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Motivation: Linear time series

General model, MA(q):

Yt =

q∑
j=0

ψjXt−j t ≥ 1. (0.1)

Xt ’s are i.i.d. N-dimensional vectors with mean 0 and variance-covariance matrix
IN .

ψj are N × N (non-random) coefficient matrices. ψ0 = I . N = N(n)→∞ such
that N

n → γ ∈ [0,∞).

q can be infinite but that needs additional restrictions on {ψi}.

MA(0) is the i.i.d. process.
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Autocovariance matrix sequence

The sample autocovariance matrix of order i of {Yt} equals

Γ̂i :=
1

n

n∑
t=i+1

YtY
∗
t−i .

They are all non-symmetric except Γ̂0.
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Ambition

Derive the asymptotic behaviour of these sequences of sample autocovariance
matrices.

• convergence in the algebraic sense (tracial convergence)–essentially known from
Bhattacharjee and Bose (BB) for y ∈ [0, ∞).

• convergence of the spectral distribution of the autocovariances (and their matrix
polynomials)–non-trivial. Results for the symmetrised autocovariances are known
from BB.

• Applications: determination of the order q, testing for white noise.... (see book
by BB where symmetrised autocovariances have been used).

We have only very limited success so far on the convergence of the spectral
distribution in non-symmetric cases.
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ESD and LSD

RN : an N × N (random) matrix with eigenvalues λ1, λ2, . . . , λN .

Empirical Spectral Distribution (ESD) of RN is the (random) probability measure

µN =
1

N

N∑
i=1

δλi .

Its cumulative form (when all eigenvalues are real)

ECDF (x) =
1

n
#eigenvalues ≤ x .

Limiting spectral distribution (LSD): If this ESD converges weakly (for our
purposes, almost surely or in probability) to a probability distribution, then the
limit is called the LSD. Our limit measures are non-random.
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Simulation 1: ECDF of Γ̂0 for MA(0)

Γ̂0 =
1

n

n∑
t=1

XtX
∗
t .
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Figure: LSD of Γ̂0 is the Marchenko-Pastur law (well known in RMT).
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Simulation 2

Model 1 (MA(0)): Yt = Xt .
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Figure: Identical ECDF of Γ̂uΓ̂∗
u , 1 ≤ u ≤ 4 for N = n = 300. LSD known from BB.
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Simulation 3

Model 2 Yt = Xt + ApXt−1, AN = 0.5IN .
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Figure: ECDF of Γ̂1Γ̂∗
1 different from ECDF of Γ̂uΓ̂∗

u , 2, 3, 4. N = n = 300. Spectral
distribution of AN is degenerate at 0.5. LSD known from BB.
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ESD of Γ̂1 for MA(0), n = 500

Γ̂1 =
1

n

n∑
t=1

XtX
∗
t−1.
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Figure: That this LSD exists is the only (new) LSD result of this talk.
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Symmetric polynomials of autocovariances

LSD results for all symmetric polynomials of autocovariance matrices have been
established by BB. (Minimal assumptions on the ψ matrices and the random
matrices have real entries with all moments finite).

These LSD are expressed in terms of free independent variables or

in special cases, in terms of functional equations for Stieltjes transforms.

Due to symmetry of the matrices, these results can be established by the method
of moments (showing that the normalised trace of any power converges and the
limit sequence determines a unique probability distribution).
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Non-symmetric matrices

Tracial moments cannot give the existence of the LSD.

One of the major steps in the proof for any non-symmetric matrix is to establish
suitable bounds for the smallest singular value of the matrix.

We shall clarify at the end how this step helps via log-potential.
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(X (n) = [x
(n)
ij ]N

(n)−1,n−1
i,j=0 )n≥1 is a sequence of complex random matrices such that

Assumption 1. For each n ≥ 1, {x (n)
ij }

N(n)−1,n−1
i,j=0 are i.i.d. with

Ex (n)
00 = 0,

E|x (n)
00 |2 = 1/n, and

supn n
2E|x (n)

00 |4 = m4 <∞.

Note the different scaling of the entries.

(N(n))n≥1, a sequence of positive integers, diverges to ∞ as n→∞.

N/n→ γ, 0 < γ <∞ as n→∞.

Think of N as the dimension of the vectors and n as the sample size (number of
observations).
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For any matrix M ∈ Cn×n, s0(M) ≥ · · · ≥ sn−1(M): the singular values of M.

Assumption 2. A(n) ∈ Cn×n: sequence of deterministic matrices such that,

0 < inf
n
sn−1(A(n)) ≤ sup

n
s0(A(n)) <∞.

The Identity matrix trivially satisfies Assumption 2.

The circulant matrix

J(n) =


0 1

1
. . .
. . .

. . .

1 0

 ∈ Rn×n (0.2)

also satisfies Assumption 2. Its ESD converges to the uniform distribution on the
circle of unit radius.
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Assumption 3 The random variables x
(n)
00 satisfy supn |nE(x

(n)
00 )2| < 1.

Assumption 3 essentially says that the xij are not real.

This is fine for applications in wireless communications and signal processing.

Not acceptable for time series applications.

This assumption is due to the application of a Berry-Esseen bound as a tool in
exactly one of the steps in the proof.
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A general smallest singular value result

Let ‖ · ‖ denote the spectral norm of a matrix.

Consider the random matrix X (n)A(n)X (n)∗ − zIN , where z is an arbitrary non-zero
complex number and IN is the identity matrix of dimension N.

Theorem 1 Suppose Assumptions 1, 2 and 3 hold. Let C be a positive constant.
Then, there exist α, β > 0 such that for each z ∈ C \ {0},

P
[
sN−1(X (n)A(n)X (n)∗ − z) ≤ t, ‖X‖ ≤ C

]
≤ c

(
nαt1/2 + n−β

)
+ exp(−c ′n),

where the constants c , c ′ > 0 depend on C , z , and m4 only. In particular the
result is true for XJX ∗.

Note that we DO NOT (yet) have the result for matrices with real entries.

We next state our main LSD result. Then we shall explain the connection how
Theorem 1 helps in proving Theorem 2.
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LSD result for Γ̂1 =
∑

XtX
∗
t−1

To state our result on LSD, let for any 0 < γ <∞,

g(y) =
y

y + 1
(1− γ + 2y)2, (0 ∨ (γ − 1)) ≤ y ≤ γ. (0.3)

Then g−1 exists on the interval [0 ∨ ((γ − 1)3/γ), γ(γ + 1)] and maps it to
[0 ∨ (γ − γ−1), γ]. It is an analytic increasing function on the interior of the
interval.

Note that g is a cubic polynomial and so a formula can be given for its inverse.
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Theorem 2. Suppose Assumptions 1 and 3 hold. Then, the LSD of
∑

XtX
∗
t−1

exists in probability. The limit measure µ is rotationally invariant on C. Let
F (r) = µ({z ∈ C : |z | ≤ r}), 0 ≤ r <∞ be the distribution function of the radial
component.

If γ ≤ 1, then

F (r) =

 γ−1g−1(r2) if 0 ≤ r ≤
√
γ(γ + 1),

1 if r >
√
γ(γ + 1).

If γ > 1, then

F (r) =


1− γ−1 if 0 ≤ r ≤ (γ − 1)3/2/

√
γ,

γ−1g−1(r2) if (γ − 1)3/2/
√
γ < r ≤

√
γ(γ + 1),

1 if r >
√
γ(γ + 1).
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The support of µ is the disc {z : |z | ≤
√
γ(γ + 1)} when γ ≤ 1.

When γ > 1, the support is the ring {z : (γ − 1)3/2/
√
γ ≤ |z | ≤

√
γ(γ + 1)}

together with the point {0} where there is a mass 1− γ−1.

Moreover, F (r) has a positive and analytical density on the open interval
(0 ∨ sign(γ − 1)|γ − 1|3/2/

√
γ,
√
γ(γ + 1)).

This density is bounded if γ 6= 1. If γ = 1, then the density is bounded everywhere
except when r ↓ 0.
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A cumbersome closed form expression for g−1 (and hence for F (·)) can be
obtained by calculating the root of a third degree polynomial. For the special case
γ = 1, g−1 is given by

g−1(t) =
t1/3

2

[1 +

√
1− t

27

]1/3

+

[
1−

√
1− t

27

]1/3
 , 0 ≤ t ≤ 2.
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Eigenvalue realizations corresponding to the cases where γ = 0.5 and γ = 2 are
shown in the next Figure.
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Figure: Eigenvalue realizations and LSD support.
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Plot of F
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Figure: Plots of F (r) (plain curves) and their empirical realizations (dashed curves).
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Statistical testing with singular values

LSD results and also normality of trace results are useful for graphical and
significance tests of hypothesis.

The book by BB has examples. See also BB (2018). Since they use
symmetrization, it amounts to using the singular values. There is loss of
information in dealing with singular values rather than eigenvalues.
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Statistical applications with eigenvalues

Theorem 2 gives the so-called null distribution of the eigenvalues under white
noise (IID) hypothesis. To test other hypothesis, we need LSD results for general
MA(q) models. This problem is non-trivial.
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log-potential

The logarithmic potential of a probability measure µ on C is the C→ (−∞,∞]
superharmonic function defined as

Uµ(z) = −
∫
C

log |λ− z | µ(dλ) (whenever the integral is finite).

µ can be recovered from Uµ(·): let ∆ = ∂2
x + ∂2

y = 4∂z∂z̄ for z = x + ıy ∈ C be
the Laplace operator defined on

C∞c (C) = {ϕ : ϕ is a compactly supported real valued smooth function on C}.

Then
µ = −(2π)−1∆Uµ in the sense that (0.4)∫

C
ϕ(z) µ(dz) = − 1

2π

∫
C

∆ϕ(z)Uµ(z) dz , ∀ϕ ∈ C∞c (C).
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Convergence of the logarithmic potentials for Lebesgue almost all z ∈ C implies
the weak convergence of the underlying measures under a tightness criterion.

Observe that∑
XtX

∗
t−1 is essentially the same as the matrix as XJX ∗ = Y (say).

The logarithmic potential of the spectral measure of Y equals

Uµn(z) = − 1

N

∑
log |λi − z | = − 1

N
log | det(Y − z)|

= − 1

2N
log det(Y − z)(Y − z)∗ = −

∫
log λ νn,z(dλ),

where the probability measure νn,z is the singular value distribution of Y − z ,
given as

νn,z =
1

N

N−1∑
i=0

δsi (Y−z).

Thus we need to study the asymptotic behavior of Uµn(z) for Lebesgue almost all
z ∈ C.
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Lemma 4.3 of Bordenave and Chafai Let (Mn) be a sequence of random
matrices with complex entries. Let ζn be its spectral measure and let σn,z be the
empirical singular value distribution of Mn − z . Assume that

(i) for almost every z ∈ C, there exists a probability measure σz such that
σn,z ⇒ σz in probability,

(ii) log is uniformly integrable in probability with respect to the sequence (σn,z).

Then, there exists a probability measure ζ such that ζn ⇒ ζ in probability, and
furthermore,

Uζ(z) = −
∫

log λ σz(dλ) C− a.e.
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Thus we need to establish that:

Step 1: for almost all z ∈ C, νn,z ⇒ νz (a deterministic probability measure) in
probability.

Step 2: the function log is uniformly integrable with respect to the measure νn,z
for almost all z ∈ C in probability. That is,

∀ε > 0, lim
T→∞

lim sup
n≥1

P
[∫ ∞

0

| log λ| 1| log λ|≥T νn,zd(λ) > ε

]
= 0. (0.5)

Then there exists a probability measure µ such that µn ⇒ µ in probability, and
Uµ(z) = −

∫
log |λ| ν̌z(dλ) C-almost everywhere. It would then remain to

identify the measure µ to complete the proof of Theorem 2.

Arup Bose Indian Statistical Institute, Kolkata Walid Hachem Université Paris-Est Marne-la-Vallée, FranceSmallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application



Steps 1 and 2

Step 1 Proved by covergence of the trace of resolvent. There one first replaces
trace by its expectation, then uses Gaussian approximation, PN inequality.

Step 2 requires control of both, the small eigenvalues and the large eigenvalues.
The latter is achieved trivially (since spectral norm of X is almost surely
bounded). The former is achieved by Theorem 1.

For detailed proof, see Bose and Hachem (2018).
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Very selective references

Bhattacharjee and Bose (2016). Large sample behavior of high dimensional
autocovariance matrices. Annals of Statistics.

Bhattacharjee and Bose (2018) (Book). Large Covariance and Autocovariance
Matrices. Chapman and Hall.

Bhattacharjee and Bose (2018). Joint convergence of sample autocovariance
matrices when p/n→ 0 with application. To appear in Annals of Statistics.

Bordenave and Chafai (2012). Around the circlar law. Prob Surveys.

Bose and Hachem (2018). Arxiv.

References to other relevant works are available in the above works.

Arup Bose Indian Statistical Institute, Kolkata Walid Hachem Université Paris-Est Marne-la-Vallée, FranceSmallest singular value and limit eigenvalue distribution of a class of non-Hermitian random matrices with statistical application



THANK YOU !
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