Outliers in the spectrum for products of independent random matrices

Philip Matchett Wood

Department of Mathematics

June 2, 2016

UNIVERSITY OF WISCONSIN-MADISON

ICTS Conference: Random matrices and point processes Joint work with Natalie Coston and Sean O'Rourke

1000 by 1000 random matrix with iid entries; scaled by $1/\sqrt{n}$. Rademacher ± 1 Gaussian normal Exponential

1000 by 1000 random matrix with iid entries; scaled by $1/\sqrt{n}$. Rademacher ± 1 Gaussian normal Exponential

Theorem (Circular law)

 M_n an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1. Then eigenvalues of $\frac{1}{\sqrt{n}}M_n$ converges weakly to the uniform distribution on the unit disk.

Theorem (Circular law)

 M_n an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1. Then eigenvalues of $\frac{1}{\sqrt{n}}M_n$ converges weakly to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from "Random matrices: universality of ESDs and the circular law" by Tao and Vu with an appendix by Krishnapur in 2010.

1000 by 1000 random matrix with iid entries; scaled by $1/\sqrt{n}$. Rademacher ±1 Gaussian normal Exponential

Theorem (Circular law)

 M_n an n by n random matrix, entries are iid complex random variables with mean 0 and variance 1. Then eigenvalues of $\frac{1}{\sqrt{n}}M_n$ converges weakly to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from "Random matrices: universality of ESDs and the circular law" by Tao and Vu with an appendix by Krishnapur in 2010.

No outliers: If $\mathbb{E}(|x|^4) < \infty$ for each entry x, then spectral radius converges to 1 a.s. as $n \to \infty$. (By truncation and moment method)

Constant rank and evals, e.g. $P = \text{diag}(3i/2, 1+i, 2, 0, \dots, 0)$.

Constant rank and evals, e.g. $P = \text{diag}(3i/2, 1+i, 2, 0, \dots, 0)$.

iid, Tao 2013, $\frac{1}{\sqrt{n}}M + P$ *M* iid Rad. ± 1 , $\lambda_i \mapsto \lambda_i$

Sample Cov., O'Rourke-W. 2016 $\frac{1}{n}M^{T}M(I+P)$ $\lambda_{j} \mapsto \lambda_{j} \left(1 + \frac{1}{\lambda_{j}}\right)^{2}$

Bulk eigenvalue distributions maintain the same weak limit.

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011).

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). **Elliptic random matrix** $Y = (y_{ij})$: Entries $\{y_{ii}, 1 \le i \le n\}$ are iid, and $\{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ are iid. Also $\{y_{ii}, 1 \le i \le n\} \cup \{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ independent.

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). **Elliptic random matrix** $Y = (y_{ij})$: Entries $\{y_{ii}, 1 \le i \le n\}$ are iid, and $\{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ are iid. Also $\{y_{ii}, 1 \le i \le n\} \cup \{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let m > 1 be an integer. For $1 \le k \le m$, let each $Y_{n,k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2 + \epsilon$ moment. Also assume covariance $|\rho_k| < 1$ and that the $Y_{n,k}$ are independent. Then $P_n = n^{-m/2}Y_{n,1} \dots Y_{n,m}$ has limiting measure converging a.s. to

$$f_m(z) = egin{cases} rac{1}{m\pi} |z|^{rac{2}{m}-2}\,, & \mbox{for} \ |z| \leq 1 \ 0, & \mbox{for} \ |z| > 1, \end{cases}$$

the m-th product of the circular law.

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). **Elliptic random matrix** $Y = (y_{ij})$: Entries $\{y_{ii}, 1 \le i \le n\}$ are iid, and $\{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ are iid. Also $\{y_{ii}, 1 \le i \le n\} \cup \{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let m > 1 be an integer. For $1 \le k \le m$, let each $Y_{n,k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2 + \epsilon$ moment. Also assume covariance $|\rho_k| < 1$ and that the $Y_{n,k}$ are independent. Then $P_n = n^{-m/2}Y_{n,1} \dots Y_{n,m}$ has limiting measure converging a.s. to

$$f_m(z) = \begin{cases} \frac{1}{m\pi} |z|^{\frac{2}{m}-2}, & \text{for } |z| \le 1\\ 0, & \text{for } |z| > 1, \end{cases}$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n,k}$ is perturbed by a deterministic, low rank matrix $A_{n,k}$ with small Hilbert-Schmidt norm.

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). **Elliptic random matrix** $Y = (y_{ij})$: Entries $\{y_{ii}, 1 \le i \le n\}$ are iid, and $\{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ are iid. Also $\{y_{ii}, 1 \le i \le n\} \cup \{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let m > 1 be an integer. For $1 \le k \le m$, let each $Y_{n,k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2 + \epsilon$ moment. Also assume covariance $|\rho_k| < 1$ and that the $Y_{n,k}$ are independent. Then $P_n = n^{-m/2} Y_{n,1} \dots Y_{n,m}$ has limiting measure converging a.s. to

$$f_m(z) = \begin{cases} \frac{1}{m\pi} |z|^{\frac{2}{m}-2}, & \text{for } |z| \le 1\\ 0, & \text{for } |z| > 1, \end{cases}$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n,k}$ is perturbed by a deterministic, low rank matrix $A_{n,k}$ with small Hilbert-Schmidt norm.

What can be said about outliers?

lid matrices, Götze-Tikhomirov (2011) and O'Rourke-Soshnikov (2011). **Elliptic random matrix** $Y = (y_{ij})$: Entries $\{y_{ii}, 1 \le i \le n\}$ are iid, and $\{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ are iid. Also $\{y_{ii}, 1 \le i \le n\} \cup \{(y_{ij}, y_{ji}), 1 \le i < j \le n\}$ independent.

Theorem (O'Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let m > 1 be an integer. For $1 \le k \le m$, let each $Y_{n,k}$ be a real elliptic random matrix, where all entries have mean zero, variance 1, and finite $2 + \epsilon$ moment. Also assume covariance $|\rho_k| < 1$ and that the $Y_{n,k}$ are independent. Then $P_n = n^{-m/2} Y_{n,1} \dots Y_{n,m}$ has limiting measure converging a.s. to

$$f_m(z) = \begin{cases} \frac{1}{m\pi} |z|^{\frac{2}{m}-2}, & \text{for } |z| \le 1\\ 0, & \text{for } |z| > 1, \end{cases}$$

the m-th product of the circular law. Furthermore, convergence holds even if each $Y_{n,k}$ is perturbed by a deterministic, low rank matrix $A_{n,k}$ with small Hilbert-Schmidt norm.

What can be said about outliers? || We will focus on the iid case. 4/9

W

Nemish 2016: no outliers given sub-exponential decay condition.

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k}\right)$$

has spectral radius at most 1+o(1) as $n o \infty$

Ŵ

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k}\right)$$

has spectral radius at most 1+o(1) as $n o \infty$

n = 1000, 4 Real Gaussian matrices.

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k} (I + A_{n,k}) \right)$$

n = 1000, 4 Real Gaussian matrices.

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k} (I + A_{n,k}) \right)$$

n = 1000, 4 Real Gaussian matrices. same, with $A_{n,k}$ rnk 5, op-norm 2

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k} (I + A_{n,k}) \right)$$

W

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O'Rourke, W., 2018)

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random n by n matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Then, almost surely,

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k} (I + A_{n,k}) \right)$$

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Let $A_{n,k}$ be deterministic matrices with O(1) rank and operator norm, and assume there is $\epsilon > 0$ so than no evals of $A_n = \prod_{k=1}^m A_{n,k}$ are within 3ϵ of edge of the unit disk. If A_n has j evals lying at least 3ϵ outside the unit disk, then, the product

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}}X_{n,k} + A_{n,k}\right)$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_n .

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Let $A_{n,k}$ be deterministic matrices with O(1) rank and operator norm, and assume there is $\epsilon > 0$ so than no evals of $A_n = \prod_{k=1}^m A_{n,k}$ are within 3ϵ of edge of the unit disk. If A_n has j evals lying at least 3ϵ outside the unit disk, then, the product

$$P_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}}X_{n,k} + A_{n,k}\right)$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_n .

Recover's Tao's outliers result when m = 1 (with additional assumption).

Let $m \ge 1$. Let $X_{n,1}, \ldots, X_{n,m}$ be independent complex, iid random matrices, where entries are mean 0, variance 1, have finite 4th moment, and have independent real and imaginary parts. Let $A_{n,k}$ be deterministic matrices with O(1) rank and operator norm, and assume there is $\epsilon > 0$ so than no evals of $A_n = \prod_{k=1}^m A_{n,k}$ are within 3ϵ of edge of the unit disk. If A_n has j evals lying at least 3ϵ outside the unit disk, then, the product

$$\mathsf{P}_n = \prod_{k=1}^m \left(\frac{1}{\sqrt{n}} X_{n,k} + A_{n,k} \right)$$

has exactly j evals lying at least 2ϵ outside the unit disk, each within o(1) of the corresponding eval of A_n .

Recover's Tao's outliers result when m = 1 (with additional assumption). Same approach works with other variations. General theme: the product has three parts: $\left(\prod_{k=1}^{m} \frac{1}{\sqrt{n}} X_{n,k}\right) + M_n + A_n$, and the mixed terms M_n do not substantially contribute.

1. Linearization: Let
$$\mathcal{M} = \begin{pmatrix} 0 & M_1 & 0 \\ 0 & 0 & M_2 & 0 \\ & \ddots & \ddots & \\ 0 & 0 & M_{m-1} \\ M_m & 0 \end{pmatrix}$$
, an $mn \times mn$
matrix of $n \times n$ blocks; and let $P = M_1 \dots M_m$. Then
 $\det(\mathcal{M}^m - zI) = [\det(P - zI)]^m$ for every $z \in \mathbb{C}$.

0

1. Linearization: Let
$$\mathcal{M} = \begin{pmatrix} 0 & 0 & M_2 & 0 \\ 0 & 0 & M_2 & 0 \\ & \ddots & \ddots & \\ 0 & 0 & M_{m-1} \\ M_m & 0 \end{pmatrix}$$
, an $mn \times mn$
matrix of $n \times n$ blocks; and let $P = M_1 \dots M_m$. Then
 $\det(\mathcal{M}^m - zI) = [\det(P - zI)]^m$ for every $z \in \mathbb{C}$.

 M_1

/ 0

2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then det(I + AB) = det(I + BA).

Low rank means that k = O(1), so an $n \times n$ determinant becomes a $k \times k$ determinant.

0

1. Linearization: Let
$$\mathcal{M} = \begin{pmatrix} 0 & 0 & M_2 & 0 \\ 0 & 0 & M_2 & 0 \\ & \ddots & \ddots & \\ 0 & 0 & M_{m-1} \\ M_m & 0 \end{pmatrix}$$
, an $mn \times mn$
matrix of $n \times n$ blocks; and let $P = M_1 \dots M_m$. Then
 $\det(\mathcal{M}^m - zI) = [\det(P - zI)]^m$ for every $z \in \mathbb{C}$.

M1

/ 0

2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then det(I + AB) = det(I + BA).

Low rank means that k = O(1), so an $n \times n$ determinant becomes a $k \times k$ determinant.

0 \

1. Linearization: Let
$$\mathcal{M} = \begin{pmatrix} 0 & 0 & M_2 & 0 \\ & \ddots & \ddots & \\ 0 & 0 & M_{m-1} \\ M_m & 0 \end{pmatrix}$$
, an $mn \times mn$
matrix of $n \times n$ blocks; and let $P = M_1 \dots M_m$. Then
 $\det(\mathcal{M}^m - zI) = [\det(P - zI)]^m$ for every $z \in \mathbb{C}$.

 M_1

/ 0

2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then det(I + AB) = det(I + BA).

Low rank means that k = O(1), so an $n \times n$ determinant becomes a $k \times k$ determinant.

3. Isotropic limit law: Shows that the resolvent is a good approximation for -1/z outside the unit disk, in *any* basis.

0 \

1. Linearization: Let
$$\mathcal{M} = \begin{pmatrix} 0 & 0 & M_2 & 0 \\ & \ddots & \ddots & \\ 0 & 0 & M_{m-1} \\ M_m & & 0 \end{pmatrix}$$
, an $mn \times mn$
matrix of $n \times n$ blocks; and let $P = M_1 \dots M_m$. Then
 $\det(\mathcal{M}^m - zI) = [\det(P - zI)]^m$ for every $z \in \mathbb{C}$.

 M_1

(0

2. Sylvester's Determinant Formula: if A is $N \times k$ and B is $k \times N$, then det(I + AB) = det(I + BA).

Low rank means that k = O(1), so an $n \times n$ determinant becomes a $k \times k$ determinant.

3. Isotropic limit law: Shows that the resolvent is a good approximation for -1/z outside the unit disk, in *any* basis. E.g., Isotropic limit laws known for Wigner matrices (KY2012), for sample covariance matrices (BEKYY2014), and for elliptical matrices (OR2014) We prove a new isotropic local law for block matrices as above.

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc.

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc. Then, $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = \det(I + \mathcal{C}_{k \times mn}\mathcal{G}_n(z)\mathcal{B}_{mn \times k})$

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc. Then, $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = \det(I + \mathcal{C}_{k \times mn}\mathcal{G}_n(z)\mathcal{B}_{mn \times k})$ $\stackrel{\text{ILL}}{=} \det(I - \frac{1}{z}\mathcal{C}_{k \times mn}\mathcal{B}_{mn \times k}) + o(1)$

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc. Then, $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = \det(I + \mathcal{C}_{k \times mn}\mathcal{G}_n(z)\mathcal{B}_{mn \times k})$ $\stackrel{\text{ILL}}{=} \det(I - \frac{1}{z}\mathcal{C}_{k \times mn}\mathcal{B}_{mn \times k}) + o(1)$ $= \det(I - \frac{1}{z}\mathcal{A}_n) + o(1)$

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc. Then, $\det(I + \mathcal{G}_n(z)\mathcal{A}_n) = \det(I + \mathcal{C}_{k \times mn}\mathcal{G}_n(z)\mathcal{B}_{mn \times k})$ $\stackrel{\text{ILL}}{=} \det(I - \frac{1}{z}\mathcal{C}_{k \times mn}\mathcal{B}_{mn \times k}) + o(1)$ $= \det(I - \frac{1}{z}\mathcal{A}_n) + o(1)$ $= \prod_{j=1}^k (1 - \frac{1}{z}\lambda_j(\mathcal{A}_n)) + o(1).$

Let \mathcal{Y}_n be a block matrix for the $X_{n,k}$, and let entries for the $X_{n,k}$ be mean zero, variance 1, with finite 4th moment, and with independent real and imaginary parts. Let $\mathcal{G}_n(z) := \left(\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI\right)^{-1}$. Then for any $\delta > 0$, a.s. for n suff large, all evals of $\frac{1}{\sqrt{n}}\mathcal{Y}_n$ are within δ of the unit disk and $\sup_{|z|>1+\delta} ||\mathcal{G}_n|| = O_{\delta}(1)$. Also, if $u_n, v_n \in \mathbb{C}^{mn}$ are fixed unit vectors, then

$$\sup_{|z|>1+\delta} \left| u_n^* \mathcal{G}_n(z) v_n + \frac{1}{z} u_n^* v_n \right| \to 0 \text{ a.s. as } n \to \infty$$

Sketch proof of outliers result: Any $z \notin$ unit disk is eval for $\frac{1}{\sqrt{n}}\mathcal{Y}_n + \mathcal{A}_n$ iff det $(I + \mathcal{G}_n(z)\mathcal{A}_n) = 0$. Let $\mathcal{A}_n = \mathcal{B}_{mn \times k}\mathcal{C}_{k \times mn}$, where \mathcal{B} is $mn \times k$, etc. Then, det $(I + \mathcal{G}_n(z)\mathcal{A}_n) = det(I + \mathcal{C}_{k \times mn}\mathcal{G}_n(z)\mathcal{B}_{mn \times k})$ $\stackrel{\text{ILL}}{=} det(I - \frac{1}{z}\mathcal{C}_{k \times mn}\mathcal{B}_{mn \times k}) + o(1)$ $= det(I - \frac{1}{z}\mathcal{A}_n) + o(1)$ $= \prod_{i=1}^k (1 - \frac{1}{z}\lambda_i(\mathcal{A}_n)) + o(1)$. Now use Rouche's Theorem.

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

2. Least singular value bound for $\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI$, uniform over all $z \in \mathbb{C}$ with $|z| > 1 + \delta$. Verify that the bounds pass to the non-truncated case.

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

2. Least singular value bound for $\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI$, uniform over all $z \in \mathbb{C}$ with $|z| > 1 + \delta$. Verify that the bounds pass to the non-truncated case. **3. Concentration** of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_n^* \tilde{\mathcal{G}} v_n$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the *expectation*, i.e.,

$$\sup_{z\in\Omega_o}\left|\mathbb{E}(u_n^*\tilde{\mathcal{G}}v_n)+\frac{1}{z}u_n^*v_n\right|=o(1).$$

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

2. Least singular value bound for $\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI$, uniform over all $z \in \mathbb{C}$ with $|z| > 1 + \delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_n^* \tilde{\mathcal{G}} v_n$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the *expectation*, i.e.,

$$\sup_{z\in\Omega_o}\left|\mathbb{E}(u_n^*\tilde{\mathcal{G}}v_n)+\frac{1}{z}u_n^*v_n\right|=o(1).$$

4. Moment computations show that an error term converges to zero.

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

2. Least singular value bound for $\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI$, uniform over all $z \in \mathbb{C}$ with $|z| > 1 + \delta$. Verify that the bounds pass to the non-truncated case. **3. Concentration** of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_n^* \tilde{\mathcal{G}} v_n$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the *expectation*, i.e.,

$$\sup_{z\in\Omega_o}\left|\mathbb{E}(u_n^*\tilde{\mathcal{G}}v_n)+\frac{1}{z}u_n^*v_n\right|=o(1).$$

4. Moment computations show that an error term converges to zero.

1. Truncation: truncate tails beyond a sufficiently large constant, then recenter, working separately on the real and imaginary parts. Truncation constant is sufficiently large to maintain variance near 1 and preserve (up to constants) the 4th moment bound.

2. Least singular value bound for $\frac{1}{\sqrt{n}}\mathcal{Y}_n - zI$, uniform over all $z \in \mathbb{C}$ with $|z| > 1 + \delta$. Verify that the bounds pass to the non-truncated case. 3. Concentration of bilinear forms involving the truncated resolvent $\tilde{\mathcal{G}}$, i.e., showing that $u_n^* \tilde{\mathcal{G}} v_n$ is close to its expectation on a relevant region. Thus it is sufficient to prove isotropic convergence for the *expectation*, i.e.,

$$\sup_{z\in\Omega_o}\left|\mathbb{E}(u_n^*\tilde{\mathcal{G}}v_n)+\frac{1}{z}u_n^*v_n\right|=o(1).$$

4. Moment computations show that an error term converges to zero.

Further questions: Outliers result for products of elliptical matrices? Products of Hermitian matrices? (bulk dist still open)