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Plan of the talk

e Carnot cycle

Entropy production and power-efficiency trade-off
@ Thermodynamic uncertainty relation (TUR)
@ TUR in three-level maser heat engines

e TUR in degenerate maser heat engine
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Carnot cycle

Two adiabatic and two isothermal branches ! :
(1) No heat exchange takes place during the adiabatic branches.

(2) Temperature of the working medium remains constant during the isothermal branches.
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Figure: Carnot cycle for an ideal gas

o Carnot efficiency, nc =1 — %“, as theoretical upper bound.
3

e Maximum efficiency, vanishing power output (P = W/7).

p. Kondepudi and I. Prigogine, Modern thermodynamics, John Wiley & Sofis, UK=(2014)=
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Effect of entropy production on the efficiency of a engine

Finite-time Thermodynamics
o Ideal heat engines; vanishing power output.

o Irreversible heat engines (finite entropy production); finite power output.

Steady state heat engine coupled to two thermal baths:

dUu . .
— =Qn+Q:+P =0
dt
s Q| Qe
E :U+TZ+TC:0
Efficiency of the engine:
P y T. T
nzf.—:1+Qc: - _ 5
Qn Qn Th  Qn

Te
=>n=nc— —0<1nc.
Qn

Due to positive entropy production, efficiency of the engine is smaller than Carnot efficiency.
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Desirable features of a heat engine

Trade-off between efficiency and power

Most desirable features of a heat engine:

o Beating trade-off between efficiency and power.

e Operation at finite power with maximum (Carnot) efficiency.

o Can an engine beat the trade-off between efficiency and power?
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Thermodynamic uncertainty relation

e Nanoscale heat engines are subjected to strong fluctuations which affect their precision.

o At the same time, operation of any engine is associated with entropy production rate,
which quantifies the thermodynamics cost.

e Thermodynamic uncertainty relation (TUR) represents a trade-off between the

rate of entropy production (o) and relative fluctuations (precision) in power output of

the heat engines 2.

o AP _,
kp (P)2 =7

where AP = lims— 00 ((P2) — (P)?)t.

e TUR provides more information than the second law of thermodynamics, which states
o> 0.

e Applicable to systems in nonequilibrium steady states obeying continuous time
Markovian dynamics with explicit time independent drive.

2Phys. Rev. Lett. 114, 158101 (2015), Phys. Rev. Lett. 116, 12060L (2016).
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Thermodynamic uncertainty relation

Thermodynamic uncertainty relation (TUR)

o AP o,
kg (P)? ~

Py < 2F ("—071).
2kpT. n

can be translated to 3

Above inequality implies that engines can operate at finite power with Carnot effi-
ciency at the cost of diverging power fluctuations.

3Phys. Rev. Lett. 120, 190602 (2018).
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TUR in maser heat engines
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Model of Three-Level Laser Heat Engine 4’5

The very first model of a quantum heat engine

A

-—T Hamiltonian and Interaction
/ i N AN term:
. . WWWE Laane Ho = 1S wylk) (k|
N
| o T, T, ‘ ‘
o ) V(t) = hA(e” ™ [1)(0] + e“*0)(1])

lg)

Master equation

b= —%[Ho + V (1), p] + Lnlp] + Lelp],

1
£alo) = Toton + 1) (AnpA] — S {AL A, 0}) + T (AfoAr — 5 {AxAL }) 141 = 0]

4H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959).
5K. Dorfman, D. Xu and J. Cao, Phys. Rev. E 97, 042120 (2018).« o 5 =

Qe
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Equations of motion in the rotating frame

Master equation in the rotating frame:

b= *%[VR,p] + Lalel + Lelol, Ve = A(I1){0] + [0)(L]).

Density matrix equations:

p11
P00
P10
P11
po1

Populations and coherences

iA(p10 — po1) = 2Uw[(nh + 1)p11 — nnpggl, are decoupled for A = 0.

—iX(p10 — po1) — 2Dc[(ne + 1)poo — nepggl,
—[Th(nn +1) + Te(ne + ]p1o + iX(p11 — poo), 1 the steady-state:

1 — poo — pgg
Plo-

Pmn =0 (m,n=0,1)

o = =
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Comparison of TUR in two different models of three-level maser

engine
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Comparison of TUR in two different models of three-level maser engine

2.012

Phys. Rev. A 108, 032203 (2023)
Phys. Rev. E 104, L012103 (2021)

o TUR relation
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Figure: TUR quantifier Q versus Versions o © moae

matter-field coupling parameter \. Here, I 11
T) = 0.1, Tw = 2, ny, =5, ne = 0.027. ° Qiin > Ciiin

o In the high-temperature limit, both models yield the same TUR relation.

16(np — ne)?TRTeA2 (ang + F,ani + 5l cI'pnpne + )\2)
Inpne(Tene + Tpnp)2(4X2 + TpTenpne)? ’

Qur =2—

o In the high-temperature limit, Qg is always smaller than 2.

e This might be due to neglecting contributions from spontaneous emission.
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TUR in degenerate four-level maser heat engine
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Degenerate four-level maser heat engine 6
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Figure: (a) Three-level nondegenerate and (b) four-level degenerate maser heat engines. (c)
Physical interpretation of phenomenon of noise-induced coherence.

Dissipator

Lip] = ;Fhk [(nh + 1)(AkPA}; - %{ALAIWP}) +np (A]t;pAk - %{AkAL,P})]

4T cosH[(nh + 1)(A1pA; - %{A;Al,p}) Ty (A{,)A2 - %{AQA},,)})]

4T cosH[(nh + 1)(A2pA{ - %{A{Az,p}) Ty (AgpAl - %{AlA;,p})]

where

dg1.d
Ak =o0gr = |g)(kl, T =+/Thilns, p=coso=%. [dgy, = (gld|k)]
g g

Coherence induced between degenerate states |1) and |2) can be quantified by parameter p.

6Proc. Natl. Acad. Sci. USA 108, 15097 (2011). o = = = = 9ac
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Density matrix equations

The time evolution of the density matrix equations:

. 1
iX(p1o — po1) — Tr[(nn + 1)p11 — nrpgg] — iprh(nh + 1)(p12 + p21),

p11 =
. . 1
p22 = iX(p20 — po2) — Th[(nn + 1)p22 — nppgg] — iprh(nh + 1)(p12 + p21),
poo = iX(po1 + po2 — p10 — p20) — Lel(ne 4 1)poo — nepggls
Pgg = 1—pi11— p22 — poo,
. . 1
pr2 = iX(p1o — po2) — §[Fh(nh +1) + Tp(np + 1)]p12
1

—§prh[(nh +1)p11 + (na + 1) p22 — (nn + np)pggl,
R . 1 1
10 = iX(p11 — poo + p12) — §[Fc(nc +1) + Tr(np + 1)]p1o — QPFh(nh + 1)p20,
R . 1 1
p20 = iX(p22 — poo + p21) — E[Fc(nc + 1)+ Th(ny + 1)]p20 — iprh(nh + Dpio-

Due to the noise-induced coherence (p # 0), populations and coherences are coupled even for
A=0.
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Effect of the noise-induced coherence on TUR

2.015
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Figure: (a) Left panel: Onic as a function of A for different values of noise-induced coherence
parameter p. Solid brown curve represents the TUR ratio for the three-level engine, Model I. Here,
T'p, =0.3, . =0.03, nj, =6 and n. = 3. (b) Right panel: Onic as a function of p for different
values of X\. Here, ', = 0.6, ' = 0.4, n, = 5 and n. = 2.

A few observations

np(ne+1)] np +ne +2npn
Oniclp=-1) = ln{h(c )} PRt >
ne(np +1) np — Ne
Ric = 2

Onic diverges for completely constructive interference (p = 1) [ Proc. Natl. Acad. Sci. USA
108, 15097 (2011).]
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Histograms
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Figure: Histograms of sampled values of @', Q' and Qnic for random sampling over a region of
the parametric space. The insets show the subset of the sampled data for which STUR violations
are happening. The parameters are sampled over the uniform distributions I'y, . € [10_4, 5],

nh.e €[0,10] and A € [107%,1]. For plotting the histograms, we choose a bin width of 0.01 to

arrange 108 data points.

Minimum value of TUR ratio O:

QL. =1957,  ONIC —1.0985 oli.<9Q
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Conclusions and future outlook

Conclusions
e Classical TUR relation can be violated in the three-level maser heat engine.

@ Spontaneous emission plays important role in the degree of violation of classical TUR as
in the absent of spontaneous emission, Model I and Model II discussed here yield the
same TUR.

o In the high-temperature limit, classical TUR is always violated for three-level maser
heat engines.

e Depending on the parametric regime of operation, the phenomenon of noise-induced
coherence can either amplify or suppress the relative power fluctuations.

Future outlook
e To calculate the contribution of coherences in the violation of standard TUR 7.

o This can be done by going beyond steady state and quantum trajectory approach may
be employed to this end.

THANK YOU J

7T. V. Vu and K. Saito, Phys. Rev. Lett. 128, 140602 (2022)

I Thermodynamic uncertainty relation in 18 /18




