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Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by 1/
√
n.

Rademacher ±1 Gaussian normal Exponential
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Theorem (Circular law)

Mn an n by n random matrix, entries are iid complex random variables
with mean 0 and variance 1. Then eigenvalues of 1√

n
Mn converges weakly

to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from
“Random matrices: universality of ESDs and the circular law” by Tao and
Vu with an appendix by Krishnapur in 2010.

No outliers: If E(|x |4) <∞ for each entry x , then spectral radius
converges to 1 a.s. as n→∞. (By truncation and moment method)

2 / 9



Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by 1/
√
n.

Rademacher ±1 Gaussian normal Exponential

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Theorem (Circular law)

Mn an n by n random matrix, entries are iid complex random variables
with mean 0 and variance 1. Then eigenvalues of 1√

n
Mn converges weakly

to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from
“Random matrices: universality of ESDs and the circular law” by Tao and
Vu with an appendix by Krishnapur in 2010.

No outliers: If E(|x |4) <∞ for each entry x , then spectral radius
converges to 1 a.s. as n→∞. (By truncation and moment method)

2 / 9



Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by 1/
√
n.

Rademacher ±1 Gaussian normal Exponential

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Theorem (Circular law)

Mn an n by n random matrix, entries are iid complex random variables
with mean 0 and variance 1. Then eigenvalues of 1√

n
Mn converges weakly

to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from
“Random matrices: universality of ESDs and the circular law” by Tao and
Vu with an appendix by Krishnapur in 2010.

No outliers: If E(|x |4) <∞ for each entry x , then spectral radius
converges to 1 a.s. as n→∞. (By truncation and moment method)

2 / 9



Introduction: the circular law for i.i.d. random matrices

1000 by 1000 random matrix with iid entries; scaled by 1/
√
n.

Rademacher ±1 Gaussian normal Exponential

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Theorem (Circular law)

Mn an n by n random matrix, entries are iid complex random variables
with mean 0 and variance 1. Then eigenvalues of 1√

n
Mn converges weakly

to the uniform distribution on the unit disk.

Conjectured in 1950s; partial results by many authors. Above from
“Random matrices: universality of ESDs and the circular law” by Tao and
Vu with an appendix by Krishnapur in 2010.

No outliers: If E(|x |4) <∞ for each entry x , then spectral radius
converges to 1 a.s. as n→∞. (By truncation and moment method) 2 / 9



Outliers: fixed P and random M , where P low rank.

Constant rank and evals, e.g. P = diag(3i/2, 1 + i , 2, 0, . . . , 0).

iid, Tao 2013, 1√
n
M + P

M iid Rad. ±1, λj 7→ λj

Elliptical, O’Rourke-Renfrew 2014
1√
n
Mµ + P , λj 7→ λj + µ

λj
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Bulk eigenvalue distributions maintain the same weak limit.
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Products of independent elliptical matrices

Iid matrices, Götze-Tikhomirov (2011) and O’Rourke-Soshnikov (2011).

Elliptic random matrix Y = (yij): Entries {yii , 1 ≤ i ≤ n} are iid, and
{(yij , yji ), 1 ≤ i < j ≤ n} are iid.
Also {yii , 1 ≤ i ≤ n} ∪ {(yij , yji ), 1 ≤ i < j ≤ n} independent.

Theorem (O’Rourke, Renfrew, Shoshnikov, and Vu, 2014)

Let m > 1 be an integer. For 1 ≤ k ≤ m, let each Yn,k be a real elliptic
random matrix, where all entries have mean zero, variance 1, and finite
2 + ε moment. Also assume covariance |ρk | < 1 and that the Yn,k are
independent. Then Pn = n−m/2Yn,1 . . .Yn,m has limiting measure
converging a.s. to

fm(z) =

{
1
mπ |z |

2
m
−2 , for |z | ≤ 1

0, for |z | > 1,
the m-th product of the circular law. Furthermore, convergence holds even
if each Yn,k is perturbed by a deterministic, low rank matrix An,k with
small Hilbert-Schmidt norm.

What can be said about outliers? We will focus on the iid case.
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No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O’Rourke, W., 2018)

Let m ≥ 1. Let Xn,1, . . . ,Xn,m be independent complex, iid random n by n
matrices, where entries are mean 0, variance 1, have finite 4th moment,
and have independent real and imaginary parts. Then, almost surely,

Pn =
m∏

k=1

(
1√
n
Xn,k

)

(I + An,k)

)

has spectral radius at most 1 + o(1) as n→∞

, where the An,k are
deterministic matrices with O(1) rank and operator norm.
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n = 1000, 4 Real Gaussian matrices.

same, with An,k rnk 5, op-norm 2 Different perturb does create outliers.
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No outliers for products of indep. iid matrices

Nemish 2016: no outliers given sub-exponential decay condition.

Theorem (Coston-O’Rourke, W., 2018)

Let m ≥ 1. Let Xn,1, . . . ,Xn,m be independent complex, iid random n by n
matrices, where entries are mean 0, variance 1, have finite 4th moment,
and have independent real and imaginary parts. Then, almost surely,

Pn =
m∏

k=1

(
1√
n
Xn,k(I + An,k)

)
has spectral radius at most 1 + o(1) as n→∞, where the An,k are
deterministic matrices with O(1) rank and operator norm.
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Outliers for perturbed products of iid matrices

Theorem (Coston-O’Rourke, W., 2018)

Let m ≥ 1. Let Xn,1, . . . ,Xn,m be independent complex, iid random
matrices, where entries are mean 0, variance 1, have finite 4th moment,
and have independent real and imaginary parts. Let An,k be deterministic
matrices with O(1) rank and operator norm, and assume there is ε > 0 so
than no evals of An =

∏m
k=1 An,k are within 3ε of edge of the unit disk. If

An has j evals lying at least 3ε outside the unit disk, then, the product

Pn =
m∏

k=1

(
1√
n
Xn,k + An,k

)
has exactly j evals lying at least 2ε outside the unit disk, each within o(1)
of the corresponding eval of An.

Recover’s Tao’s outliers result when m = 1 (with additional assumption).
Same approach works with other variations. General theme: the product

has three parts:
(∏m

k=1
1√
n
Xn,k

)
+ Mn + An, and the mixed terms Mn do

not substantially contribute.
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Outline of the proof

1. Linearization: Let M =


0 M1 0
0 0 M2 0

. . .
. . .

0 0 Mm−1

Mm 0

 , an mn×mn

matrix of n × n blocks; and let P = M1 . . .Mm. Then
det(Mm − zI ) = [det(P − zI )]m for every z ∈ C.

2. Sylvester’s Determinant Formula: if A is N × k and B is k ×N, then
det(I + AB) = det(I + BA).

Low rank means that k = O(1), so an n× n determinant becomes a k × k
determinant.

3. Isotropic limit law: Shows that the resolvent is a good approximation
for −1/z outside the unit disk, in any basis. E.g., Isotropic limit laws
known for Wigner matrices (KY2012), for sample covariance matrices
(BEKYY2014), and for elliptical matrices (OR2014)
We prove a new isotropic local law for block matrices as above.
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Isotropic limit law

Theorem (Coston, O’Rourke, W. 2018)

Let Yn be a block matrix for the Xn,k , and let entries for the Xn,k be mean
zero, variance 1, with finite 4th moment, and with independent real and

imaginary parts. Let Gn(z) :=
(

1√
n
Yn − zI

)−1
. Then for any δ > 0, a.s.

for n suff large, all evals of 1√
n
Yn are within δ of the unit disk and

sup
|z|>1+δ

‖Gn‖ = Oδ(1). Also, if un, vn ∈ Cmn are fixed unit vectors, then

sup
|z|>1+δ

∣∣∣∣u∗nGn(z)vn +
1

z
u∗nvn

∣∣∣∣→ 0 a.s. as n→∞.

Sketch proof of outliers result: Any z /∈ unit disk is eval for 1√
n
Yn +An iff

det(I + Gn(z)An) = 0. Let An = Bmn×kCk×mn, where B is mn × k , etc.
Then, det(I + Gn(z)An) = det(I + Ck×mnGn(z)Bmn×k)

ILL
= det(I − 1

z Ck×mnBmn×k) + o(1)
= det(I − 1

zAn) + o(1)

=
∏k

j=1(1− 1
zλj(An)) + o(1). Now use Rouche’s Theorem. �
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Outline for proof of isotropic limit law

1. Truncation: truncate tails beyond a sufficiently large constant, then
recenter, working separately on the real and imaginary parts. Truncation
constant is sufficiently large to maintain variance near 1 and preserve (up
to constants) the 4th moment bound.

2. Least singular value bound for 1√
n
Yn − zI , uniform over all z ∈ C

with |z | > 1 + δ. Verify that the bounds pass to the non-truncated case.
3. Concentration of bilinear forms involving the truncated resolvent G̃,
i.e., showing that u∗nG̃vn is close to its expectation on a relevant region.
Thus it is sufficient to prove isotropic convergence for the expectation, i.e.,

sup
z∈Ωo

∣∣∣∣E(u∗nG̃vn) +
1

z
u∗nvn

∣∣∣∣ = o(1).

4. Moment computations show that an error term converges to zero.

Further questions: Outliers result for products of elliptical matrices?
Products of Hermitian matrices? (bulk dist still open)
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