Outliers in the spectrum for products of independent random matrices

Philip Matchett Wood

Department of Mathematics

$$
\text { June 2, } 2016
$$

ICTS Conference: Random matrices and point processes Joint work with Natalie Coston and Sean O'Rourke

Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by $1 / \sqrt{n}$.

Gaussian normal
Exponential

Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by $1 / \sqrt{n}$.

Rademacher \pm

Gaussian normal

Exponential

Theorem (Circular law)

M_{n} an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1 . Then eigenvalues of $\frac{1}{\sqrt{n}} M_{n}$ converges weakly to the uniform distribution on the unit disk.

Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by $1 / \sqrt{n}$.

Gaussian normal

Exponential

Theorem (Circular law)

M_{n} an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1 . Then eigenvalues of $\frac{1}{\sqrt{n}} M_{n}$ converges weakly to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from "Random matrices: universality of ESDs and the circular law" by Tao and Vu with an appendix by Krishnapur in 2010.

Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by $1 / \sqrt{n}$.

Gaussian normal

Exponential

Theorem (Circular law)

M_{n} an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1 . Then eigenvalues of $\frac{1}{\sqrt{n}} M_{n}$ converges weakly to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from "Random matrices: universality of ESDs and the circular law" by Tao and Vu with an appendix by Krishnapur in 2010.
No outliers: If $\mathbb{E}\left(|x|^{4}\right)<\infty$ for each entry x, then spectral radius converges to 1 a.s. as $n \rightarrow \infty$. (By truncation and moment method)

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.
iid, Tao 2013, $\frac{1}{\sqrt{n}} M+P$
M iid Rad. $\pm 1, \quad \lambda_{j} \mapsto \lambda_{j}$

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.
iid, Tao 2013, $\frac{1}{\sqrt{n}} M+P$ M iid Rad. $\pm 1, \quad \lambda_{j} \mapsto \lambda_{j}$

Elliptical, O'Rourke-Renfrew 2014
$\frac{1}{\sqrt{n}} M_{\underline{\mu}}+P, \quad \lambda_{j} \mapsto \lambda_{j}+\frac{\mu}{\lambda_{j}}$

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.
iid, Tao 2013, $\frac{1}{\sqrt{n}} M+P$ M iid Rad. $\pm 1, \quad \lambda_{j} \mapsto \lambda_{j}$

Elliptical, O'Rourke-Renfrew 2014
$\frac{1}{\sqrt{n}} M_{\underline{\mu}}+P, \quad \lambda_{j} \mapsto \lambda_{j}+\frac{\mu}{\lambda_{j}}$

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.
iid, Tao 2013, $\frac{1}{\sqrt{n}} M+P$
M iid Rad. $\pm 1, \quad \lambda_{j} \mapsto \lambda_{j}$

Elliptical, O'Rourke-Renfrew 2014
$\frac{1}{\sqrt{n}} M_{\underline{\mu}}+P, \quad \lambda_{j} \mapsto \lambda_{j}+\frac{\mu}{\lambda_{j}}$

Sample Cov., O'Rourke-W. 2016
$\frac{1}{n} M^{\mathrm{T}} M(I+P)$
$\lambda_{j} \mapsto \lambda_{j}\left(1+\frac{1}{\lambda_{j}}\right)^{2}$

Outliers: fixed P and random M, where P low rank.

Constant rank and evals, e.g. $P=\operatorname{diag}(3 i / 2,1+i, 2,0, \ldots, 0)$.
iid, Tao 2013, $\frac{1}{\sqrt{n}} M+P$
M iid Rad. $\pm 1, \quad \lambda_{j} \mapsto \lambda_{j}$

Elliptical, O'Rourke-Renfrew 2014
$\frac{1}{\sqrt{n}} M_{\underline{\mu}}+P, \quad \lambda_{j} \mapsto \lambda_{j}+\frac{\mu}{\lambda_{j}}$

Sample Cov., O’Rourke-W. 2016
$\frac{1}{n} M^{\mathrm{T}} M(I+P)$
$\lambda_{j} \mapsto \lambda_{j}\left(1+\frac{1}{\lambda_{j}}\right)^{2}$

Bulk eigenvalue distributions maintain the same weak limit.

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011).

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). Elliptic random matrix $Y=\left(y_{i j}\right)$: Entries $\left\{y_{i i}, 1 \leq i \leq n\right\}$ are iid, and $\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ are iid.
Also $\left\{y_{i i}, 1 \leq i \leq n\right\} \cup\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ independent.

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). Elliptic random matrix $Y=\left(y_{i j}\right)$: Entries $\left\{y_{i i}, 1 \leq i \leq n\right\}$ are iid, and $\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ are iid.
Also $\left\{y_{i i}, 1 \leq i \leq n\right\} \cup\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let $m>1$ be an integer. For $1 \leq k \leq m$, let each $Y_{n, k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2+\epsilon$ moment. Also assume covariance $\left|\rho_{k}\right|<1$ and that the $Y_{n, k}$ are independent. Then $P_{n}=n^{-m / 2} Y_{n, 1} \ldots Y_{n, m}$ has limiting measure converging a.s. to

$$
f_{m}(z)= \begin{cases}\frac{1}{m \pi}|z|^{\frac{2}{m}-2}, & \text { for }|z| \leq 1 \\ 0, & \text { for }|z|>1\end{cases}
$$

the m-th product of the circular law.

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). Elliptic random matrix $Y=\left(y_{i j}\right)$: Entries $\left\{y_{i i}, 1 \leq i \leq n\right\}$ are iid, and $\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ are iid.
Also $\left\{y_{i i}, 1 \leq i \leq n\right\} \cup\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let $m>1$ be an integer. For $1 \leq k \leq m$, let each $Y_{n, k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2+\epsilon$ moment. Also assume covariance $\left|\rho_{k}\right|<1$ and that the $Y_{n, k}$ are independent. Then $P_{n}=n^{-m / 2} Y_{n, 1} \ldots Y_{n, m}$ has limiting measure converging a.s. to

$$
f_{m}(z)= \begin{cases}\frac{1}{m \pi}|z|^{\frac{2}{m}-2}, & \text { for }|z| \leq 1 \\ 0, & \text { for }|z|>1\end{cases}
$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n, k}$ is perturbed by a deterministic, low rank matrix $A_{n, k}$ with small Hilbert-Schmidt norm.

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). Elliptic random matrix $Y=\left(y_{i j}\right)$: Entries $\left\{y_{i i}, 1 \leq i \leq n\right\}$ are iid, and $\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ are iid.
Also $\left\{y_{i i}, 1 \leq i \leq n\right\} \cup\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let $m>1$ be an integer. For $1 \leq k \leq m$, let each $Y_{n, k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2+\epsilon$ moment. Also assume covariance $\left|\rho_{k}\right|<1$ and that the $Y_{n, k}$ are independent. Then $P_{n}=n^{-m / 2} Y_{n, 1} \ldots Y_{n, m}$ has limiting measure converging a.s. to

$$
f_{m}(z)= \begin{cases}\frac{1}{m \pi}|z|^{\frac{2}{m}-2}, & \text { for }|z| \leq 1 \\ 0, & \text { for }|z|>1\end{cases}
$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n, k}$ is perturbed by a deterministic, low rank matrix $A_{n, k}$ with small Hilbert-Schmidt norm.

What can be said about outliers?

Products of independent elliptical matrices

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). Elliptic random matrix $Y=\left(y_{i j}\right)$: Entries $\left\{y_{i i}, 1 \leq i \leq n\right\}$ are iid, and $\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ are iid.
Also $\left\{y_{i i}, 1 \leq i \leq n\right\} \cup\left\{\left(y_{i j}, y_{j i}\right), 1 \leq i<j \leq n\right\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let $m>1$ be an integer. For $1 \leq k \leq m$, let each $Y_{n, k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2+\epsilon$ moment. Also assume covariance $\left|\rho_{k}\right|<1$ and that the $Y_{n, k}$ are independent. Then $P_{n}=n^{-m / 2} Y_{n, 1} \ldots Y_{n, m}$ has limiting measure converging a.s. to

$$
f_{m}(z)= \begin{cases}\frac{1}{m \pi}|z|^{\frac{2}{m}-2}, & \text { for }|z| \leq 1 \\ 0, & \text { for }|z|>1\end{cases}
$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n, k}$ is perturbed by a deterministic, low rank matrix $A_{n, k}$ with small Hilbert-Schmidt norm.

What can be said about outliers? We will focus on the iid case.

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$

[^0]
No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\left(I+A_{n, k}\right)\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$, where the $A_{n, k}$ are deterministic matrices with $O(1)$ rank and operator norm.

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\left(I+A_{n, k}\right)\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$, where the $A_{n, k}$ are deterministic matrices with $O(1)$ rank and operator norm.

[^1]
same, with $A_{n, k}$ rnk 5, op-norm 2

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\left(I+A_{n, k}\right)\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$, where the $A_{n, k}$ are deterministic matrices with $O(1)$ rank and operator norm.

[^2]
same, with $A_{n, k}$ rnk 5, op-norm 2

No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random n by n matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Then, almost surely,

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}\left(I+A_{n, k}\right)\right)
$$

has spectral radius at most $1+o(1)$ as $n \rightarrow \infty$, where the $A_{n, k}$ are deterministic matrices with $O(1)$ rank and operator norm.

$n=1000,4$ Real Gaussian matrices.

same, with $A_{n, k}$ rnk 5, op-norm 2

Different perturb does create outliers. $5 / 9$

Outliers for perturbed products of iid matrices

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Let $A_{n, k}$ be deterministic matrices with $O(1)$ rank and operator norm, and assume there is $\epsilon>0$ so than no evals of $A_{n}=\prod_{k=1}^{m} A_{n, k}$ are within 3ϵ of edge of the unit disk. If A_{n} has j evals lying at least 3ϵ outside the unit disk, then, the product

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}+A_{n, k}\right)
$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_{n}.

Outliers for perturbed products of iid matrices

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Let $A_{n, k}$ be deterministic matrices with $O(1)$ rank and operator norm, and assume there is $\epsilon>0$ so than no evals of $A_{n}=\prod_{k=1}^{m} A_{n, k}$ are within 3ϵ of edge of the unit disk. If A_{n} has j evals lying at least 3ϵ outside the unit disk, then, the product

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}+A_{n, k}\right)
$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_{n}.

Recover's Tao's outliers result when $m=1$ (with additional assumption).

Outliers for perturbed products of iid matrices

Theorem (Coston-O'Rourke, W., 2018)

Let $m \geq 1$. Let $X_{n, 1}, \ldots, X_{n, m}$ be independent complex, iid random matrices, where entries are mean 0 , variance 1 , have finite 4 th moment, and have independent real and imaginary parts. Let $A_{n, k}$ be deterministic matrices with $O(1)$ rank and operator norm, and assume there is $\epsilon>0$ so than no evals of $A_{n}=\prod_{k=1}^{m} A_{n, k}$ are within 3ϵ of edge of the unit disk. If A_{n} has j evals lying at least 3ϵ outside the unit disk, then, the product

$$
P_{n}=\prod_{k=1}^{m}\left(\frac{1}{\sqrt{n}} X_{n, k}+A_{n, k}\right)
$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_{n}.

Recover's Tao's outliers result when $m=1$ (with additional assumption). Same approach works with other variations. General theme: the product has three parts: $\left(\prod_{k=1}^{m} \frac{1}{\sqrt{n}} X_{n, k}\right)+M_{n}+A_{n}$, and the mixed terms M_{n} do not substantially contribute.

Outline of the proof

matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then $\operatorname{det}\left(\mathcal{M}^{m}-z I\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.

Outline of the proof

matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then $\operatorname{det}\left(\mathcal{M}^{m}-z I\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.

Outline of the proof

matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then
$\operatorname{det}\left(\mathcal{M}^{m}-z I\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.
2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then

$$
\operatorname{det}(I+A B)=\operatorname{det}(I+B A)
$$

Low rank means that $k=O(1)$, so an $n \times n$ determinant becomes a $k \times k$ determinant.

Outline of the proof

1. Linearization: Let $\mathcal{M}=\left(\begin{array}{ccccc}0 & M_{1} & & & 0 \\ 0 & 0 & M_{2} & & 0 \\ & & \ddots & \ddots & \\ 0 & & & 0 & M_{m-1} \\ M_{m} & & & & 0\end{array}\right)$, an $m n \times m n$
matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then
$\operatorname{det}\left(\mathcal{M}^{m}-z I\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.
2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then

$$
\operatorname{det}(I+A B)=\operatorname{det}(I+B A)
$$

Low rank means that $k=O(1)$, so an $n \times n$ determinant becomes a $k \times k$ determinant.

Outline of the proof

1. Linearization: Let $\mathcal{M}=\left(\begin{array}{cccccc}0 & M_{1} & & & 0 \\ 0 & 0 & M_{2} & & 0 \\ & & \ddots & \ddots & \\ 0 & & & 0 & M_{m-1} \\ M_{m} & & & & 0\end{array}\right)$, an $m n \times m n$ matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then $\operatorname{det}\left(\mathcal{M}^{m}-z I\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.
2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then

$$
\operatorname{det}(I+A B)=\operatorname{det}(I+B A)
$$

Low rank means that $k=O(1)$, so an $n \times n$ determinant becomes a $k \times k$ determinant.
3. Isotropic limit law: Shows that the resolvent is a good approximation for $-1 / z$ outside the unit disk, in any basis.

Outline of the proof

1. Linearization: Let $\mathcal{M}=\left(\begin{array}{ccccc}0 & M_{1} & & & 0 \\ 0 & 0 & M_{2} & & 0 \\ & & \ddots & \ddots & \\ 0 & & & 0 & M_{m-1} \\ M_{m} & & & & 0\end{array}\right)$, an $m n \times m n$ matrix of $n \times n$ blocks; and let $P=M_{1} \ldots M_{m}$. Then $\operatorname{det}\left(\mathcal{M}^{m}-z l\right)=[\operatorname{det}(P-z I)]^{m}$ for every $z \in \mathbb{C}$.
2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then

$$
\operatorname{det}(I+A B)=\operatorname{det}(I+B A)
$$

Low rank means that $k=O(1)$, so an $n \times n$ determinant becomes a $k \times k$ determinant.
3. Isotropic limit law: Shows that the resolvent is a good approximation for $-1 / z$ outside the unit disk, in any basis. E.g., Isotropic limit laws known for Wigner matrices (KY2012), for sample covariance matrices (BEKYY2014), and for elliptical matrices (OR2014) We prove a new isotropic local law for block matrices as above.

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and sup $\left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1 , with finite 4 th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and $\sup \left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc.

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and sup $\left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc. Then, $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=\operatorname{det}\left(I+\mathcal{C}_{k \times m n} \mathcal{G}_{n}(z) \mathcal{B}_{m n \times k}\right)$

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1, with finite 4 th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and sup $\left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc. Then, $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=\operatorname{det}\left(I+\mathcal{C}_{k \times m n} \mathcal{G}_{n}(z) \mathcal{B}_{m n \times k}\right)$

$$
\stackrel{\text { 타 }}{=} \operatorname{det}\left(I-\frac{1}{z} \mathcal{C}_{k \times m n} \mathcal{B}_{m n \times k}\right)+o(1)
$$

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1 , with finite 4 th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and $\sup \left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc. Then, $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=\operatorname{det}\left(I+\mathcal{C}_{k \times m n} \mathcal{G}_{n}(z) \mathcal{B}_{m n \times k}\right)$

$$
\begin{aligned}
& \stackrel{\text { IL }}{=} \operatorname{det}\left(I-\frac{1}{2} \mathcal{C}_{k \times m n} \mathcal{B}_{m n \times k}\right)+o(1) \\
& =\operatorname{det}\left(I-\frac{1}{z} \mathcal{A}_{n}\right)+o(1)
\end{aligned}
$$

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1 , with finite 4 th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and $\sup \left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc. Then, $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=\operatorname{det}\left(I+\mathcal{C}_{k \times m n} \mathcal{G}_{n}(z) \mathcal{B}_{m n \times k}\right)$

$$
\begin{aligned}
& \stackrel{\text { ㅌL }}{=} \operatorname{det}\left(I-\frac{1}{z} \mathcal{C}_{k \times m n} \mathcal{B}_{m n \times k}\right)+o(1) \\
& =\operatorname{det}\left(I-\frac{1}{z} \mathcal{A}_{n}\right)+o(1) \\
& =\prod_{j=1}^{k}\left(1-\frac{1}{z} \lambda_{j}\left(\mathcal{A}_{n}\right)\right)+o(1) .
\end{aligned}
$$

Isotropic limit law

Theorem (Coston, O'Rourke, W. 2018)

Let \mathcal{Y}_{n} be a block matrix for the $X_{n, k}$, and let entries for the $X_{n, k}$ be mean zero, variance 1 , with finite 4 th moment, and with independent real and imaginary parts. Let $\mathcal{G}_{n}(z):=\left(\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z l\right)^{-1}$. Then for any $\delta>0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}$ are within δ of the unit disk and $\sup \left\|\mathcal{G}_{n}\right\|=O_{\delta}(1)$. Also, if $u_{n}, v_{n} \in \mathbb{C}^{m n}$ are fixed unit vectors, then $|z|>1+\delta$

$$
\sup _{|z|>1+\delta}\left|u_{n}^{*} \mathcal{G}_{n}(z) v_{n}+\frac{1}{z} u_{n}^{*} v_{n}\right| \rightarrow 0 \text { a.s. as } n \rightarrow \infty .
$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}+\mathcal{A}_{n}$ iff $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=0$. Let $\mathcal{A}_{n}=\mathcal{B}_{m n \times k} \mathcal{C}_{k \times m n}$, where \mathcal{B} is $m n \times k$, etc. Then, $\operatorname{det}\left(I+\mathcal{G}_{n}(z) \mathcal{A}_{n}\right)=\operatorname{det}\left(I+\mathcal{C}_{k \times m n} \mathcal{G}_{n}(z) \mathcal{B}_{m n \times k}\right)$

$$
\begin{aligned}
& \stackrel{\text { ILL }}{=} \operatorname{det}\left(I-\frac{1}{z} \mathcal{C}_{k \times m n} \mathcal{B}_{m n \times k}\right)+o(1) \\
& =\operatorname{det}\left(I-\frac{1}{z} \mathcal{A}_{n}\right)+o(1)
\end{aligned}
$$

$$
=\prod_{j=1}^{k}\left(1-\frac{1}{z} \lambda_{j}\left(\mathcal{A}_{n}\right)\right)+o(1) . \quad \text { Now use Rouche's Theorem. }
$$

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.
2. Least singular value bound for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z$, uniform over all $z \in \mathbb{C}$ with $|z|>1+\delta$. Verify that the bounds pass to the non-truncated case.

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.
2. Least singular value bound for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z$, uniform over all $z \in \mathbb{C}$ with $|z|>1+\delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_{n}^{*} \tilde{\mathcal{G}} v_{n}$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

$$
\sup _{z \in \Omega_{0}}\left|\mathbb{E}\left(u_{n}^{*} \tilde{\mathcal{G}} v_{n}\right)+\frac{1}{z} u_{n}^{*} v_{n}\right|=o(1)
$$

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.
2. Least singular value bound for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z$, uniform over all $z \in \mathbb{C}$ with $|z|>1+\delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_{n}^{*} \tilde{\mathcal{G}} v_{n}$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

$$
\sup _{z \in \Omega_{0}}\left|\mathbb{E}\left(u_{n}^{*} \tilde{\mathcal{G}} v_{n}\right)+\frac{1}{z} u_{n}^{*} v_{n}\right|=o(1) .
$$

4. Moment computations show that an error term converges to zero.

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.
2. Least singular value bound for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z$, uniform over all $z \in \mathbb{C}$ with $|z|>1+\delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_{n}^{*} \tilde{\mathcal{G}} v_{n}$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

$$
\sup _{z \in \Omega_{0}}\left|\mathbb{E}\left(u_{n}^{*} \tilde{\mathcal{G}} v_{n}\right)+\frac{1}{z} u_{n}^{*} v_{n}\right|=o(1)
$$

4. Moment computations show that an error term converges to zero.

Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.
2. Least singular value bound for $\frac{1}{\sqrt{n}} \mathcal{Y}_{n}-z$, uniform over all $z \in \mathbb{C}$ with $|z|>1+\delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_{n}^{*} \tilde{\mathcal{G}} v_{n}$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

$$
\sup _{z \in \Omega_{0}}\left|\mathbb{E}\left(u_{n}^{*} \tilde{\mathcal{G}} v_{n}\right)+\frac{1}{z} u_{n}^{*} v_{n}\right|=o(1)
$$

4. Moment computations show that an error term converges to zero.

Further questions: Outliers result for products of elliptical matrices? Products of Hermitian matrices? (bulk dist still open)

[^0]: $n=1000,4$ Real Gaussian matrices.

[^1]: $n=1000,4$ Real Gaussian matrices.

[^2]: $n=1000,4$ Real Gaussian matrices

