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Theorem (Circular law)

M, an n by n random matrix, entries are iid complex random variables
with mean 0 and variance 1. Then eigenvalues of %M,, converges weakly
to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from

“Random matrices: universality of ESDs and the circular law” by Tao and
Vu with an appendix by Krishnapur in 2010.

No outliers: If E(|x|*) < oo for each entry x, then spectral radius
converges to 1 a.s. as n — oo. (By truncation and moment method) 2/0
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QOutliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. P =diag(3i/2,1+1,2,0,...,0).
iid, Tao 2013, M + P Elliptical, O'Rourke-Renfrew 2014
n

Miid Rad. +1, ;o \; FMu P NN+

Sample Cov., O'Rourke-W. 2016
IMTM(I + P) T

1 2
)‘j’_>>‘j(1+)\7j)

Bulk eigenvalue distributions maintain the same weak limit. 2o
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2
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0, for |z| > 1,
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“What can be said about outliers? H We will focus on the iid case. 4/9
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Theorem (Coston-O'Rourke, W., 2018)

Let m>1. Let Xp1,...,Xn,m be independent complex, iid random n by n
matrices, where entries are mean 0, variance 1, have finite 4th moment,

and have independent real and imaginary parts. Then, almost surely,
m

1
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deterministic matrices with O(1) rank and operator norm.
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Qutliers for perturbed products of iid matrices

Theorem (Coston-O'Rourke, W., 2018)

Let m>1. Let X, 1,...,Xnm be independent complex, iid random
matrices, where entries are mean 0, variance 1, have finite 4th moment,
and have independent real and imaginary parts. Let A, ) be deterministic
matrices with O(1) rank and operator norm, and assume there is € > 0 so
than no evals of A, = HZ’ZI A, k are within 3e of edge of the unit disk. If
Ap has j evals lying at least 3e outside the unit disk, then, the product

m
1
Pn = H (\/an,k + An,k)

k=1
has exactly j evals lying at least 2¢ outside the unit disk, each within o(1)
of the corresponding eval of A,.
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Theorem (Coston-O'Rourke, W., 2018)

Let m>1. Let X, 1,...,Xnm be independent complex, iid random
matrices, where entries are mean 0, variance 1, have finite 4th moment,
and have independent real and imaginary parts. Let A, ) be deterministic
matrices with O(1) rank and operator norm, and assume there is € > 0 so
than no evals of A, = HZ’ZI A, k are within 3e of edge of the unit disk. If
Ap has j evals lying at least 3e outside the unit disk, then, the product

m
1
Pn = H (\/an,k + An,k)

k=1
has exactly j evals lying at least 2¢ outside the unit disk, each within o(1)
of the corresponding eval of A,.

Recover’s Tao's outliers result when m = 1 (with additional assumption).
Same approach works With other variations. General theme: the product
has three parts: (Hk 1 7m X,, k) + M, + A,, and the mixed terms M, do

not substantially contrlbute
6/9
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0 M 0
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det(M™ — zI) = [det(P — zI)]™ for every z € C.

2. Sylvester’s Determinant Formula: if Ais N x k and B is k x N, then
det(/ + AB) = det(/ + BA).

Low rank means that k = O(1), so an n x n determinant becomes a k x k

determinant.

3. Isotropic limit law: Shows that the resolvent is a good approximation
for —1/z outside the unit disk, in any basis. E.g., Isotropic limit laws
known for Wigner matrices (KY2012), for sample covariance matrices
(BEKYY2014), and for elliptical matrices (OR2014)

We prove a new isotropic local law for block matrices as above.
7/9



Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let YV, be a block matrix for the X, x, and let entries for the X, , be mean
zero, variance 1, with finite 4th moment, and with independent real and
imaginary parts. Let G,(z) := (%yn = zl>_1. Then for any 6 > 0, a.s.
for n suff large, all evals of Lny,, are within § of the unit disk and

|z|s>ulpzré |Gnll = Os(1). Also, if up, v, € C™ are fixed unit vectors, then

1
sup |upGn(Z)va + —upva| — 0 a.s. as n — oc.
z

|z|>1+0
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Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then
recenter, working separately on the real and imaginary parts. Truncation
constant is sufficiently large to maintain variance near 1 and preserve (up
to constants) the 4th moment bound.
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4. Moment computations show that an error term converges to zero.
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recenter, working separately on the real and imaginary parts. Truncation
constant is sufficiently large to maintain variance near 1 and preserve (up
to constants) the 4th moment bound.

2. Least singular value bound for %y,, — zl, uniform over all z € C
with |z| > 14 . Verify that the bounds pass to the non-truncated case.
3. Concentration of bilinear forms involving the truncated resolvent G,
i.e., showing that u:‘,ng,, is close to its expectation on a relevant region.
Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

5 1
sup |E(upGvn) + —upva| = o(1).
zeQ, 74

4. Moment computations show that an error term converges to zero.
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Outline for proof of isotropic limit law Y

1. Truncation: truncate tails beyond a sufficiently large constant, then
recenter, working separately on the real and imaginary parts. Truncation
constant is sufficiently large to maintain variance near 1 and preserve (up
to constants) the 4th moment bound.

2. Least singular value bound for %y,, — zl, uniform over all z € C
with |z| > 14 . Verify that the bounds pass to the non-truncated case.
3. Concentration of bilinear forms involving the truncated resolvent G,
i.e., showing that u:‘,QNv,, is close to its expectation on a relevant region.
Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

~ 1
sup |E(upGvn) + —upva| = o(1).
zeQ, 4

4. Moment computations show that an error term converges to zero.

Further questions: Outliers result for products of elliptical matrices?
Products of Hermitian matrices? (bulk dist still open)
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