
ICTS Summer School on Gravitational-Wave
Astronomy

Core-Collapse Supernovae

You will find that some of these problems don’t contain all the information that you need to solve
them. That’s intentional: Filling in the dots by using the literature or an informed guess based on
something else that we’ve covered in the lecture is part of the exercises. The point is not so much
to get the correct equations and numerical results, but to discuss and justify the assumptions that
you make.

1. Order-of-magnitude estimates for stellar structure
(a) Derive an order-of-magnitude estimate for the structure of stars on the zero-age main

sequence by solving the equation of hydrostatic equilibrium,

∂P
∂r

= −
Gm(r)ρ(r)

r2 ,

the equation for the enclosed mass m(r),

m(r) =

∫
4πρr′2 dr′,

and the equation of state (EoS) for the pressure P for a one-zone stellar model. To this
end, you can approximate ∂P/∂r ∼ Pc/R in terms of the central pressure Pc and stellar
radius R, and use similar one-zone approximations in other places. Show that both for a
radiation-dominated EoS and for a perfect EoS, this implies

T 3

ρ
∝ M1/2.

Assuming that the specific entropy is dominated by the radiation component of the stellar
plasma, conclude that more massive stars start their lives with higher specific entropy.
Use your findings to interpret the evolutionary tracks of central density vs. temperature
discussed in the lectures.

(b) The shell structure during the advanced neutrino-cooled burning stages of massive stars
can be understood as a result of balanced power. To good approximation, energy release
ε̇nuc by nuclear burning and neutrino cooling ε̇ν balance each other in the (convective)
C, Ne, O, or Si burning shells. Using a one-zone approximation, derive a relationship
between the density, temperature, and fuel mass fraction Xfuel assuming a two-particle
reaction with ε̇nuc ∝ R0ρX2

fuelT
α and pair annihilation as the primary neutrino energy loss

channel. Then show that the condition of balanced power determines the shell entropy if
the burning temperature is known. Why can we assume that burning temperature for the
various burning stages is almost fixed?



(c) Estimate the convective velocity and Mach number in selected convective burning shells
(C burning, O burning, Si burning) using mixing-length theory (MLT). According to
MLT, the typical convective energy flux,

Fconv ∼ 4πr2ρv3,

is equal to the total nuclear energy generation rate Q̇nuc in a convective shell. You can
estimate Q̇nuc using reasonable values for the shell mass (e.g., from stellar models at
https://2sn.org/stellarevolution/), rough numbers for the burning time scale
from the lecture, and the typical energy release ∆q per nucleon during a given burning
stage. Relate the shell temperature to the shell radius r using kT ∼ GM/(3r). Any
other structural quantities that you may need can be taken from the aforementioned stellar
models. For the duration of burning stages, find some Kippenahn diagrams like https:
//2sn.org/stellarevolution/explain.gif.

2. MHD-Driven Hypernovae – Requirements
Most scenarios for obtaining explosion with energies� 1051 erg rely on tapping the rotational
energy of the supernova core to create strong magnetic fields that ultimately power the explo-
sion (e.g. by creating jets). This requires rapidly rotating progenitor cores, especially if the
neutron star is to survive in the explosion as in the millisecond magnetar model:

(a) Estimate the required spin rate of a neutron star for reaching a rotational energy Erot =

Iω2/2 = 1052 erg (where I is the moment of inertia and ω is the angular velocity).

(b) Using conservation of angular momentum (L = Iω), infer the required rotation rate in
the progenitor. You can assume that the matter that makes up the neutron star is initially
located within a radius of ∼1000 km.

3. Neutrino Trapping
The dominant scattering process for neutrinos during iron core collapse is neutrino-nucleus
scattering ν + A→ ν + A. The scattering opacity depends on the number density nA of nuclei,
their mass and charge number (A and Z), and the neutrino energy ε,

κs ≈
σ0

32

(
ε

mec2

)2

A2nA

[
CA −CV + (2 −CA −CV)

(
2Z − A

A

)]2

,

where the Fermi constant for weak interactions is hidden in σ0 = 1.761 × 10−44 cm2, and
CV = 0.96 and CA = 1/2 are vector and axial-vector coupling constants. We shall use this
scattering opacity to estimate when neutrino trapping occurs during collapse:

(a) What are reasonable values for Z and A? Assuming that the average energy of escaping
neutrino is 5 MeV, express κs as a function of ρ.

(b) Neutrinos trapping occurs roughly when the mean free path (λ = 1/κs) equals the radius
R of the collapsing core. Estimate R and then solve κsR = 1 for the trapping density.

4. Numerical Treatment of Neutrino Transport
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(a) Stiff Source Terms in the Collision Integral
The contributions of absorption/emission reactions like n + νe � p + e− in the collision
integral can be written in the following form,(

∂ f
∂t

)
n νe�p e−

= −κc( f − feq).

From the previous problem, you know that the equilibration time-scale 1/(κc) can be
extremely short. This causes problems if we want to take reasonable time steps in a
simulation (∆t = 10−7 . . . 10−6 s).
Consider the simple differential equation,

du
dt

= −λ(u − sin t).

In the Python programme stiff_ode_explicit.py, we try to solve this with a simple
forward Euler method, where we advance to the next time step according to

ui+1 = ui − δt(ui − sin ti).

As initial condition, we choose u(0) = 1. Run the programme by executing:
python3.5 stiff_ode_explicit.py

What happens at very small t? Next, edit the programme to set the time step to ∆t = 0.018,
then to ∆t = 0.02 and to ∆t = 0.025. Is this still an acceptable solution?
Apparently, we face a severe time step constraint. Going to higher-order integration meth-
ods (Runge-Kutta) does not cure this limitation. To avoid the problem, we can compute
the right-hand side at the next time step instead:

ui+1 = ui − δt(ui+1 − sin ti+1).

This is the backward Euler method. For this simple example, you can easily modify the
algorithm to implement it. Verify that the solution remains stable for large time steps.
The backward Euler method is stable but not very accurate. One could try to achieve
higher-order accuracy by solving

ui+1 = ui − δt
(ui+1 + ui

2
− sin ti+1/2

)
.

instead (implicit midpoint method). Try whether you can implement this method and find
out whether it is stable for arbitrary ∆t. If so does it also give a “nice solution”?
Note: Stiff source terms also occur in many other contexts (e.g. nuclear reaction networks,
cooling in radiative shock). For some of these applications, implicit higher-order methods
(Kaps-Rentrop, Bader-Deuflhard) are the method of choice, which we do not treat here.

(b) The Diffusion Equation
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Verify that the diffusion approximation we discussed it in the lectures boils down to a
single evolution equation for J:

∂J
∂t
−

1
3
∇ ·

(
1

κs + κa
∇J

)
= κa(Jeq − J).

This is very similar to the prototypical 1D equation,

∂u
∂t
−
∂2u
∂x2 = 0.

For this equation, a simple finite-difference scheme to advance a solution on from time
step n to time step n + 1 might be:

un+1
i − un

i

∆t
−

1
∆x

(
un

i+1 − un
i

∆x
−

un
i − un

i−1

∆x

)
= 0.

This is implemented in the Python programme diffusion_explicit.py. If you run the
programme, you will find the numerical solution (green) for the diffusion of a Gaussian
peak (initial conditions in blue) compared to the analytic one (red dashed curve). Right
now the time step is set to ∆t = ∆x2/2. Check what happens for ∆t = ∆x2 by editing the
programme and re-running it.
Again, the way to avoid the severe time step constraint is to use an implicit method. In
diffusion_bw_euler.py, I have implemented the backward Euler method,

un+1
i − un

i

∆t
−

1
∆x

(
un+1

i+1 − un+1
i

∆x
−

un+1
i − un+1

i−1

∆x

)
= 0.

Since this method couples the new solution values at all grid points with each other, we
need to solve a linear system with a tridiagonal coefficient matrix, which is done using
the SciPy package – have look at line 62 if you want to see how this is done.
Run the code with various time steps far greater than the explicit stability limit (e.g. ∆t =

(100 . . . 200)∆x2) and verify that the method remains stable. Also run with ∆t = ∆x2/2.
Can you see a difference in the numerical solution? If you are brave, you can try to adjust
the code to get second-order convergence in time (how?). Does this make the numerical
solution more accurate for large ∆t?

(c) Two-Moment Approximation Let us now solve a two-moment system in 1D assuming a
constant scattering opacity κ and no source term in the equation for J:

∂J
∂t

+
∂H
∂x

= 0

∂H
∂t

+
1
3
∂K
∂x

= −κH.

The programme two_moment_eddington_approximation_hlle.py solves this equa-
tion by first advancing the hyperbolic part of the system (without source terms) for one
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time-step and then updates H using an implicit method. Run with κ = 100 and convince
yourself that the numerical solution remains close to the analytic solution of a diffusion
equation with the same κ (Why?).
Now set κ = 10. Do you see changes?
Next, set κ = 105 and re-run. Nothing happens because diffusion is now extremely slow.
Then change the width of the Gaussian (variable width); set it to 0.01 instead of 0.1.
What happens now? Is this physical, and if not what is the reason for this phenomenon?
If you have some background in computational astrophysics, you can try to fix this: For
the solution of the hyperbolic part, we use the Kurganov-Tadmor central scheme with
signal velocity cs = 1/

√
3. See what happens if you switch of the diffusive term in the

flux formula if the optical depth per zone τ = κδx is larger than unity, or suppress this
term by multiplying it with max(1 − τ, 0).

5. Neutrino Mean Free Path and Equilibration Time
Neglecting a few blocking factors and assuming neutrino energies ε much larger than the
proton-neutron mass difference, the cross section for absorption of electron neutrinos by neu-
trons (or electron antineutrinos by protons) is roughly,

σ '
σ0ε

2

4m2
ec4 (g2

V + 3g2
A),

where gV = 1 and gA = 1.254.

(a) From σ, we obtain an opacity for neutrino absorption as κ = σnn, where nn is the neutron
number density (Check its dimensions). Estimate the mean free path 1/κ and the equi-
libration time-scale teq = 1/(κc) for a neutrino energy of ε = 100 MeV and a density of
4 × 1014 g cm−1 (How can you estimate nn from this?).

(b) The primary detection channel for supernova neutrinos in water Cherenkov detectors is
p + ν̄e → n + e+, where the hydrogen nuclei in the water molecules are the proton targets.
Using the water mass of 50 kT in Super-Kamiokande, the neutron star binding energy
radiated in neutrinos in a supernova (∼3 × 1053 erg), and an average electron antineutrino
energy of 15 MeV, calculate the number of detection events in Super-K expected from
a supernova in the Large Magellanic Cloud at a distance of 50 kpc (1 kpc = 3.086 ×
1021 cm). Assume that roughly 1/6 of the neutrinos come out as ν̄e.

6. Gravitational Waves from Supernovae
(a) Starting from the Einstein quadrupole formula for the gravitational wave strain at a dis-

tance D from the source,

hi j =
2G
c4D

∂2

∂t2

∫
ρ(xix j − δi jr2) d3x,

show that hi j can also be expressed without a time derivative by the stress formula

hi j =
2G
c4D

STF
(∫

ρ(gix j + viv j) d3x
)
.
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Here, STF denotes the symmetric trace-free part of a three-dimensional tensor,

STF(Xi j) =
1
2

(Xi j + X ji) −
1
3
δi jTr X.

Use the continuity equation and the Euler equation of hydrodynamics in combination with
integration by parts to eliminate the time derivatives. Discuss possible advantages/disadvantages
of the stress formula and the original quadrupole formula for computing gravitational
wave amplitudes from hydrodynamical simulation data.

(b) Based on the stress formula, argue that the gravitational wave amplitude hi jD from a
given process (i.e., convection, neutron star oscillation) is set by the kinetic/potential
energy contained in the fluid motions, i.e.,

hi jD ∼ α
Econv

Gc4 ,

or,

hi jD ∼ α
Eosci

Gc4 ,

where α < 1 is an efficiency factors. Estimate the kinetic energy Econv of neutrino-driven
convection in the gain region from a typical heating rate Q̇ν ∼ 5× 1052 erg s−1 and a dwell
time of ∼ 10 ms in the gain region, and use this to calculate the typical strain h from a
supernova at a distance of 10 kpc.

(c) You can download raw time series for hi j from real simulation data from SOMEURL along
with a simple Jupyter notebook to analyse and plot the waveforms. The notebook al-
lows you to select an observer direction by specifying the latitude and longitude of the
observer direction relative to the spherical polar coordinate system of the supernova sim-
ulation, calculates the symmetric transverse traceless part of hi j (which is not yet done by
simulation code), and decomposes it into the two polarisation modes h+ and h×.
Plot h+ and h× in the time domain and in the time-frequency using a wavelet transform
for different models. Identify signal components that were discussed in the lectures, and
discuss the dynamics of the underlying supernova models.
The notebook allows you to specify the sampling rate of the time series before you com-
pute the wavelet transform. Experiment with different sampling rates discuss how the
spectrum changes when you set the sampling rate to 2000 Hz or 1000 Hz.
The wavelet transform uses the Morlet wavelet with a specifiable shape parameter that
controls the number of oscillations in the mother wavelet. Vary the shape parameter and
discuss the optimal choice for supernova waveforms. How is this choice related to the
physics of the oscillation modes that produce the waves?
For some models, you will notice strong edge effects in the spectrograms. How do these
come about and how can you minimise edge effects?

7. Explosive Burning with Nuclear Reaction Networks
In this problem, we will work with a full-scale reaction network to further illustrate the dis-
cussion of advanced burning stages in the lectures. You will need to download the Torch
network from the website http://cococubed.asu.edu/code_pages/net_torch.shtml
(maintained by F. Timmes from Arizona State University). Unpack the archive, and compile:
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gfortran -o net.x public_torch.f90

Then execute net.x to perform the reaction network calculations below. Use the default
options unless instructed to do otherwise. When asked for the bunring mode, choose op-
tion 3 (“adiabatic expansion”). This will calculate the burning in matter that expands adi-
abatically from a certain peak temperature and density with ρ = ρ0 exp(−t/τ), where τ =

446 s
√
ρ0/(g cm−3). τ is the free-fall time-scale for matter with density ρ0. This gives a rough

approximation for the expansion of material during explosive burning in a supernova. When
prompted for the ending time, always choose 1000 s. When asked for the initial composition,
choose option 3 and specify it manually.

(a) Start with an initial condition of pure carbon, and a peak temperature and density of 2 GK
and 108 g cm−3. Plot the final elemental composition as a function of Z, and interpret the
outcome. Repeat the same exercise after changing the peak temperature to 3.5 GK 4 GK,
4.5 GK, and 6 GK.

(b) Now we shall consider freeze-out from NSE with an initial temperature of 10 GK and
Ye = 0.5. Start with a composition of neutrons and protons only. Use a larger network
for this problem (network 7, 640 isotopes). Calculate the freeze-out nucleosynthesis for
ρ0 = 107 g cm−3, ρ0 = 4 × 107 g cm−3, ρ0 = 109 g cm−3. What nuclei are predominantly
produced? Plot the isotopic abundances of Cr, Mn, Fe, Co, Ni, Cu, Zn after β-decays
using an appropriate scale (one plot for each initial density, with separate curves for each
elements). Interpret the outcome.

(c) Now try the case with ρ0 = 4 × 107 g cm−3 again, but consider the cases of Ye = 0.55,
Ye = 0.46, and Ye = 0.42. What are the dominant heavy nuclei in each case? Make an
appropriate plot to demonstrate that Ye roughly determines the ratio Z/A of the dominant
nucleus for neutron-rich matter? Is this also true for proton-rich matter?

(d) If you want, you can modify the code to use a different expansion time-scale. How are the
results for NSE freeze-out with ρ0 = 4 × 107 g cm−3 and Ye = 0.5 affected if you increase
the expansion time-scale τ by a factor of 10? What is the effect of a decrease by a factor
of 10?
Note: You will need to figure out yourself what information the output files contain – that
is part of the assignment as a preparation for the “real world” of sparsely documented
astrophysics codes. For reading the output files, the numpy routines loadtxt() and
genformtxt() are useful. For example, to load the mass fractions after β-decay together
with Z and A, you can use:
d=numpy.genfromtxt(’foo_decayed.dat’,usecols=(0,1,2))

8. Light Curves and Spectra – Simple Estimates
Let us consider Type IIP supernovae from red supergiants, and assume a typical explosion
energy E ∼ 1051 erg and ejecta mass M ∼ 12 M�.

(a) We expect that the width of the line features will roughly reflect the ejecta velocity
(though the details of line formation are somewhat complicated). Estimate the typical
ejecta velocity and find some spectra of Type IIP supernovae to check whether your esti-
mate is reasonable.
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(b) During the plateau phase of Type IIP supernovae, the photon luminosity feeds mostly
on the thermal energy from shock heating. Let us form a crude estimate of the plateau
luminosity – note that there are more much more sophisticated ways to do this.
First, we need the internal energy Etherm of the ejecta at shock breakout. How do you
expect this to be related to the explosion energy?

(c) Calculate the typical (average) temperature T0 of the shock H envelope at shock breakout
assuming that the ejecta are in the radiation-dominated regime (i.e. the internal energy
per unit volume is u = aT 4). You’ll have to make simplifying assumptions about the
temperature distribution of the ejecta. Effectively, you will get a value for a shell roughly
in the middle of the H envelope.

(d) You should find that T0 is considerably higher than the recombination temperature Trec.
Before we form a recombination front that propagates down through the hydrogen en-
velope, the temperature needs to drop considerably. Let us assume that this happens by
adiabatic cooling (though radiative cooling by diffusion also plays an important role in
practice). How much does the photosphere need to expand until roughly half of the enve-
lope has dropped below the recombination temperature? You can assume that the ejecta
expand self-similarly.

(e) Using your estimate for the photospheric radius Rphot during the plateau, estimate the
luminosity using the Stefan-Boltzmann law. Note that you will not recover the exact
scaling law from the lecture, because this would require a more sophisticated derivation
including effects of radiative diffusion.
Check whether the predicted value roughly agrees with observed Type-IIP plateau lumi-
nosities.

Page 8


