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Other models: e.g. sine-Gordon  V(¢) gz (1= cos(59))




Bogomolnyi method
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General considerations

Domain wall solutions exist if the model has multiple disconnected
degenerate vacua. V(o)

Generically, “degeneracy” is due to a discrete symmetry.
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Spontaneously broken discrete symmetry may imply domain wall solution.



Approximate symmetries
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No static kink solution exists but approximate kink-like objects, “biased kinks”, are
still present in the model and can be relevant in cosmology (discussed later).

More generally, any potential with several disconnected minima (that need not be
degenerate) will have biased kinks that may play a cosmological role.

(Biased) domain walls should be very common in unified models of particle physics.



Kinks in more complicated models (SU(5))

(Relevant to Grand Unified Theories.)

{®, X} SUB) = [SU3) x SU(2) x U(1)]/Z3 x Z>

® is in the adjoint representation of SU(5): 5x5 traceless Hermitian matrix.

1
L ="Tr(D,®)’ 2Tr(XWXW) — V(P)

V(®) = —m*Tr(®?) + h[Tr(P?)]? + ATr(®*) + yTr (%) — V,

Assume cubic term is absent (y=0).
Then there is an additional Z2 symmetry (® to -®) that gets broken.

Simplest example of kink boundary conditions:
d(—o0) x —diag(2,2,2, -3, —3) b(+00) = —P(—00) x diag(2, 2,2, —3, —3)



More Kink solutions

N
O_ = diag(2,2,2, -3, —3
2\/I5 lag( y Ly &y 9 )
Energy is minimized only if: [®+,®—| =0

Three classes of solutions:

o0 — " diag(2.2.2.—3. -3
1 Wir g( )
o) = — " 4iag(2.2.-3.2. -3
+ Wir g( )
o = ——L_diag(2,-3,-3,2,2)



Form of kink solutions
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Three classes of solutions:
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Non-topological kink solutions
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diag(2, 2,2, -3, —3)

Three classes of solutions:
o\ = F'9)MY + F ()M + g@ ()M @

(q) (q) (q) (q)
VI T M@= (as before)

(Note signs compared to topological solutions.)

F_&I)(::OQ) — F1 FSQ)(::QQ) = +1, g(q>(::OQ) — ()

These non-topological solutions are generally unstable.



Space of (topological) kink solutions

d=1 solution results from a 6 dimensional set of boundary conditions.

g=2 solution results from a 4 dimensional set of boundary conditions.

g=2 solution has least energy.

q=1 wall most likely to form but should decay into a q=2 wall.



General picture

Topological kink
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Kink lattices
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Kink-antikink can repel,
depending on internal
space orientation.

Lattice is stable in Sn model but not in gauged SU(5



Kink nodes
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Kink lattice on a circle.



Dynamics of domain walls

Full dynamics — wall motion plus excitations plus radiation — Is given
by the field theory. This may to too detailed for certain applications and

an effective description might suffice. t )
t,x

Position of wall:  X*(7,(, x)

o = XH*(7,(, x) + ENH(1, ¢, x) Nt=normal to wall c
X,U
“Nambu-Goto action” O
. 0
S:/d% —@g Lgelds — U/dSp h|+... o= wall tension \x

hab = G, (X?)0, X X" “induced metric”



Equations of motion
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Ou(V/ |R|R* 0, X7) =7 h* 0, X 0, X"

In Minkowski background (I" = 0):

1
O (R0, X ) - thdaahcd h*9, X = 0

...but equation fails when there are self-intersections or regions of intense
radiation (e.g. from singular points — kinks, cusps, on the wall).
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Some solutions of the Nambu-Goto equations

2= f(r+ (niC+n2x)), n°+n5=1

Solution even in field theory (probably with gravity
included).

. _ B 12
Cylinder:  R(t) = Rocos ( Ro)

T — T0

_ / v dx
e d Sphere: | 417 T R,

2
Sphere in de Sitter background: £ = H—l\/;
1

“catenoid” £R(z) = — cosh(az)
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Gravity - thin planar wall

THY =0(1,0,—1,—1)d(x)
NG,plane
1
ds? = (1 — k| X|)2dt? — dX? — (1 — k| X])2e2(dy® + d2?) | X]| = =(1 — e =lo))
aY
de Sitter in constant x slices. k= 2nGo
Rindler for constanty, zz  ds® = dr° — d¢- . —;\X\)(em — e ")
(1—=6IX]), o,
2—72:(1_‘)(‘)2 S 2K (™ +e)
K

Constant acceleration for particle fixed at constant X.

Particles are repelled from the wall with constant acceleration «x.
(typo in book — x, not 1/x)



Gravity - thin planar wall (bouncing sphere)

1

ds® = (1 — /@\X\)thQ —dX? — (1 — m|X\)262“t(dy2 + sz) X = —(1- e—““”‘)
K

A coordinate transtformation exists such that

ds® = dt3, — dx3, — dyy, — dzy,  (Minkowski metric)

but then the wall I1s located at
1

2

Ty + Yy +2a =t -

which describes a bouncing spherical wall, i.e. one undergoing constant
acceleration.



Gravity - thick walls

Qualitatively not much changes with wall thickness taken into account
unless the wall tension is very large.

Topological inflation if 167Gn* > 1

Some spatial regions are stuck at a maximum of the potential.

Graceful exit in a fixed region if the region slides off the potential.
V()

inflating
region




Spherical wall

Schwarzschild
ds® = dT? — dr® — r*(df* + sin® 0d¢?), r < R(T)

T = (1+ R*)'/? ( — %)

(7 = proper time of wall)
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Cosmology - phase transitions

Cosmological expansion implies a cooling universe, so one
has to deal with thermal corrections in quantum field theory.

0%V
: . 2
Mass matrices: i = 56, i . scalar fields
m = 1',Pq; , spinor fields M2, = eQ(Aa)\b)ijCI)OiCI)Oj . vector fields
Vet (Do, T) Vet (Do, T)
./\/l2 7.‘.2 T=0
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T =0
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...but the detalils of the phase transition are not that important for us.




Cosmology: formation of kinks

Symmetry is all we need.
With symmetry, all degenerate vacua are equally likely.

Therefore populate space with random choices of vacua.

/> case:

In 3 spatial dimensions:
Cluster size 1 2 3 4 6 10 31082
Number 462 84 14 13 1 1 1




Formation of S5 kinks

In 1 spatial dimension.
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Formation of S5 kinks

In 2 spatial dimensions.
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Formation of S5 kinks

In 2 spatial toroidal dimensions.
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Cosmological constraints

A single domain wall in our cosmological volume would contribute
an energy density,

Dwalls ot? /[t NV
Qwa g — ™~ ™~ G { g ~ )\
s = i 3H2/(87G) T ° L

Assuming coupling constants of O(1),

3
0 N N3ty (" 10175 1
VAl T T \m 10435
P P

n < 100 MeV

(Other constraints — CMB, BBN, expansion rate — may be tighter.)



Cosmological scenarios

How can we reconcile the cosmological constraints with the earlier
finding that domain walls are quite generic in complicated but realistic
models?

If the discrete symmetry is approximate, walls will be biased and will only
survive for a finite duration. If the duration is short enough, cosmological
domain walls can still be viable.

| y tform
Biased wall network decays at, decay " (W /m)2

where y Is the symmetry breaking coupling constant.



Gravitational waves

Evolving domain wall network will emit gravitational waves and
produce a stochastic background.

gravitational waves Quadrupole approximation (power radiated):

N

2\ 377\ 2
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(D Pgizj5< dt33) NG( E ) ~ (4m0)*GR?

« Assumes time scale is R but wall thickness may
N
"/

also play a role. (See Inomata et al, 2412.17912.)

colliding domain walls

Hope to hear more from the experts at this workshop....



Summary

*(Biased) domain walls occur very naturally in particle physics, implying their
existence in cosmology.

*The network and evolution could be quite involved in realistic particle physics
models.

Domain walls could erase other defects, e.g. magnetic monopoles.
(Discussed in Lecture 3.)

Domain walls result in a stochastic background of gravitational waves that
could be of interest to observations.






