INTERNATIONAL e 4
CENTRE Hldlg‘

g
“' ICTS | THEORETICAL
SCIENCES

TATA INSTITUTE OF FUNDAMENTAL RESEARCH

LIG bservation of Gravitational \\Waves from a
Binary Black Hole Merger

Parameswaran Ajith
International Center for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore



GGravitational waves

® The existence of gravitational waves (GWs) is one
of the most intriguing predictions of the General
Theory of Relativity.




GGravitational waves

® The existence of gravitational waves (GWs) is one
of the most intriguing predictions of the General
Theory of Relativity.

® (GWs are freely propagating oscillations in the

geometry of spacetime — ripples in the fabric of
spacetime.




GGravitational waves

® The existence of gravitational waves (GWs) is one
of the most intriguing predictions of the General
Theory of Relativity.

® (GWs are freely propagating oscillations in the
geometry of spacetime — ripples in the fabric of
spacetime.

accelerating charges
(time-varying dipole ﬁ% electromagnetic
moment) waves

accelerating masses \ gravitational
(time-varying "% waves
quadrupole moment)




Pre-2016: Observational evidence of gravitational waves

® 36 years of radio observations of the binary S [Weisberg et al (2010)]
pulsar PSR B1913+16 — Decay of the orbital 0= :

period agrees precisely with GR prediction.
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Direct detection of gravitational waves

® When GWs pass through earth, they

produce a time-dependent change in Effect of GWs on a ring of test particles
the geometry of the space (spatial
metric). e,
. . ¢« o o,
® These changes can be detected with * . ¢ . &’ ’ ‘e
the help of laser interferometers. . . LIPS N
e
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Direct detection of gravitational waves

® When GWs pass through earth, they
produce a time-dependent change in
the geometry of the space (spatial
metric).

® These changes can be detected with
the help of laser interferometers.

Animation Albert Einstein Institute



Direct detection of gravitational waves

® Experimental challenge Expected distortions are tiny!

AL
L due to GWs
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Expected distortions: h = — ~ 10 (BNS inspiral at 20 Mpc)
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Required displacement sensitivity

—18 :
of interferometers (L ~ | km) 10 m (171000 size of nucleus)



The quest for the direct detection of gravitational waves

® An international network of ground-based detectors. Several science runs using the first-generation
instruments. No detection! Consistent with astrophysical expectations.

LIGO Observatories in Hanford and Livingston, USA



The first direct detection of gravitational waves

On Se
two L
C

ntember 14, 2015 at 09:50:45 UTC (15:20:45 IST)
GO observatories in Hanford and Livingston (USA)

etected a coincident gravitational-wave signal.

Signals arrived in the two detectors within ~7 milliseconds.

Combined signal-to-noise ratio 24.



The observed signal
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The observed signal

Consistent with a signal expected from the coalescence of two black holes

Hanford, Washington (H1) Livingston, Louisiana (L1)

Observed
data
o H — L1 observed | R —
h | — H1 observed H1 observed (shifted, inverted)
T | | | T T | |
S T T T T T
£
©
o
= Expected
m []
signal
_]_O H — Numerical relativity | — H — Numerical relativity -
Reconstructed (wavelet) Reconstructed (wavelet)

I Reconstructed (template) I Reconstructed (template)
I I I I

0.5F T | | aF = |

0.0 s AN A M T N LY Y N e

0.5k A0 | (consistent with noise)

[— Residual] | | || |[=Residual| | | |
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45

Time (s) Time (s)

12



The observed signal: A binary black-hole coalescence

Consistent with a signal expected from the coalescence of two black holes
that is., their orbital inspiral and merger, and subsequent ringdown of the final black hole

Insplral Merger Ring-
down
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A “five-sigma” detection!

Detected by two independent searches

First, by low-latency searches for generic gravitational wave transients. Subsequently, by matched-filter
analyses that use relativistic models of binary black hole waveforms.

Binary coalescence search
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[Fundamental Indian contribution in GW modeling and development of search methods]



Verification of the detector and data quality

® Both the detectors were in a

steady state of operation for | THE NEW YORKER
several hours around the event T
-- no evidence that this e
could be an instrumental
artifact. .
#l Q
® None of the environmental Qo e
sensors recorded disturbances 5 T
that could potentially couple with
the detectors. == _—
= ~=
® Ruled out the possibility of \ Jon¢<$

“signal injections”.

“Was that you I heard just now, or was it two black holes colliding?”
[Direct contribution

from Indian groups]
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Estimating the parameters of the astrophysical source

Properties of the binary black hole merger GW150914
® Two black holes of masses 36 Mo and arXiv:1602.03840

29 Mo in nearly circular orbit merged to

0.85
form a rapidly spinning black hole of Overall
mass 62 Mo and spin 0.67. 0.80 - — IMRPhenom
—— EOBNR
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[Direct contribution from ICTS]
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Estimating the parameters of the astrophysical source

The very first detection of a binary black hole!
First observation of stellar-mass black holes with mass = 25 Mo

Primary black hole mass 361 M

Secondary black hole mass 297/ M

Final black hole mass 621 M
Final black hole spin 0.67100°
Luminosity distance 41053 Mpc

Source redshift z 0.0910:%
L RERe——— -~ - ~— ;

90% credible intervals including statistical and systematic errors



The most powerful astronomical source, ever!

3 Moc? energy is radiated as
gravitational waves in ~0.1 seconds

Peak power emission 10%° W!

(more than the luminosity of all the stars in the universe)

[Direct contribution from ICTS]
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Einstein, right again!

Observed signal consistent with the prediction of General Relativity
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Einstein, right again!

, , Tests of general relativity with GW150914
® Residual of the data after subtracting the (ariv:1602.03841]

best-fit template is consistent with noise. L0
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® Final part of the signal is consistent with A
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new window to the Universe!

Radio (21 cm) Microwave (CMB) Infrared (9 pm)
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A new window to the Universel!

Radio (21 cm) Microwave (CMB) Infrared (9 pm) Ultra high energy cosmic rays

X-ray Gar

Poor localization of the source.
Need more detectors in the
network. Perhaps one in India?!
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